compute-runtime/unit_tests/command_queue/enqueue_kernel_tests.cpp

1652 lines
69 KiB
C++

/*
* Copyright (c) 2017 - 2018, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "runtime/built_ins/built_ins.h"
#include "runtime/built_ins/builtins_dispatch_builder.h"
#include "runtime/command_queue/command_queue_hw.h"
#include "reg_configs_common.h"
#include "runtime/helpers/preamble.h"
#include "runtime/memory_manager/graphics_allocation.h"
#include "runtime/memory_manager/memory_constants.h"
#include "unit_tests/command_queue/enqueue_fixture.h"
#include "unit_tests/fixtures/hello_world_fixture.h"
#include "unit_tests/fixtures/memory_management_fixture.h"
#include "unit_tests/gen_common/gen_commands_common_validation.h"
#include "unit_tests/helpers/hw_parse.h"
#include "unit_tests/helpers/debug_manager_state_restore.h"
#include "unit_tests/mocks/mock_csr.h"
#include "unit_tests/mocks/mock_buffer.h"
#include "unit_tests/mocks/mock_submissions_aggregator.h"
#include "runtime/helpers/hw_info.h"
using namespace OCLRT;
typedef HelloWorldFixture<HelloWorldFixtureFactory> EnqueueKernelFixture;
typedef Test<EnqueueKernelFixture> EnqueueKernelTest;
TEST_F(EnqueueKernelTest, clEnqueueNDRangeKernel_null_kernel) {
size_t globalWorkSize[3] = {1, 1, 1};
auto retVal = clEnqueueNDRangeKernel(
pCmdQ,
nullptr,
1,
nullptr,
globalWorkSize,
nullptr,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_INVALID_KERNEL, retVal);
}
TEST_F(EnqueueKernelTest, givenKernelWhenAllArgsAreSetThenClEnqueueNDRangeKernelReturnsSuccess) {
const size_t n = 512;
size_t globalWorkSize[3] = {n, 1, 1};
size_t localWorkSize[3] = {256, 1, 1};
cl_int retVal = CL_SUCCESS;
CommandQueue *pCmdQ2 = createCommandQueue(pDevice, 0);
std::unique_ptr<Kernel> kernel(Kernel::create(pProgram, *pProgram->getKernelInfo("CopyBuffer"), &retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
auto b0 = clCreateBuffer(context, 0, n * sizeof(float), nullptr, nullptr);
auto b1 = clCreateBuffer(context, 0, n * sizeof(float), nullptr, nullptr);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clSetKernelArg(kernel.get(), 0, sizeof(cl_mem), &b0);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clSetKernelArg(kernel.get(), 1, sizeof(cl_mem), &b1);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(b0);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(b1);
EXPECT_EQ(CL_SUCCESS, retVal);
clReleaseCommandQueue(pCmdQ2);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_F(EnqueueKernelTest, givenKernelWhenNotAllArgsAreSetButSetKernelArgIsCalledTwiceThenClEnqueueNDRangeKernelReturnsError) {
const size_t n = 512;
size_t globalWorkSize[3] = {n, 1, 1};
size_t localWorkSize[3] = {256, 1, 1};
cl_int retVal = CL_SUCCESS;
CommandQueue *pCmdQ2 = createCommandQueue(pDevice, 0);
std::unique_ptr<Kernel> kernel(Kernel::create(pProgram, *pProgram->getKernelInfo("CopyBuffer"), &retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
auto b0 = clCreateBuffer(context, 0, n * sizeof(float), nullptr, nullptr);
auto b1 = clCreateBuffer(context, 0, n * sizeof(float), nullptr, nullptr);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clSetKernelArg(kernel.get(), 0, sizeof(cl_mem), &b0);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clSetKernelArg(kernel.get(), 0, sizeof(cl_mem), &b1);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clReleaseMemObject(b0);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(b1);
EXPECT_EQ(CL_SUCCESS, retVal);
clReleaseCommandQueue(pCmdQ2);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_F(EnqueueKernelTest, givenKernelWhenSetKernelArgIsCalledForEachArgButAtLeastFailsThenClEnqueueNDRangeKernelReturnsError) {
const size_t n = 512;
size_t globalWorkSize[3] = {n, 1, 1};
size_t localWorkSize[3] = {256, 1, 1};
cl_int retVal = CL_SUCCESS;
CommandQueue *pCmdQ2 = createCommandQueue(pDevice, 0);
std::unique_ptr<Kernel> kernel(Kernel::create(pProgram, *pProgram->getKernelInfo("CopyBuffer"), &retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
auto b0 = clCreateBuffer(context, 0, n * sizeof(float), nullptr, nullptr);
auto b1 = clCreateBuffer(context, 0, n * sizeof(float), nullptr, nullptr);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clSetKernelArg(kernel.get(), 0, sizeof(cl_mem), &b0);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clSetKernelArg(kernel.get(), 1, 2 * sizeof(cl_mem), &b1);
EXPECT_NE(CL_SUCCESS, retVal);
EXPECT_FALSE(kernel->isPatched());
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
retVal = clReleaseMemObject(b0);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(b1);
EXPECT_EQ(CL_SUCCESS, retVal);
clReleaseCommandQueue(pCmdQ2);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_F(EnqueueKernelTest, clEnqueueNDRangeKernel_invalid_event_list_count) {
size_t globalWorkSize[3] = {1, 1, 1};
auto retVal = clEnqueueNDRangeKernel(
pCmdQ,
pKernel,
1,
nullptr,
globalWorkSize,
nullptr,
1,
nullptr,
nullptr);
EXPECT_EQ(CL_INVALID_EVENT_WAIT_LIST, retVal);
}
TEST_F(EnqueueKernelTest, clEnqueueNDRangeKernel_invalidWorkGroupSize) {
size_t globalWorkSize[3] = {12, 12, 12};
size_t localWorkSize[3] = {11, 12, 12};
auto retVal = clEnqueueNDRangeKernel(
pCmdQ,
pKernel,
3,
nullptr,
globalWorkSize,
localWorkSize,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_INVALID_WORK_GROUP_SIZE, retVal);
}
struct TestParam2 {
cl_uint ScratchSize;
} TestParamTable2[] = {{1024}, {2048}, {4096}, {8192}, {16384}, {32768}, {65536}, {131072}};
struct TestParam {
cl_uint globalWorkSizeX;
cl_uint globalWorkSizeY;
cl_uint globalWorkSizeZ;
cl_uint localWorkSizeX;
cl_uint localWorkSizeY;
cl_uint localWorkSizeZ;
} TestParamTable[] = {
{1, 1, 1, 1, 1, 1},
{16, 1, 1, 1, 1, 1},
{16, 1, 1, 16, 1, 1},
{32, 1, 1, 1, 1, 1},
{32, 1, 1, 16, 1, 1},
{32, 1, 1, 32, 1, 1},
{64, 1, 1, 1, 1, 1},
{64, 1, 1, 16, 1, 1},
{64, 1, 1, 32, 1, 1},
{64, 1, 1, 64, 1, 1},
{190, 1, 1, 95, 1, 1},
{510, 1, 1, 255, 1, 1},
{512, 1, 1, 256, 1, 1}};
template <typename InputType>
struct EnqueueKernelTypeTest : public HelloWorldFixture<HelloWorldFixtureFactory>,
public HardwareParse,
::testing::TestWithParam<InputType> {
typedef HelloWorldFixture<HelloWorldFixtureFactory> ParentClass;
using ParentClass::pCmdBuffer;
using ParentClass::pCS;
EnqueueKernelTypeTest() {
}
void FillValues() {
globalWorkSize[0] = 1;
globalWorkSize[1] = 1;
globalWorkSize[2] = 1;
localWorkSize[0] = 1;
localWorkSize[1] = 1;
localWorkSize[2] = 1;
};
template <typename FamilyType, bool ParseCommands>
typename std::enable_if<false == ParseCommands, void>::type enqueueKernel(Kernel *inputKernel = nullptr) {
cl_uint workDim = 1;
size_t globalWorkOffset[3] = {0, 0, 0};
cl_uint numEventsInWaitList = 0;
cl_event *eventWaitList = nullptr;
cl_event *event = nullptr;
