compute-runtime/shared/offline_compiler/source/ocloc_fatbinary.cpp

492 lines
20 KiB
C++

/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/offline_compiler/source/ocloc_fatbinary.h"
#include "shared/offline_compiler/source/ocloc_error_code.h"
#include "shared/offline_compiler/source/utilities/safety_caller.h"
#include "shared/source/compiler_interface/intermediate_representations.h"
#include "shared/source/device_binary_format/elf/elf_encoder.h"
#include "shared/source/device_binary_format/elf/ocl_elf.h"
#include "shared/source/helpers/file_io.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/product_config_helper.h"
#include "igfxfmid.h"
#include <cstddef>
#include <cstdint>
#include <cstdio>
namespace NEO {
std::vector<PRODUCT_CONFIG> getAllMatchedConfigs(const std::string device, OclocArgHelper *argHelper) {
std::vector<PRODUCT_CONFIG> allMatchedConfigs;
auto numeration = argHelper->getMajorMinorRevision(device);
if (numeration.empty()) {
return {};
}
auto config = argHelper->getProductConfig(numeration);
std::vector<PRODUCT_CONFIG> allConfigs = argHelper->getAllSupportedProductConfigs();
uint32_t mask = argHelper->getMaskForConfig(numeration);
for (auto &productConfig : allConfigs) {
auto prod = static_cast<uint32_t>(productConfig) & mask;
if (config == prod) {
allMatchedConfigs.push_back(productConfig);
}
}
return allMatchedConfigs;
}
bool requestedFatBinary(const std::vector<std::string> &args, OclocArgHelper *helper) {
for (size_t argIndex = 1; argIndex < args.size(); argIndex++) {
const auto &currArg = args[argIndex];
const bool hasMoreArgs = (argIndex + 1 < args.size());
if ((ConstStringRef("-device") == currArg) && hasMoreArgs) {
ConstStringRef deviceArg(args[argIndex + 1]);
auto products = getAllMatchedConfigs(deviceArg.str(), helper);
if (products.size() > 1) {
return true;
}
return deviceArg.contains("*") || deviceArg.contains("-") || deviceArg.contains(",") || helper->isGen(deviceArg.str());
}
}
return false;
}
std::vector<PRODUCT_FAMILY> getAllSupportedTargetPlatforms() {
return std::vector<PRODUCT_FAMILY>{ALL_SUPPORTED_PRODUCT_FAMILIES};
}
std::vector<ConstStringRef> toProductNames(const std::vector<PRODUCT_FAMILY> &productIds) {
std::vector<ConstStringRef> ret;
for (auto prodId : productIds) {
ret.push_back(ConstStringRef(hardwarePrefix[prodId], strlen(hardwarePrefix[prodId])));
}
return ret;
}
PRODUCT_FAMILY asProductId(ConstStringRef product, const std::vector<PRODUCT_FAMILY> &allSupportedPlatforms) {
for (auto &family : allSupportedPlatforms) {
if (product == hardwarePrefix[family]) {
return family;
}
}
return IGFX_UNKNOWN;
}
std::vector<DeviceMapping> getProductConfigsForOpenRange(ConstStringRef openRange, OclocArgHelper *argHelper, bool rangeTo) {
std::vector<DeviceMapping> requestedConfigs;
std::vector<DeviceMapping> allSupportedDeviceConfigs = argHelper->getAllSupportedDeviceConfigs();
if (argHelper->isGen(openRange.str())) {
std::vector<GFXCORE_FAMILY> coreIdList;
auto coreId = argHelper->returnIGFXforGen(openRange.str());
coreIdList.push_back(static_cast<GFXCORE_FAMILY>(coreId));
if (rangeTo) {
auto coreId = coreIdList.back();
unsigned int coreIt = IGFX_UNKNOWN_CORE;
++coreIt;
while (coreIt <= static_cast<unsigned int>(coreId)) {
argHelper->getProductConfigsForGfxCoreFamily(static_cast<GFXCORE_FAMILY>(coreIt), requestedConfigs);
++coreIt;
}
} else {
unsigned int coreIt = coreIdList.front();
while (coreIt < static_cast<unsigned int>(IGFX_MAX_CORE)) {
argHelper->getProductConfigsForGfxCoreFamily(static_cast<GFXCORE_FAMILY>(coreIt), requestedConfigs);
++coreIt;