FillValues();
// Compute # of expected work items
expectedWorkItems = 1;
for (auto i = 0u; i < workDim; i++) {
expectedWorkItems *= globalWorkSize[i];
}
auto usedKernel = inputKernel ? inputKernel : pKernel;
auto retVal = pCmdQ->enqueueKernel(
usedKernel,
workDim,
globalWorkOffset,
globalWorkSize,
localWorkSize,
numEventsInWaitList,
eventWaitList,
event);
ASSERT_EQ(CL_SUCCESS, retVal);
}
template <typename FamilyType, bool ParseCommands>
typename std::enable_if<ParseCommands, void>::type enqueueKernel(Kernel *inputKernel = nullptr) {
enqueueKernel<FamilyType, false>(inputKernel);
parseCommands<FamilyType>(*pCmdQ);
}
template <typename FamilyType>
void enqueueKernel(Kernel *inputKernel = nullptr) {
enqueueKernel<FamilyType, true>(inputKernel);
}
void SetUp() override {
ParentClass::SetUp();
HardwareParse::SetUp();
}
void TearDown() override {
HardwareParse::TearDown();
ParentClass::TearDown();
}
size_t globalWorkSize[3];
size_t localWorkSize[3];
size_t expectedWorkItems = 0;
};
template <>
void EnqueueKernelTypeTest<TestParam>::FillValues() {
const TestParam &param = GetParam();
globalWorkSize[0] = param.globalWorkSizeX;
globalWorkSize[1] = param.globalWorkSizeY;
globalWorkSize[2] = param.globalWorkSizeZ;
localWorkSize[0] = param.localWorkSizeX;
localWorkSize[1] = param.localWorkSizeY;
localWorkSize[2] = param.localWorkSizeZ;
}
typedef EnqueueKernelTypeTest<TestParam> EnqueueWorkItemTests;
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, GPGPUWalker) {
typedef typename FamilyType::PARSE PARSE;
typedef typename PARSE::GPGPU_WALKER GPGPU_WALKER;
enqueueKernel<FamilyType>();
ASSERT_NE(cmdList.end(), itorWalker);
auto *cmd = (GPGPU_WALKER *)*itorWalker;
// Verify GPGPU_WALKER parameters
EXPECT_NE(0u, cmd->getThreadGroupIdXDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdYDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdZDimension());
EXPECT_NE(0u, cmd->getRightExecutionMask());
EXPECT_NE(0u, cmd->getBottomExecutionMask());
EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize());
EXPECT_NE(0u, cmd->getIndirectDataLength());
EXPECT_FALSE(cmd->getIndirectParameterEnable());
// Compute the SIMD lane mask
size_t simd =
cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8;
uint64_t simdMask = (1ull << simd) - 1;
// Mask off lanes based on the execution masks
auto laneMaskRight = cmd->getRightExecutionMask() & simdMask;
auto lanesPerThreadX = 0;
while (laneMaskRight) {
lanesPerThreadX += laneMaskRight & 1;
laneMaskRight >>= 1;
}
auto numWorkItems = ((cmd->getThreadWidthCounterMaximum() - 1) * simd + lanesPerThreadX) * cmd->getThreadGroupIdXDimension();
EXPECT_EQ(expectedWorkItems, numWorkItems);
}
HWTEST_P(EnqueueWorkItemTests, bumpsTaskLevel) {
auto taskLevelBefore = pCmdQ->taskLevel;
enqueueKernel<FamilyType, false>();
EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore);
}
HWTEST_P(EnqueueWorkItemTests, alignsToCSR) {
//this test case assumes IOQ
auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
csr.taskCount = pCmdQ->taskCount + 100;
csr.taskLevel = pCmdQ->taskLevel + 50;
enqueueKernel<FamilyType, false>();
EXPECT_EQ(pCmdQ->taskCount, csr.peekTaskCount());
EXPECT_EQ(pCmdQ->taskLevel + 1, csr.peekTaskLevel());
}
HWTEST_P(EnqueueWorkItemTests, addsCommands) {
auto usedCmdBufferBefore = pCS->getUsed();
enqueueKernel<FamilyType, false>();
EXPECT_NE(usedCmdBufferBefore, pCS->getUsed());
}
HWTEST_P(EnqueueWorkItemTests, addsIndirectData) {
auto dshBefore = pDSH->getUsed();
auto iohBefore = pIOH->getUsed();
auto sshBefore = pSSH->getUsed();
enqueueKernel<FamilyType, false>();
EXPECT_NE(dshBefore, pDSH->getUsed());
EXPECT_NE(iohBefore, pIOH->getUsed());
if (pKernel->requiresSshForBuffers() || (pKernel->getKernelInfo().patchInfo.imageMemObjKernelArgs.size() > 0)) {
EXPECT_NE(sshBefore, pSSH->getUsed());
}
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, LoadRegisterImmediateL3CNTLREG) {
enqueueKernel<FamilyType>();
validateL3Programming<FamilyType>(cmdList, itorWalker);
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) {
enqueueKernel<FamilyType>();
validateStateBaseAddress<FamilyType>(this->pDevice->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(),
pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList,
context->getMemoryManager()->peekForce32BitAllocations() ? context->getMemoryManager()->allocator32Bit->getBase() : 0llu);
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, MediaInterfaceDescriptorLoad) {
typedef typename FamilyType::PARSE PARSE;
typedef typename PARSE::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename PARSE::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueKernel<FamilyType>();
// All state should be programmed before walker
auto itorCmd = find<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(itorPipelineSelect, itorWalker);
ASSERT_NE(itorWalker, itorCmd);
auto *cmd = genCmdCast<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(*itorCmd);
// Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA));
// Validate the start address
size_t alignmentStartAddress = 64 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress);
// Validate the length
EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength());
size_t alignmentTotalLength = 32 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength);
// Generically validate this command
PARSE::template validateCommand<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdList.begin(), itorCmd);
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, InterfaceDescriptorData) {
typedef typename FamilyType::PARSE PARSE;
typedef typename PARSE::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename PARSE::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
typedef typename PARSE::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueKernel<FamilyType>();
// Extract the MIDL command
auto itorCmd = find<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(itorPipelineSelect, itorWalker);
ASSERT_NE(itorWalker, itorCmd);
auto *cmdMIDL = (MEDIA_INTERFACE_DESCRIPTOR_LOAD *)*itorCmd;
// Extract the SBA command
itorCmd = find<STATE_BASE_ADDRESS *>(cmdList.begin(), itorWalker);
ASSERT_NE(itorWalker, itorCmd);
auto *cmdSBA = (STATE_BASE_ADDRESS *)*itorCmd;
// Extrach the DSH
auto DSH = cmdSBA->getDynamicStateBaseAddress();
ASSERT_NE(0u, DSH);
// IDD should be located within DSH
auto iddStart = cmdMIDL->getInterfaceDescriptorDataStartAddress();
auto IDDEnd = iddStart + cmdMIDL->getInterfaceDescriptorTotalLength();
ASSERT_LE(IDDEnd, cmdSBA->getDynamicStateBufferSize() * MemoryConstants::pageSize);
// Extract the IDD
auto &IDD = *(INTERFACE_DESCRIPTOR_DATA *)(DSH + iddStart);
// Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value.