}
}
} else {
auto productConfig = argHelper->findConfigMatch(openRange.str(), !rangeTo);
if (productConfig == PRODUCT_CONFIG::UNKNOWN_ISA) {
argHelper->printf("Unknown device : %s\n", openRange.str().c_str());
return {};
}
auto configIt = std::find_if(allSupportedDeviceConfigs.begin(),
allSupportedDeviceConfigs.end(),
[&cf = productConfig](const DeviceMapping &c) -> bool { return cf == c.config; });
if (rangeTo) {
for (auto &deviceConfig : allSupportedDeviceConfigs) {
if (deviceConfig.config <= productConfig) {
requestedConfigs.push_back(deviceConfig);
}
}
} else {
requestedConfigs.insert(requestedConfigs.end(), configIt, allSupportedDeviceConfigs.end());
}
}
return requestedConfigs;
}
std::vector<DeviceMapping> getProductConfigsForClosedRange(ConstStringRef rangeFrom, ConstStringRef rangeTo, OclocArgHelper *argHelper) {
std::vector<DeviceMapping> requestedConfigs;
std::vector<DeviceMapping> allSupportedDeviceConfigs = argHelper->getAllSupportedDeviceConfigs();
if (argHelper->isGen(rangeFrom.str())) {
if (false == argHelper->isGen(rangeTo.str())) {
argHelper->printf("Ranges mixing configs and architecture is not supported, should be architectureFrom-architectureTo or configFrom-configTo\n");
return {};
}
auto coreFrom = argHelper->returnIGFXforGen(rangeFrom.str());
auto coreTo = argHelper->returnIGFXforGen(rangeTo.str());
if (static_cast<GFXCORE_FAMILY>(coreFrom) > static_cast<GFXCORE_FAMILY>(coreTo)) {
std::swap(coreFrom, coreTo);
}
while (coreFrom <= coreTo) {
argHelper->getProductConfigsForGfxCoreFamily(static_cast<GFXCORE_FAMILY>(coreFrom), requestedConfigs);
coreFrom = static_cast<GFXCORE_FAMILY>(static_cast<unsigned int>(coreFrom) + 1);
}
} else {
auto configFrom = argHelper->findConfigMatch(rangeFrom.str(), true);
if (configFrom == PRODUCT_CONFIG::UNKNOWN_ISA) {
argHelper->printf("Unknown device range : %s\n", rangeFrom.str().c_str());
return {};
}
auto configTo = argHelper->findConfigMatch(rangeTo.str(), false);
if (configTo == PRODUCT_CONFIG::UNKNOWN_ISA) {
argHelper->printf("Unknown device range : %s\n", rangeTo.str().c_str());
return {};
}
if (configFrom > configTo) {
configFrom = argHelper->findConfigMatch(rangeTo.str(), true);
configTo = argHelper->findConfigMatch(rangeFrom.str(), false);
}
for (auto &deviceConfig : allSupportedDeviceConfigs) {
if (deviceConfig.config >= configFrom && deviceConfig.config <= configTo) {
requestedConfigs.push_back(deviceConfig);
}
}
}
return requestedConfigs;
}
std::vector<ConstStringRef> getPlatformsForClosedRange(ConstStringRef rangeFrom, ConstStringRef rangeTo, PRODUCT_FAMILY platformFrom, OclocArgHelper *argHelper) {
std::vector<PRODUCT_FAMILY> requestedPlatforms;
std::vector<PRODUCT_FAMILY> allSupportedPlatforms = getAllSupportedTargetPlatforms();
auto platformTo = asProductId(rangeTo, allSupportedPlatforms);
if (IGFX_UNKNOWN == platformTo) {
argHelper->printf("Unknown device : %s\n", rangeTo.str().c_str());
return {};
}
if (platformFrom > platformTo) {
std::swap(platformFrom, platformTo);
}
auto from = std::find(allSupportedPlatforms.begin(), allSupportedPlatforms.end(), platformFrom);
auto to = std::find(allSupportedPlatforms.begin(), allSupportedPlatforms.end(), platformTo) + 1;
requestedPlatforms.insert(requestedPlatforms.end(), from, to);
return toProductNames(requestedPlatforms);
}
std::vector<ConstStringRef> getPlatformsForOpenRange(ConstStringRef openRange, PRODUCT_FAMILY prodId, OclocArgHelper *argHelper, bool rangeTo) {
std::vector<PRODUCT_FAMILY> requestedPlatforms;
std::vector<PRODUCT_FAMILY> allSupportedPlatforms = getAllSupportedTargetPlatforms();
auto prodIt = std::find(allSupportedPlatforms.begin(), allSupportedPlatforms.end(), prodId);
assert(prodIt != allSupportedPlatforms.end());
if (rangeTo) {
requestedPlatforms.insert(requestedPlatforms.end(), allSupportedPlatforms.begin(), prodIt + 1);
} else {
requestedPlatforms.insert(requestedPlatforms.end(), prodIt, allSupportedPlatforms.end());
}
return toProductNames(requestedPlatforms);
}
std::vector<DeviceMapping> getProductConfigsForSpecificTargets(CompilerOptions::TokenizedString targets, OclocArgHelper *argHelper) {
std::vector<DeviceMapping> requestedConfigs;
std::vector<DeviceMapping> allSupportedDeviceConfigs = argHelper->getAllSupportedDeviceConfigs();
for (auto &target : targets) {
if (argHelper->isGen(target.str())) {
auto coreId = argHelper->returnIGFXforGen(target.str());
argHelper->getProductConfigsForGfxCoreFamily(static_cast<GFXCORE_FAMILY>(coreId), requestedConfigs);
} else {
auto configFirstEl = argHelper->findConfigMatch(target.str(), true);
if (configFirstEl == PRODUCT_CONFIG::UNKNOWN_ISA) {
argHelper->printf("Unknown device range : %s\n", target.str().c_str());
return {};
}
auto configLastEl = argHelper->findConfigMatch(target.str(), false);
for (auto &deviceConfig : allSupportedDeviceConfigs) {
if (deviceConfig.config >= configFirstEl && deviceConfig.config <= configLastEl) {
requestedConfigs.push_back(deviceConfig);
}
}
}
}
return requestedConfigs;
}
std::vector<ConstStringRef> getPlatformsForSpecificTargets(CompilerOptions::TokenizedString targets, OclocArgHelper *argHelper) {
std::vector<PRODUCT_FAMILY> requestedPlatforms;
std::vector<PRODUCT_FAMILY> allSupportedPlatforms = getAllSupportedTargetPlatforms();
for (auto &target : targets) {
auto prodId = asProductId(target, allSupportedPlatforms);
if (IGFX_UNKNOWN == prodId) {
argHelper->printf("Unknown device : %s\n", target.str().c_str());
return {};
}
requestedPlatforms.push_back(prodId);
}
return toProductNames(requestedPlatforms);
}
bool isDeviceWithPlatformAbbreviation(ConstStringRef deviceArg, OclocArgHelper *argHelper) {
std::vector<PRODUCT_FAMILY> allSupportedPlatforms = getAllSupportedTargetPlatforms();
PRODUCT_FAMILY prodId = IGFX_UNKNOWN;
auto sets = CompilerOptions::tokenize(deviceArg, ',');
if (sets[0].contains("-")) {
auto range = CompilerOptions::tokenize(deviceArg, '-');
prodId = asProductId(range[0], allSupportedPlatforms);
} else {
prodId = asProductId(sets[0], allSupportedPlatforms);
}
return prodId != IGFX_UNKNOWN;
}
std::vector<ConstStringRef> getTargetPlatformsForFatbinary(ConstStringRef deviceArg, OclocArgHelper *argHelper) {
std::vector<PRODUCT_FAMILY> allSupportedPlatforms = getAllSupportedTargetPlatforms();
std::vector<ConstStringRef> retVal;
auto sets = CompilerOptions::tokenize(deviceArg, ',');
if (sets[0].contains("-")) {
auto range = CompilerOptions::tokenize(deviceArg, '-');
if (range.size() > 2) {
argHelper->printf("Invalid range : %s - should be from-to or -to or from-\n", sets[0].str().c_str());
return {};
}
auto prodId = asProductId(range[0], allSupportedPlatforms);
if (range.size() == 1) {
bool rangeTo = ('-' == sets[0][0]);
retVal = getPlatformsForOpenRange(range[0], prodId, argHelper, rangeTo);
} else {
retVal = getPlatformsForClosedRange(range[0], range[1], prodId, argHelper);
}
} else {
retVal = getPlatformsForSpecificTargets(sets, argHelper);
}
return retVal;
}
std::vector<DeviceMapping> getTargetConfigsForFatbinary(ConstStringRef deviceArg, OclocArgHelper *argHelper) {
if (deviceArg == "*") {
return argHelper->getAllSupportedDeviceConfigs();
}
std::vector<DeviceMapping> retVal;