auto kernelStartPointer = ((uint64_t)IDD.getKernelStartPointerHigh() << 32) + IDD.getKernelStartPointer();
EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize);
EXPECT_NE(0u, IDD.getNumberOfThreadsInGpgpuThreadGroup());
EXPECT_NE(0u, IDD.getCrossThreadConstantDataReadLength());
EXPECT_NE(0u, IDD.getConstantIndirectUrbEntryReadLength());
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, PipelineSelect) {
enqueueKernel<FamilyType>();
int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect<FamilyType>();
EXPECT_EQ(1, numCommands);
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueWorkItemTests, MediaVFEState) {
enqueueKernel<FamilyType>();
validateMediaVFEState<FamilyType>(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState);
}
INSTANTIATE_TEST_CASE_P(EnqueueKernel,
EnqueueWorkItemTests,
::testing::ValuesIn(TestParamTable));
typedef EnqueueKernelTypeTest<TestParam2> EnqueueScratchSpaceTests;
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueScratchSpaceTests, GivenKernelRequiringScratchWhenItIsEnqueuedWithDifferentScratchSizesThenMediaVFEStateAndStateBaseAddressAreProperlyProgrammed) {
typedef typename FamilyType::PARSE PARSE;
typedef typename PARSE::MEDIA_VFE_STATE MEDIA_VFE_STATE;
typedef typename PARSE::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
csr.getMemoryManager()->setForce32BitAllocations(false);
EXPECT_TRUE(csr.getMemoryManager()->allocationsForReuse.peekIsEmpty());
SPatchMediaVFEState mediaVFEstate;
auto scratchSize = GetParam().ScratchSize;
mediaVFEstate.PerThreadScratchSpace = scratchSize;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.kernelInfo.patchInfo.mediavfestate = &mediaVFEstate;
auto sizeToProgram = (scratchSize / MemoryConstants::kiloByte);
auto bitValue = 0u;
while (sizeToProgram >>= 1) {
bitValue++;
}
auto valueToProgram = Kernel::getScratchSizeValueToProgramMediaVfeState(scratchSize);
EXPECT_EQ(bitValue, valueToProgram);
enqueueKernel<FamilyType>(mockKernel);
// All state should be programmed before walker
auto itorCmd = find<MEDIA_VFE_STATE *>(itorPipelineSelect, itorWalker);
auto itorCmdForStateBase = find<STATE_BASE_ADDRESS *>(itorPipelineSelect, itorWalker);
ASSERT_NE(itorWalker, itorCmd);
ASSERT_NE(itorWalker, itorCmdForStateBase);
auto *cmd = (MEDIA_VFE_STATE *)*itorCmd;
auto *sba = (STATE_BASE_ADDRESS *)*itorCmdForStateBase;
const HardwareInfo &hwInfo = **platformDevices;
uint32_t threadPerEU = (hwInfo.pSysInfo->ThreadCount / hwInfo.pSysInfo->EUCount) + hwInfo.capabilityTable.extraQuantityThreadsPerEU;
uint32_t maxNumberOfThreads = hwInfo.pSysInfo->EUCount * threadPerEU;
// Verify we have a valid length
EXPECT_EQ(maxNumberOfThreads, cmd->getMaximumNumberOfThreads());
EXPECT_NE(0u, cmd->getNumberOfUrbEntries());
EXPECT_NE(0u, cmd->getUrbEntryAllocationSize());
EXPECT_EQ(bitValue, cmd->getPerThreadScratchSpace());
EXPECT_EQ(bitValue, cmd->getStackSize());
auto graphicsAllocation = csr.getScratchAllocation();
auto GSHaddress = (uintptr_t)sba->getGeneralStateBaseAddress();
if (is32bit) {
EXPECT_NE(0u, cmd->getScratchSpaceBasePointer());
EXPECT_EQ(0u, GSHaddress);
} else {
EXPECT_EQ(PreambleHelper<FamilyType>::getScratchSpaceOffsetFor64bit(), cmd->getScratchSpaceBasePointer());
EXPECT_EQ(GSHaddress + PreambleHelper<FamilyType>::getScratchSpaceOffsetFor64bit(), (uintptr_t)graphicsAllocation->getUnderlyingBuffer());
}
auto allocationSize = scratchSize * pDevice->getDeviceInfo().computeUnitsUsedForScratch;
EXPECT_EQ(graphicsAllocation->getUnderlyingBufferSize(), allocationSize);
// Generically validate this command
PARSE::template validateCommand<MEDIA_VFE_STATE *>(cmdList.begin(), itorCmd);
scratchSize *= 2;
//skip if size to big 4MB, no point in stressing memory allocator.
if (allocationSize > 4194304) {
return;
}
mediaVFEstate.PerThreadScratchSpace = scratchSize;
auto itorfirstBBEnd = find<typename FamilyType::MI_BATCH_BUFFER_END *>(itorWalker, cmdList.end());
ASSERT_NE(cmdList.end(), itorfirstBBEnd);
enqueueKernel<FamilyType>(mockKernel);
bitValue++;
itorCmd = find<MEDIA_VFE_STATE *>(itorfirstBBEnd, cmdList.end());
itorCmdForStateBase = find<STATE_BASE_ADDRESS *>(itorWalker, cmdList.end());
ASSERT_NE(itorWalker, itorCmd);
if (is64bit) {
ASSERT_NE(itorCmdForStateBase, itorCmd);
} else {
//no SBA not dirty
ASSERT_EQ(itorCmdForStateBase, cmdList.end());
}
auto *cmd2 = (MEDIA_VFE_STATE *)*itorCmd;
// Verify we have a valid length
EXPECT_EQ(maxNumberOfThreads, cmd2->getMaximumNumberOfThreads());
EXPECT_NE(0u, cmd2->getNumberOfUrbEntries());
EXPECT_NE(0u, cmd2->getUrbEntryAllocationSize());
EXPECT_EQ(bitValue, cmd2->getPerThreadScratchSpace());
EXPECT_EQ(bitValue, cmd2->getStackSize());
auto graphicsAllocation2 = csr.getScratchAllocation();
if (is32bit) {
auto scratchBase = (uintptr_t)cmd2->getScratchSpaceBasePointer();
EXPECT_NE(0u, scratchBase);
auto graphicsAddress = (uintptr_t)graphicsAllocation2->getUnderlyingBuffer();
EXPECT_EQ(graphicsAddress, scratchBase);
} else {
auto *sba2 = (STATE_BASE_ADDRESS *)*itorCmdForStateBase;
auto GSHaddress2 = sba2->getGeneralStateBaseAddress();
EXPECT_NE(0u, GSHaddress2);
EXPECT_EQ(PreambleHelper<FamilyType>::getScratchSpaceOffsetFor64bit(), cmd2->getScratchSpaceBasePointer());
EXPECT_NE(GSHaddress2, GSHaddress);
}
EXPECT_EQ(graphicsAllocation->getUnderlyingBufferSize(), allocationSize);
EXPECT_NE(graphicsAllocation2, graphicsAllocation);
// Generically validate this command
PARSE::template validateCommand<MEDIA_VFE_STATE *>(cmdList.begin(), itorCmd);
// Trigger SBA generation
IndirectHeap dirtyDsh(nullptr);
csr.dshState.updateAndCheck(&dirtyDsh);
enqueueKernel<FamilyType>(mockKernel);
auto finalItorToSBA = find<STATE_BASE_ADDRESS *>(itorCmd, cmdList.end());
ASSERT_NE(finalItorToSBA, cmdList.end());
auto *finalSba2 = (STATE_BASE_ADDRESS *)*finalItorToSBA;
auto GSBaddress = finalSba2->getGeneralStateBaseAddress();
if (is32bit) {
EXPECT_EQ(0u, GSBaddress);
} else if (is64bit) {
EXPECT_EQ((uintptr_t)graphicsAllocation2->getUnderlyingBuffer(), GSBaddress + PreambleHelper<FamilyType>::getScratchSpaceOffsetFor64bit());
}
EXPECT_TRUE(csr.getMemoryManager()->allocationsForReuse.peekIsEmpty());
}
INSTANTIATE_TEST_CASE_P(EnqueueKernel,
EnqueueScratchSpaceTests,
::testing::ValuesIn(TestParamTable2));
typedef EnqueueKernelTypeTest<int> EnqueueKernelWithScratch;
HWTEST_P(EnqueueKernelWithScratch, GivenKernelRequiringScratchWhenItIsEnqueuedWithDifferentScratchSizesThenPreviousScratchAllocationIsMadeNonResidentPriorStoringOnResueList) {
auto mockCsr = new MockCsrHw<FamilyType>(pDevice->getHardwareInfo());
pDevice->resetCommandStreamReceiver(mockCsr);
SPatchMediaVFEState mediaVFEstate;
auto scratchSize = 1024;
mediaVFEstate.PerThreadScratchSpace = scratchSize;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.kernelInfo.patchInfo.mediavfestate = &mediaVFEstate;
auto sizeToProgram = (scratchSize / MemoryConstants::kiloByte);
auto bitValue = 0u;
while (sizeToProgram >>= 1) {
bitValue++;
}
auto valueToProgram = Kernel::getScratchSizeValueToProgramMediaVfeState(scratchSize);
EXPECT_EQ(bitValue, valueToProgram);
enqueueKernel<FamilyType, false>(mockKernel);
auto graphicsAllocation = mockCsr->getScratchAllocation();
EXPECT_TRUE(mockCsr->isMadeResident(graphicsAllocation));
// Enqueue With ScratchSize bigger then previous
scratchSize = 8196;
mediaVFEstate.PerThreadScratchSpace = scratchSize;
enqueueKernel<FamilyType, false>(mockKernel);
EXPECT_TRUE(mockCsr->isMadeNonResident(graphicsAllocation));
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueKernelWithScratch, givenDeviceForcing32bitAllocationsWhenKernelWithScratchIsEnqueuedThenGeneralStateHeapBaseAddressIsCorrectlyProgrammedAndMediaVFEStateContainsProgramming) {
typedef typename FamilyType::PARSE PARSE;
typedef typename PARSE::MEDIA_VFE_STATE MEDIA_VFE_STATE;
typedef typename PARSE::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
if (is64bit) {
CommandStreamReceiver *csr = &pDevice->getCommandStreamReceiver();
auto memoryManager = csr->getMemoryManager();
memoryManager->setForce32BitAllocations(true);
SPatchMediaVFEState mediaVFEstate;
auto scratchSize = 1024;
mediaVFEstate.PerThreadScratchSpace = scratchSize;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.kernelInfo.patchInfo.mediavfestate = &mediaVFEstate;
enqueueKernel<FamilyType>(mockKernel);
auto graphicsAllocation = csr->getScratchAllocation();
EXPECT_TRUE(graphicsAllocation->is32BitAllocation);
auto graphicsAddress = (uint64_t)graphicsAllocation->getGpuAddress();
auto baseAddress = graphicsAllocation->gpuBaseAddress;
// All state should be programmed before walker
auto itorCmd = find<MEDIA_VFE_STATE *>(itorPipelineSelect, itorWalker);
auto itorCmdForStateBase = find<STATE_BASE_ADDRESS *>(itorPipelineSelect, itorWalker);
auto *mediaVfeState = (MEDIA_VFE_STATE *)*itorCmd;
auto scratchBaseLowPart = (uint64_t)mediaVfeState->getScratchSpaceBasePointer();
auto scratchBaseHighPart = (uint64_t)mediaVfeState->getScratchSpaceBasePointerHigh();
uint64_t scratchBaseAddr = scratchBaseHighPart << 32 | scratchBaseLowPart;
EXPECT_EQ(graphicsAddress - baseAddress, scratchBaseAddr);
ASSERT_NE(itorCmdForStateBase, itorWalker);
auto *sba = (STATE_BASE_ADDRESS *)*itorCmdForStateBase;
auto GSHaddress = (uintptr_t)sba->getGeneralStateBaseAddress();
EXPECT_EQ(memoryManager->allocator32Bit->getBase(), GSHaddress);
//now re-try to see if SBA is not programmed
scratchSize *= 2;
mediaVFEstate.PerThreadScratchSpace = scratchSize;
enqueueKernel<FamilyType>(mockKernel);
itorCmdForStateBase = find<STATE_BASE_ADDRESS *>(itorWalker, cmdList.end());
EXPECT_EQ(itorCmdForStateBase, cmdList.end());
}
}
INSTANTIATE_TEST_CASE_P(EnqueueKernel,
EnqueueKernelWithScratch, testing::Values(1));
TestParam TestParamPrintf[] = {
{1, 1, 1, 1, 1, 1}};
typedef EnqueueKernelTypeTest<TestParam> EnqueueKernelPrintfTest;
HWTEST_P(EnqueueKernelPrintfTest, GivenKernelWithPrintfThenPatchCrossTHreadData) {
typedef typename FamilyType::PARSE PARSE;
SPatchAllocateStatelessPrintfSurface patchData;
patchData.SurfaceStateHeapOffset = 0;
patchData.Size = 256;
patchData.DataParamOffset = 64;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.crossThreadData[64] = 0;
mockKernel.kernelInfo.patchInfo.pAllocateStatelessPrintfSurface = &patchData;
enqueueKernel<FamilyType, false>(mockKernel);
EXPECT_EQ(mockKernel.crossThreadData[64], 0);
}
HWTEST_P(EnqueueKernelPrintfTest, GivenKernelWithPrintfWhenBeingDispatchedThenL3CacheIsFlushed) {
typedef typename FamilyType::PARSE PARSE;
SPatchAllocateStatelessPrintfSurface patchData;
patchData.Size = 256;
patchData.DataParamOffset = 64;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.crossThreadData[64] = 0;
mockKernel.kernelInfo.patchInfo.pAllocateStatelessPrintfSurface = &patchData;
auto &csr = pCmdQ->getDevice().getCommandStreamReceiver();
auto latestSentTaskCount = csr.peekTaskCount();
enqueueKernel<FamilyType, false>(mockKernel);
auto newLatestSentTaskCount = csr.peekTaskCount();
EXPECT_GT(newLatestSentTaskCount, latestSentTaskCount);
EXPECT_EQ(pCmdQ->latestTaskCountWaited, newLatestSentTaskCount);
}
HWCMDTEST_P(IGFX_GEN8_CORE, EnqueueKernelPrintfTest, GivenKernelWithPrintfBlockedByEventWhenEventUnblockedThenL3CacheIsFlushed) {
typedef typename FamilyType::PARSE PARSE;
UserEvent userEvent(context);
SPatchAllocateStatelessPrintfSurface patchData;
patchData.Size = 256;
patchData.DataParamOffset = 64;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.crossThreadData[64] = 0;
mockKernel.kernelInfo.patchInfo.pAllocateStatelessPrintfSurface = &patchData;
auto &csr = pCmdQ->getDevice().getCommandStreamReceiver();
auto latestSentDcFlushTaskCount = csr.peekTaskCount();
cl_uint workDim = 1;
size_t globalWorkOffset[3] = {0, 0, 0};
FillValues();
cl_event blockedEvent = &userEvent;
auto retVal = pCmdQ->enqueueKernel(
mockKernel,
workDim,
globalWorkOffset,
globalWorkSize,
localWorkSize,
1,
&blockedEvent,
nullptr);
ASSERT_EQ(CL_SUCCESS, retVal);
userEvent.setStatus(CL_COMPLETE);
parseCommands<FamilyType>(*pCmdQ);
auto newLatestSentDCFlushTaskCount = csr.peekTaskCount();
EXPECT_GT(newLatestSentDCFlushTaskCount, latestSentDcFlushTaskCount);
EXPECT_EQ(pCmdQ->latestTaskCountWaited, newLatestSentDCFlushTaskCount);
}
HWTEST_P(EnqueueKernelPrintfTest, GivenKernelWithPrintfBlockedByEventWhenEventUnblockedThenOutputPrinted) {
typedef typename FamilyType::PARSE PARSE;
// In scenarios with 32bit allocator and 64 bit tests this code won't work
// due to inability to retrieve original buffer pointer as it is done in this test.