auto sets = CompilerOptions::tokenize(deviceArg, ',');
if (sets[0].contains("-")) {
auto range = CompilerOptions::tokenize(deviceArg, '-');
if (range.size() > 2) {
argHelper->printf("Invalid range : %s - should be from-to or -to or from-\n", sets[0].str().c_str());
return {};
}
if (range.size() == 1) {
bool rangeTo = ('-' == sets[0][0]);
retVal = getProductConfigsForOpenRange(range[0], argHelper, rangeTo);
} else {
retVal = getProductConfigsForClosedRange(range[0], range[1], argHelper);
}
} else {
retVal = getProductConfigsForSpecificTargets(sets, argHelper);
}
return retVal;
}
int buildFatBinaryForTarget(int retVal, const std::vector<std::string> &argsCopy, std::string pointerSize, Ar::ArEncoder &fatbinary,
OfflineCompiler *pCompiler, OclocArgHelper *argHelper, const std::string &deviceConfig) {
if (retVal == 0) {
retVal = buildWithSafetyGuard(pCompiler);
std::string buildLog = pCompiler->getBuildLog();
if (buildLog.empty() == false) {
argHelper->printf("%s\n", buildLog.c_str());
}
if (retVal == 0) {
if (!pCompiler->isQuiet())
argHelper->printf("Build succeeded for : %s.\n", deviceConfig.c_str());
} else {
argHelper->printf("Build failed for : %s with error code: %d\n", deviceConfig.c_str(), retVal);
argHelper->printf("Command was:");
for (const auto &arg : argsCopy)
argHelper->printf(" %s", arg.c_str());
argHelper->printf("\n");
}
}
if (retVal) {
return retVal;
}
fatbinary.appendFileEntry(pointerSize + "." + deviceConfig, pCompiler->getPackedDeviceBinaryOutput());
return retVal;
}
int buildFatBinary(const std::vector<std::string> &args, OclocArgHelper *argHelper) {
std::string pointerSizeInBits = (sizeof(void *) == 4) ? "32" : "64";
size_t deviceArgIndex = -1;
std::string inputFileName = "";
std::string outputFileName = "";
std::string outputDirectory = "";
bool spirvInput = false;
bool excludeIr = false;
std::vector<std::string> argsCopy(args);
for (size_t argIndex = 1; argIndex < args.size(); argIndex++) {
const auto &currArg = args[argIndex];
const bool hasMoreArgs = (argIndex + 1 < args.size());
if ((ConstStringRef("-device") == currArg) && hasMoreArgs) {
deviceArgIndex = argIndex + 1;
++argIndex;
} else if ((CompilerOptions::arch32bit == currArg) || (ConstStringRef("-32") == currArg)) {
pointerSizeInBits = "32";
} else if ((CompilerOptions::arch64bit == currArg) || (ConstStringRef("-64") == currArg)) {
pointerSizeInBits = "64";
} else if ((ConstStringRef("-file") == currArg) && hasMoreArgs) {
inputFileName = args[argIndex + 1];
++argIndex;
} else if ((ConstStringRef("-output") == currArg) && hasMoreArgs) {
outputFileName = args[argIndex + 1];
++argIndex;
} else if ((ConstStringRef("-out_dir") == currArg) && hasMoreArgs) {
outputDirectory = args[argIndex + 1];
++argIndex;
} else if (ConstStringRef("-exclude_ir") == currArg) {
excludeIr = true;
} else if (ConstStringRef("-spirv_input") == currArg) {
spirvInput = true;
}
}
const bool shouldPreserveGenericIr = spirvInput && !excludeIr;
if (shouldPreserveGenericIr) {
argsCopy.push_back("-exclude_ir");
}
if (deviceArgIndex == static_cast<size_t>(-1)) {
argHelper->printf("Error! Command does not contain device argument!\n");
return OclocErrorCode::INVALID_COMMAND_LINE;
}
Ar::ArEncoder fatbinary(true);
if (isDeviceWithPlatformAbbreviation(ConstStringRef(args[deviceArgIndex]), argHelper)) {
std::vector<ConstStringRef> targetPlatforms;
targetPlatforms = getTargetPlatformsForFatbinary(ConstStringRef(args[deviceArgIndex]), argHelper);
if (targetPlatforms.empty()) {
argHelper->printf("Failed to parse target devices from : %s\n", args[deviceArgIndex].c_str());