if (!pDevice->getMemoryManager()->peekForce32BitAllocations()) {
testing::internal::CaptureStdout();
UserEvent userEvent(context);
SPatchAllocateStatelessPrintfSurface patchData;
patchData.Size = 256;
patchData.DataParamSize = 8;
patchData.DataParamOffset = 0;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.kernelInfo.patchInfo.pAllocateStatelessPrintfSurface = &patchData;
auto crossThreadData = reinterpret_cast<uint64_t *>(mockKernel.mockKernel->getCrossThreadData());
char *testString = new char[sizeof("test")];
strcpy_s(testString, sizeof("test"), "test");
PrintfStringInfo printfStringInfo;
printfStringInfo.SizeInBytes = sizeof("test");
printfStringInfo.pStringData = testString;
mockKernel.kernelInfo.patchInfo.stringDataMap.insert(std::make_pair(0, printfStringInfo));
cl_uint workDim = 1;
size_t globalWorkOffset[3] = {0, 0, 0};
FillValues();
cl_event blockedEvent = &userEvent;
auto retVal = pCmdQ->enqueueKernel(
mockKernel,
workDim,
globalWorkOffset,
globalWorkSize,
localWorkSize,
1,
&blockedEvent,
nullptr);
ASSERT_EQ(CL_SUCCESS, retVal);
auto printfAllocation = reinterpret_cast<uint32_t *>(*crossThreadData);
printfAllocation[0] = 8;
printfAllocation[1] = 0;
userEvent.setStatus(CL_COMPLETE);
std::string output = testing::internal::GetCapturedStdout();
EXPECT_STREQ("test", output.c_str());
}
}
INSTANTIATE_TEST_CASE_P(EnqueueKernel,
EnqueueKernelPrintfTest,
::testing::ValuesIn(TestParamPrintf));
TEST_F(EnqueueKernelTest, GivenKernelWithBuiltinDispatchInfoBuilderWhenBeingDispatchedThenBuiltinDispatcherIsUsedForDispatchValidation) {
struct MockBuiltinDispatchBuilder : BuiltinDispatchInfoBuilder {
MockBuiltinDispatchBuilder(BuiltIns &builtins)
: BuiltinDispatchInfoBuilder(builtins) {
}
cl_int validateDispatch(Kernel *kernel, uint32_t inworkDim, const Vec3<size_t> &gws,
const Vec3<size_t> &elws, const Vec3<size_t> &offset) const override {
receivedKernel = kernel;
receivedWorkDim = inworkDim;
receivedGws = gws;
receivedElws = elws;
receivedOffset = offset;
wasValidateDispatchCalled = true;
return valueToReturn;
}
cl_int valueToReturn = CL_SUCCESS;
mutable Kernel *receivedKernel = nullptr;
mutable uint32_t receivedWorkDim = 0;
mutable Vec3<size_t> receivedGws = {0, 0, 0};
mutable Vec3<size_t> receivedElws = {0, 0, 0};
mutable Vec3<size_t> receivedOffset = {0, 0, 0};
mutable bool wasValidateDispatchCalled = false;
};
MockBuiltinDispatchBuilder mockNuiltinDispatchBuilder(BuiltIns::getInstance());
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.kernelInfo.builtinDispatchBuilder = &mockNuiltinDispatchBuilder;
EXPECT_FALSE(mockNuiltinDispatchBuilder.wasValidateDispatchCalled);
mockNuiltinDispatchBuilder.valueToReturn = CL_SUCCESS;
size_t gws[2] = {10, 1};
size_t lws[2] = {5, 1};
size_t off[2] = {7, 0};
uint32_t dim = 1;
auto ret = pCmdQ->enqueueKernel(mockKernel.mockKernel, dim, off, gws, lws, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_TRUE(mockNuiltinDispatchBuilder.wasValidateDispatchCalled);
EXPECT_EQ(mockKernel.mockKernel, mockNuiltinDispatchBuilder.receivedKernel);
EXPECT_EQ(gws[0], mockNuiltinDispatchBuilder.receivedGws.x);
EXPECT_EQ(lws[0], mockNuiltinDispatchBuilder.receivedElws.x);
EXPECT_EQ(off[0], mockNuiltinDispatchBuilder.receivedOffset.x);
EXPECT_EQ(dim, mockNuiltinDispatchBuilder.receivedWorkDim);
mockNuiltinDispatchBuilder.wasValidateDispatchCalled = false;
gws[0] = 26;
lws[0] = 13;
off[0] = 17;
dim = 2;
cl_int forcedErr = 37;
mockNuiltinDispatchBuilder.valueToReturn = forcedErr;
ret = pCmdQ->enqueueKernel(mockKernel.mockKernel, dim, off, gws, lws, 0, nullptr, nullptr);
EXPECT_EQ(forcedErr, ret);
EXPECT_TRUE(mockNuiltinDispatchBuilder.wasValidateDispatchCalled);
EXPECT_EQ(mockKernel.mockKernel, mockNuiltinDispatchBuilder.receivedKernel);
EXPECT_EQ(gws[0], mockNuiltinDispatchBuilder.receivedGws.x);
EXPECT_EQ(lws[0], mockNuiltinDispatchBuilder.receivedElws.x);
EXPECT_EQ(off[0], mockNuiltinDispatchBuilder.receivedOffset.x);
EXPECT_EQ(dim, mockNuiltinDispatchBuilder.receivedWorkDim);
BuiltIns::shutDown();
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueKernelTest, givenSecondEnqueueWithTheSameScratchRequirementWhenPreemptionIsEnabledThenDontProgramMVSAgain) {
typedef typename FamilyType::MEDIA_VFE_STATE MEDIA_VFE_STATE;
pDevice->setPreemptionMode(PreemptionMode::ThreadGroup);
auto &csr = pDevice->getCommandStreamReceiver();
csr.getMemoryManager()->setForce32BitAllocations(false);
HardwareParse hwParser;
size_t off[3] = {0, 0, 0};
size_t gws[3] = {1, 1, 1};
SPatchMediaVFEState mediaVFEstate;
uint32_t scratchSize = 4096u;
mediaVFEstate.PerThreadScratchSpace = scratchSize;
MockKernelWithInternals mockKernel(*pDevice);
mockKernel.kernelInfo.patchInfo.mediavfestate = &mediaVFEstate;
auto sizeToProgram = Kernel::getScratchSizeValueToProgramMediaVfeState(scratchSize);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, off, gws, nullptr, 0, nullptr, nullptr);
hwParser.parseCommands<FamilyType>(*pCmdQ);
// All state should be programmed before walker
auto itorCmd = find<MEDIA_VFE_STATE *>(hwParser.itorPipelineSelect, hwParser.itorWalker);
ASSERT_NE(hwParser.itorWalker, itorCmd);
auto *cmd = (MEDIA_VFE_STATE *)*itorCmd;
EXPECT_EQ(sizeToProgram, cmd->getPerThreadScratchSpace());
EXPECT_EQ(sizeToProgram, cmd->getStackSize());
auto scratchAlloc = csr.getScratchAllocation();
auto itorfirstBBEnd = find<typename FamilyType::MI_BATCH_BUFFER_END *>(hwParser.itorWalker, hwParser.cmdList.end());
ASSERT_NE(hwParser.cmdList.end(), itorfirstBBEnd);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, off, gws, nullptr, 0, nullptr, nullptr);
hwParser.parseCommands<FamilyType>(*pCmdQ);
itorCmd = find<MEDIA_VFE_STATE *>(itorfirstBBEnd, hwParser.cmdList.end());
ASSERT_EQ(hwParser.cmdList.end(), itorCmd);
EXPECT_EQ(csr.getScratchAllocation(), scratchAlloc);
}
HWTEST_F(EnqueueKernelTest, givenEnqueueWithGlobalWorkSizeWhenZeroValueIsPassedInDimensionThenTheKernelCommandWillTriviallySucceed) {
size_t gws[3] = {0, 0, 0};
MockKernelWithInternals mockKernel(*pDevice);
auto ret = pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, ret);
}
HWTEST_F(EnqueueKernelTest, givenCommandStreamReceiverInBatchingModeWhenEnqueueKernelIsCalledThenKernelIsRecorded) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
auto ret = pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
//Two more surfaces from preemptionAllocation and SipKernel
size_t csrSurfaceCount = (pDevice->getPreemptionMode() == PreemptionMode::MidThread) ? 2 : 0;
EXPECT_EQ(0, mockCsr->flushCalledCount);
EXPECT_EQ(5u + csrSurfaceCount, cmdBuffer->surfaces.size());
}
HWTEST_F(EnqueueKernelTest, givenDefaultCommandStreamReceiverWhenClFlushIsCalledThenSuccessIsReturned) {
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto ret = clFlush(pCmdQ);
EXPECT_EQ(CL_SUCCESS, ret);
}
HWTEST_F(EnqueueKernelTest, givenCommandStreamReceiverInBatchingModeAndBatchedKernelWhenFlushIsCalledThenKernelIsSubmitted) {
auto mockCsrmockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsrmockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsrmockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsrmockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto ret = clFlush(pCmdQ);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsrmockCsr->flushCalledCount);
}
HWTEST_F(EnqueueKernelTest, givenCommandStreamReceiverInBatchingModeAndBatchedKernelWhenFlushIsCalledTwiceThenNothingChanges) {
auto mockCsrmockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsrmockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsrmockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsrmockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto ret = clFlush(pCmdQ);
EXPECT_EQ(CL_SUCCESS, ret);
ret = clFlush(pCmdQ);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsrmockCsr->flushCalledCount);
}
HWTEST_F(EnqueueKernelTest, givenCommandStreamReceiverInBatchingModeWhenKernelIsEnqueuedTwiceThenTwoSubmissionsAreRecorded) {
auto mockCsrmockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsrmockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsrmockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsrmockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
//make sure csr emits something
mockCsrmockCsr->overrideMediaVFEStateDirty(true);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
mockCsrmockCsr->overrideMediaVFEStateDirty(true);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto &cmdBufferList = mockedSubmissionsAggregator->peekCmdBufferList();
EXPECT_NE(nullptr, cmdBufferList.peekHead());
EXPECT_NE(cmdBufferList.peekTail(), cmdBufferList.peekHead());
auto cmdBuffer1 = cmdBufferList.peekHead();
auto cmdBuffer2 = cmdBufferList.peekTail();
EXPECT_EQ(cmdBuffer1->surfaces.size(), cmdBuffer2->surfaces.size());
EXPECT_EQ(cmdBuffer1->batchBuffer.commandBufferAllocation, cmdBuffer2->batchBuffer.commandBufferAllocation);
EXPECT_GT(cmdBuffer2->batchBuffer.startOffset, cmdBuffer1->batchBuffer.startOffset);
}
HWTEST_F(EnqueueKernelTest, givenCommandStreamReceiverInBatchingModeWhenFlushIsCalledOnTwoBatchedKernelsThenTheyAreExecutedInOrder) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->flush();
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsr->flushCalledCount);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenFinishIsCalledThenBatchesSubmissionsAreFlushed) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->finish(false);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsr->flushCalledCount);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenThressEnqueueKernelsAreCalledThenBatchesSubmissionsAreFlushed) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->finish(false);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsr->flushCalledCount);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenWaitForEventsIsCalledThenBatchedSubmissionsAreFlushed) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
cl_event event;
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
auto status = clWaitForEvents(1, &event);
EXPECT_EQ(CL_SUCCESS, status);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsr->flushCalledCount);
status = clReleaseEvent(event);
EXPECT_EQ(CL_SUCCESS, status);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenCommandIsFlushedThenFlushStampIsUpdatedInCommandQueueCsrAndEvent) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
cl_event event;
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
auto neoEvent = castToObject<Event>(event);
EXPECT_EQ(0u, mockCsr->flushStamp->peekStamp());
EXPECT_EQ(0u, neoEvent->flushStamp->peekStamp());
EXPECT_EQ(0u, pCmdQ->flushStamp->peekStamp());
auto status = clWaitForEvents(1, &event);
EXPECT_EQ(1, neoEvent->getRefInternalCount());
EXPECT_EQ(1u, mockCsr->flushStamp->peekStamp());
EXPECT_EQ(1u, neoEvent->flushStamp->peekStamp());
EXPECT_EQ(1u, pCmdQ->flushStamp->peekStamp());
status = clFinish(pCmdQ);
EXPECT_EQ(1u, pCmdQ->flushStamp->peekStamp());
status = clReleaseEvent(event);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenCommandWithEventIsFollowedByCommandWithoutEventThenFlushStampIsUpdatedInCommandQueueCsrAndEvent) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
cl_event event;
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto neoEvent = castToObject<Event>(event);
EXPECT_EQ(0u, mockCsr->flushStamp->peekStamp());
EXPECT_EQ(0u, neoEvent->flushStamp->peekStamp());
EXPECT_EQ(0u, pCmdQ->flushStamp->peekStamp());
auto status = clWaitForEvents(1, &event);
EXPECT_EQ(1, neoEvent->getRefInternalCount());
EXPECT_EQ(1u, mockCsr->flushStamp->peekStamp());
EXPECT_EQ(1u, neoEvent->flushStamp->peekStamp());
EXPECT_EQ(1u, pCmdQ->flushStamp->peekStamp());
status = clFinish(pCmdQ);
EXPECT_EQ(1u, pCmdQ->flushStamp->peekStamp());
status = clReleaseEvent(event);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenClFlushIsCalledThenQueueFlushStampIsUpdated) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(0u, mockCsr->flushStamp->peekStamp());
EXPECT_EQ(0u, pCmdQ->flushStamp->peekStamp());
clFlush(pCmdQ);
EXPECT_EQ(1u, mockCsr->flushStamp->peekStamp());
EXPECT_EQ(1u, pCmdQ->flushStamp->peekStamp());
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenWaitForEventsIsCalledWithUnflushedTaskCountThenBatchedSubmissionsAreFlushed) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
cl_event event;
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->enqueueMarkerWithWaitList(0, nullptr, &event);
auto status = clWaitForEvents(1, &event);
EXPECT_EQ(CL_SUCCESS, status);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsr->flushCalledCount);
status = clReleaseEvent(event);