return 1;
}
for (auto &targetPlatform : targetPlatforms) {
int retVal = 0;
argsCopy[deviceArgIndex] = targetPlatform.str();
std::unique_ptr<OfflineCompiler> pCompiler{OfflineCompiler::create(argsCopy.size(), argsCopy, false, retVal, argHelper)};
if (OclocErrorCode::SUCCESS != retVal) {
argHelper->printf("Error! Couldn't create OfflineCompiler. Exiting.\n");
return retVal;
}
std::string product = hardwarePrefix[pCompiler->getHardwareInfo().platform.eProductFamily];
auto stepping = pCompiler->getHardwareInfo().platform.usRevId;
auto targetPlatforms = product + "." + std::to_string(stepping);
retVal = buildFatBinaryForTarget(retVal, argsCopy, pointerSizeInBits, fatbinary, pCompiler.get(), argHelper, targetPlatforms);
if (retVal) {
return retVal;
}
}
} else {
std::vector<DeviceMapping> targetConfigs;
targetConfigs = getTargetConfigsForFatbinary(ConstStringRef(args[deviceArgIndex]), argHelper);
if (targetConfigs.empty()) {
argHelper->printf("Failed to parse target devices from : %s\n", args[deviceArgIndex].c_str());
return 1;
}
for (auto &targetConfig : targetConfigs) {
int retVal = 0;
argHelper->setFatbinary(true);
argHelper->setDeviceInfoForFatbinaryTarget(targetConfig);
std::unique_ptr<OfflineCompiler> pCompiler{OfflineCompiler::create(argsCopy.size(), argsCopy, false, retVal, argHelper)};
if (OclocErrorCode::SUCCESS != retVal) {
argHelper->printf("Error! Couldn't create OfflineCompiler. Exiting.\n");
return retVal;
}
auto targetConfigStr = ProductConfigHelper::parseMajorMinorRevisionValue(targetConfig.config);
retVal = buildFatBinaryForTarget(retVal, argsCopy, pointerSizeInBits, fatbinary, pCompiler.get(), argHelper, targetConfigStr);
if (retVal) {
return retVal;
}
}
}
if (shouldPreserveGenericIr) {
const auto errorCode = appendGenericIr(fatbinary, inputFileName, argHelper);
if (errorCode != OclocErrorCode::SUCCESS) {
argHelper->printf("Error! Couldn't append generic IR file!\n");
return errorCode;
}
}
auto fatbinaryData = fatbinary.encode();
std::string fatbinaryFileName = outputFileName;
if (outputFileName.empty() && (false == inputFileName.empty())) {
fatbinaryFileName = OfflineCompiler::getFileNameTrunk(inputFileName) + ".ar";
}
if (false == outputDirectory.empty()) {
fatbinaryFileName = outputDirectory + "/" + outputFileName;
}
argHelper->saveOutput(fatbinaryFileName, fatbinaryData.data(), fatbinaryData.size());
return 0;
}
int appendGenericIr(Ar::ArEncoder &fatbinary, const std::string &inputFile, OclocArgHelper *argHelper) {
std::size_t fileSize = 0;
std::unique_ptr<char[]> fileContents = argHelper->loadDataFromFile(inputFile, fileSize);
if (fileSize == 0) {
argHelper->printf("Error! Couldn't read input file!\n");
return OclocErrorCode::INVALID_FILE;
}
const auto ir = ArrayRef<const uint8_t>::fromAny(fileContents.get(), fileSize);
if (!isSpirVBitcode(ir)) {
argHelper->printf("Error! Input file is not in supported generic IR format! "
"Currently supported format is SPIR-V.\n");
return OclocErrorCode::INVALID_FILE;
}
const auto encodedElf = createEncodedElfWithSpirv(ir);
ArrayRef<const uint8_t> genericIrFile{encodedElf.data(), encodedElf.size()};
fatbinary.appendFileEntry("generic_ir", genericIrFile);
return OclocErrorCode::SUCCESS;
}
std::vector<uint8_t> createEncodedElfWithSpirv(const ArrayRef<const uint8_t> &spirv) {
using namespace NEO::Elf;
ElfEncoder<EI_CLASS_64> elfEncoder;
elfEncoder.getElfFileHeader().type = ET_OPENCL_OBJECTS;
elfEncoder.appendSection(SHT_OPENCL_SPIRV, SectionNamesOpenCl::spirvObject, spirv);
return elfEncoder.encode();
}
} // namespace NEO