EXPECT_EQ(CL_SUCCESS, status);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenFinishIsCalledWithUnflushedTaskCountThenBatchedSubmissionsAreFlushed) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
cl_event event;
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
pCmdQ->enqueueMarkerWithWaitList(0, nullptr, &event);
auto status = clFinish(pCmdQ);
EXPECT_EQ(CL_SUCCESS, status);
EXPECT_TRUE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
EXPECT_EQ(1, mockCsr->flushCalledCount);
status = clReleaseEvent(event);
EXPECT_EQ(CL_SUCCESS, status);
}
HWTEST_F(EnqueueKernelTest, givenOutOfOrderCommandQueueWhenEnqueueKernelIsMadeThenPipeControlPositionIsRecorded) {
const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, 0};
auto ooq = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
clEnqueueNDRangeKernel(ooq, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
EXPECT_NE(nullptr, cmdBuffer->pipeControlThatMayBeErasedLocation);
clReleaseCommandQueue(ooq);
}
HWTEST_F(EnqueueKernelTest, givenInOrderCommandQueueWhenEnqueueKernelIsMadeThenPipeControlPositionIsRecorded) {
const cl_queue_properties props[] = {0};
auto inOrderQueue = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
clEnqueueNDRangeKernel(inOrderQueue, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
EXPECT_NE(nullptr, cmdBuffer->pipeControlThatMayBeErasedLocation);
clReleaseCommandQueue(inOrderQueue);
}
HWTEST_F(EnqueueKernelTest, givenInOrderCommandQueueWhenEnqueueKernelThatHasSharedObjectsAsArgIsMadeThenPipeControlPositionIsRecorded) {
const cl_queue_properties props[] = {0};
auto inOrderQueue = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
mockKernel.mockKernel->setUsingSharedArgs(true);
clEnqueueNDRangeKernel(inOrderQueue, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
EXPECT_NE(nullptr, cmdBuffer->pipeControlThatMayBeErasedLocation);
EXPECT_NE(nullptr, cmdBuffer->epiloguePipeControlLocation);
clReleaseCommandQueue(inOrderQueue);
}
HWTEST_F(EnqueueKernelTest, givenInOrderCommandQueueWhenEnqueueKernelThatHasSharedObjectsAsArgIsMadeThenPipeControlDoesntHaveDcFlush) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
mockKernel.mockKernel->setUsingSharedArgs(true);
clEnqueueNDRangeKernel(this->pCmdQ, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockCsr->passedDispatchFlags.dcFlush);
}
HWTEST_F(EnqueueKernelTest, givenInOrderCommandQueueWhenEnqueueKernelReturningEventIsMadeThenPipeControlPositionIsNotRecorded) {
const cl_queue_properties props[] = {0};
auto inOrderQueue = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
cl_event event;
clEnqueueNDRangeKernel(inOrderQueue, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
EXPECT_EQ(nullptr, cmdBuffer->pipeControlThatMayBeErasedLocation);
EXPECT_NE(nullptr, cmdBuffer->epiloguePipeControlLocation);
clReleaseCommandQueue(inOrderQueue);
clReleaseEvent(event);
}
HWTEST_F(EnqueueKernelTest, givenInOrderCommandQueueWhenEnqueueKernelReturningEventIsMadeAndCommandStreamReceiverIsInNTo1ModeThenPipeControlPositionIsRecorded) {
const cl_queue_properties props[] = {0};
auto inOrderQueue = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
mockCsr->enableNTo1SubmissionModel();
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
cl_event event;
clEnqueueNDRangeKernel(inOrderQueue, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
EXPECT_NE(nullptr, cmdBuffer->pipeControlThatMayBeErasedLocation);
EXPECT_NE(nullptr, cmdBuffer->epiloguePipeControlLocation);
clReleaseCommandQueue(inOrderQueue);
clReleaseEvent(event);
}
HWTEST_F(EnqueueKernelTest, givenOutOfOrderCommandQueueWhenEnqueueKernelReturningEventIsMadeThenPipeControlPositionIsRecorded) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
auto mockedSubmissionsAggregator = new mockSubmissionsAggregator();
mockCsr->overrideSubmissionAggregator(mockedSubmissionsAggregator);
const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, 0};
auto inOrderQueue = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
cl_event event;
clEnqueueNDRangeKernel(inOrderQueue, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
EXPECT_FALSE(mockedSubmissionsAggregator->peekCmdBufferList().peekIsEmpty());
auto cmdBuffer = mockedSubmissionsAggregator->peekCmdBufferList().peekHead();
EXPECT_NE(nullptr, cmdBuffer->pipeControlThatMayBeErasedLocation);
EXPECT_EQ(cmdBuffer->epiloguePipeControlLocation, cmdBuffer->pipeControlThatMayBeErasedLocation);
clReleaseCommandQueue(inOrderQueue);
clReleaseEvent(event);
}
HWTEST_F(EnqueueKernelTest, givenCsrInBatchingModeWhenBlockingCallIsMadeThenEventAssociatedWithCommandHasProperFlushStamp) {
DebugManagerStateRestore stateRestore;
DebugManager.flags.MakeEachEnqueueBlocking.set(true);
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
cl_event event;
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event);
auto neoEvent = castToObject<Event>(event);
EXPECT_EQ(1u, neoEvent->flushStamp->peekStamp());
EXPECT_EQ(1, mockCsr->flushCalledCount);
auto status = clReleaseEvent(event);
EXPECT_EQ(CL_SUCCESS, status);
}
HWTEST_F(EnqueueKernelTest, givenKernelWhenItIsEnqueuedThenAllResourceGraphicsAllocationsAreUpdatedWithCsrTaskCount) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
pDevice->resetCommandStreamReceiver(mockCsr);
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(1, mockCsr->flushCalledCount);
auto csrTaskCount = mockCsr->peekTaskCount();
auto &passedAllocationPack = mockCsr->copyOfAllocations;
for (auto &allocation : passedAllocationPack) {
EXPECT_EQ(csrTaskCount, allocation->taskCount);
}
}
HWTEST_F(EnqueueKernelTest, givenKernelWhenItIsSubmittedFromTwoDifferentCommandQueuesThenCsrDoesntReloadAnyCommands) {
auto &csr = this->pDevice->getUltCommandStreamReceiver<FamilyType>();
MockKernelWithInternals mockKernel(*pDevice);
size_t gws[3] = {1, 0, 0};
pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto currentUsed = csr.commandStream.getUsed();
const cl_queue_properties props[] = {0};
auto inOrderQueue = clCreateCommandQueueWithProperties(context, pDevice, props, nullptr);
clEnqueueNDRangeKernel(inOrderQueue, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto usedAfterSubmission = csr.commandStream.getUsed();
EXPECT_EQ(usedAfterSubmission, currentUsed);
clReleaseCommandQueue(inOrderQueue);
}
TEST_F(EnqueueKernelTest, givenKernelWhenAllArgsAreNotAndEventExistSetThenClEnqueueNDRangeKernelReturnsInvalidKernelArgsAndSetEventToNull) {
const size_t n = 512;
size_t globalWorkSize[3] = {n, 1, 1};
size_t localWorkSize[3] = {256, 1, 1};
cl_int retVal = CL_SUCCESS;
CommandQueue *pCmdQ2 = createCommandQueue(pDevice, 0);
std::unique_ptr<Kernel> kernel(Kernel::create(pProgram, *pProgram->getKernelInfo("CopyBuffer"), &retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(kernel->isPatched());
cl_event event;
retVal = clEnqueueNDRangeKernel(pCmdQ2, kernel.get(), 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, &event);
EXPECT_EQ(CL_INVALID_KERNEL_ARGS, retVal);
clFlush(pCmdQ2);
clReleaseCommandQueue(pCmdQ2);
}
TEST_F(EnqueueKernelTest, givenEnqueueCommandThatLwsExceedsDeviceCapabilitiesWhenEnqueueNDRangeKernelIsCalledThenErrorIsReturned) {
auto maxWorkgroupSize = pDevice->getDeviceInfo().maxWorkGroupSize;
size_t globalWorkSize[3] = {maxWorkgroupSize * 2, 1, 1};
size_t localWorkSize[3] = {maxWorkgroupSize * 2, 1, 1};
MockKernelWithInternals mockKernel(*pDevice);
auto status = pCmdQ->enqueueKernel(mockKernel.mockKernel, 1, nullptr, globalWorkSize, localWorkSize, 0, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_WORK_GROUP_SIZE, status);
}
HWTEST_F(EnqueueKernelTest, givenVMEKernelWhenEnqueueKernelThenDispatchFlagsHaveMediaSamplerRequired) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
mockKernel.kernelInfo.isVmeWorkload = true;
clEnqueueNDRangeKernel(this->pCmdQ, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_TRUE(mockCsr->passedDispatchFlags.mediaSamplerRequired);
}
HWTEST_F(EnqueueKernelTest, givenNonVMEKernelWhenEnqueueKernelThenDispatchFlagsDoesntHaveMediaSamplerRequired) {
auto mockCsr = new MockCsrHw2<FamilyType>(pDevice->getHardwareInfo());
mockCsr->overrideDispatchPolicy(DispatchMode::BatchedDispatch);
pDevice->resetCommandStreamReceiver(mockCsr);
MockKernelWithInternals mockKernel(*pDevice, context);
size_t gws[3] = {1, 0, 0};
mockKernel.kernelInfo.isVmeWorkload = false;
clEnqueueNDRangeKernel(this->pCmdQ, mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(mockCsr->passedDispatchFlags.mediaSamplerRequired);
}
HWTEST_F(EnqueueKernelTest, givenKernelWithRequiredAuxTranslationWhenEnqueuedThenGuardKernelWithAuxTranslations) {
class MyCmdQ : public CommandQueueHw<FamilyType> {
public:
MyCmdQ(Context *context, Device *device) : CommandQueueHw<FamilyType>(context, device, nullptr) {}
void dispatchAuxTranslation(MultiDispatchInfo &multiDispatchInfo, BuffersForAuxTranslation &buffersForAuxTranslation) override {
CommandQueueHw<FamilyType>::dispatchAuxTranslation(multiDispatchInfo, buffersForAuxTranslation);
multiDispatchInfoSizes.push_back(multiDispatchInfo.size());
}
std::vector<size_t> multiDispatchInfoSizes;
};
MockKernelWithInternals mockKernel(*pDevice, context);
MyCmdQ cmdQ(context, pDevice);
size_t gws[3] = {1, 0, 0};
mockKernel.mockKernel->auxTranslationRequired = true;
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(2u, cmdQ.multiDispatchInfoSizes.size());
EXPECT_EQ(0u, cmdQ.multiDispatchInfoSizes.at(0)); // before kernel
EXPECT_EQ(1u, cmdQ.multiDispatchInfoSizes.at(1)); // after kernel
mockKernel.mockKernel->auxTranslationRequired = false;
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(2u, cmdQ.multiDispatchInfoSizes.size()); // not changed
}
HWTEST_F(EnqueueKernelTest, givenMultipleArgsWhenAuxTranslationIsRequiredThenPickOnlyApplicableBuffers) {
class MyCmdQ : public CommandQueueHw<FamilyType> {
public:
MyCmdQ(Context *context, Device *device) : CommandQueueHw<FamilyType>(context, device, nullptr) {}
void dispatchAuxTranslation(MultiDispatchInfo &multiDispatchInfo, BuffersForAuxTranslation &buffersForAuxTranslation) override {
CommandQueueHw<FamilyType>::dispatchAuxTranslation(multiDispatchInfo, buffersForAuxTranslation);
inputBuffersForAuxTranslation.push_back(buffersForAuxTranslation);
}
std::vector<BuffersForAuxTranslation> inputBuffersForAuxTranslation;
};
MyCmdQ cmdQ(context, pDevice);
size_t gws[3] = {1, 0, 0};
MockBuffer buffer0, buffer1, buffer2, buffer3;
cl_mem clMem0 = &buffer0;
cl_mem clMem1 = &buffer1;
cl_mem clMem2 = &buffer2;
cl_mem clMem3 = &buffer3;
buffer0.getGraphicsAllocation()->setAllocationType(GraphicsAllocation::AllocationType::BUFFER);
buffer1.getGraphicsAllocation()->setAllocationType(GraphicsAllocation::AllocationType::BUFFER);
buffer2.getGraphicsAllocation()->setAllocationType(GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
buffer3.getGraphicsAllocation()->setAllocationType(GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
MockKernelWithInternals mockKernel(*pDevice, context);
mockKernel.mockKernel->auxTranslationRequired = true;
mockKernel.kernelInfo.kernelArgInfo.resize(6);
for (auto &kernelInfo : mockKernel.kernelInfo.kernelArgInfo) {
kernelInfo.kernelArgPatchInfoVector.resize(1);
}
mockKernel.mockKernel->initialize();
mockKernel.kernelInfo.kernelArgInfo.at(0).pureStatefulBufferAccess = false;
mockKernel.kernelInfo.kernelArgInfo.at(1).pureStatefulBufferAccess = true;
mockKernel.kernelInfo.kernelArgInfo.at(2).pureStatefulBufferAccess = false;
mockKernel.kernelInfo.kernelArgInfo.at(3).pureStatefulBufferAccess = true;
mockKernel.kernelInfo.kernelArgInfo.at(4).pureStatefulBufferAccess = false;
mockKernel.kernelInfo.kernelArgInfo.at(5).pureStatefulBufferAccess = false;
mockKernel.mockKernel->setArgBuffer(0, sizeof(cl_mem *), &clMem0); // stateless on regular buffer - dont insert
mockKernel.mockKernel->setArgBuffer(1, sizeof(cl_mem *), &clMem1); // stateful on regular buffer - dont insert
mockKernel.mockKernel->setArgBuffer(2, sizeof(cl_mem *), &clMem2); // stateless on BUFFER_COMPRESSED - insert
mockKernel.mockKernel->setArgBuffer(3, sizeof(cl_mem *), &clMem3); // stateful on BUFFER_COMPRESSED - dont insert
mockKernel.mockKernel->setArgBuffer(4, sizeof(cl_mem *), nullptr); // nullptr - dont insert
mockKernel.mockKernel->kernelArguments.at(5).type = Kernel::kernelArgType::IMAGE_OBJ; // non-buffer arg - dont insert
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(2u, cmdQ.inputBuffersForAuxTranslation.size());
EXPECT_EQ(1u, cmdQ.inputBuffersForAuxTranslation[0].size()); // before kernel
EXPECT_EQ(1u, cmdQ.inputBuffersForAuxTranslation[1].size()); // after kernel
EXPECT_EQ(&buffer2, *cmdQ.inputBuffersForAuxTranslation[0].begin());
EXPECT_EQ(&buffer2, *cmdQ.inputBuffersForAuxTranslation[1].begin());
}