Files
compute-runtime/level_zero/tools/test/black_box_tests/zello_sysman.cpp

1946 lines
94 KiB
C++

/*
* Copyright (C) 2020-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include <level_zero/zes_api.h>
#include <algorithm>
#include <chrono>
#include <cmath>
#include <fstream>
#include <iostream>
#include <map>
#include <sys/stat.h>
#include <thread>
#if defined(_WIN32) || defined(_WIN64)
#include <shlobj_core.h>
#include <string>
#else // defined(_WIN32) || defined(_WIN64)#
#include <string.h>
#include <unistd.h>
#endif // defined(_WIN32) || defined(_WIN64)
#include <mutex>
#include <vector>
bool verbose = true;
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
// ignoring stringop-oveflow due to false positive warning on GCC13 after enabling C++20
#endif
typedef struct {
zes_firmware_handle_t firmwareHandle;
std::mutex firmwareProgressMutex;
bool flashComplete;
} FirmwareFlashInfo;
std::string getErrorString(ze_result_t error) {
static const std::map<ze_result_t, std::string> mgetErrorString{
{ZE_RESULT_NOT_READY, "ZE_RESULT_NOT_READY"},
{ZE_RESULT_ERROR_DEVICE_LOST, "ZE_RESULT_ERROR_DEVICE_LOST"},
{ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY, "ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY"},
{ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY, "ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY"},
{ZE_RESULT_ERROR_MODULE_BUILD_FAILURE, "ZE_RESULT_ERROR_MODULE_BUILD_FAILURE"},
{ZE_RESULT_ERROR_MODULE_LINK_FAILURE, "ZE_RESULT_ERROR_MODULE_LINK_FAILURE"},
{ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS, "ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS"},
{ZE_RESULT_ERROR_NOT_AVAILABLE, "ZE_RESULT_ERROR_NOT_AVAILABLE"},
{ZE_RESULT_ERROR_DEPENDENCY_UNAVAILABLE, "ZE_RESULT_ERROR_DEPENDENCY_UNAVAILABLE"},
{ZE_RESULT_ERROR_UNINITIALIZED, "ZE_RESULT_ERROR_UNINITIALIZED"},
{ZE_RESULT_ERROR_UNSUPPORTED_VERSION, "ZE_RESULT_ERROR_UNSUPPORTED_VERSION"},
{ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, "ZE_RESULT_ERROR_UNSUPPORTED_FEATURE"},
{ZE_RESULT_ERROR_INVALID_ARGUMENT, "ZE_RESULT_ERROR_INVALID_ARGUMENT"},
{ZE_RESULT_ERROR_INVALID_NULL_HANDLE, "ZE_RESULT_ERROR_INVALID_NULL_HANDLE"},
{ZE_RESULT_ERROR_HANDLE_OBJECT_IN_USE, "ZE_RESULT_ERROR_HANDLE_OBJECT_IN_USE"},
{ZE_RESULT_ERROR_INVALID_NULL_POINTER, "ZE_RESULT_ERROR_INVALID_NULL_POINTER"},
{ZE_RESULT_ERROR_INVALID_SIZE, "ZE_RESULT_ERROR_INVALID_SIZE"},
{ZE_RESULT_ERROR_UNSUPPORTED_SIZE, "ZE_RESULT_ERROR_UNSUPPORTED_SIZE"},
{ZE_RESULT_ERROR_UNSUPPORTED_ALIGNMENT, "ZE_RESULT_ERROR_UNSUPPORTED_ALIGNMENT"},
{ZE_RESULT_ERROR_INVALID_SYNCHRONIZATION_OBJECT, "ZE_RESULT_ERROR_INVALID_SYNCHRONIZATION_OBJECT"},
{ZE_RESULT_ERROR_INVALID_ENUMERATION, "ZE_RESULT_ERROR_INVALID_ENUMERATION"},
{ZE_RESULT_ERROR_UNSUPPORTED_ENUMERATION, "ZE_RESULT_ERROR_UNSUPPORTED_ENUMERATION"},
{ZE_RESULT_ERROR_UNSUPPORTED_IMAGE_FORMAT, "ZE_RESULT_ERROR_UNSUPPORTED_IMAGE_FORMAT"},
{ZE_RESULT_ERROR_INVALID_NATIVE_BINARY, "ZE_RESULT_ERROR_INVALID_NATIVE_BINARY"},
{ZE_RESULT_ERROR_INVALID_GLOBAL_NAME, "ZE_RESULT_ERROR_INVALID_GLOBAL_NAME"},
{ZE_RESULT_ERROR_INVALID_KERNEL_NAME, "ZE_RESULT_ERROR_INVALID_KERNEL_NAME"},
{ZE_RESULT_ERROR_INVALID_FUNCTION_NAME, "ZE_RESULT_ERROR_INVALID_FUNCTION_NAME"},
{ZE_RESULT_ERROR_INVALID_GROUP_SIZE_DIMENSION, "ZE_RESULT_ERROR_INVALID_GROUP_SIZE_DIMENSION"},
{ZE_RESULT_ERROR_INVALID_GLOBAL_WIDTH_DIMENSION, "ZE_RESULT_ERROR_INVALID_GLOBAL_WIDTH_DIMENSION"},
{ZE_RESULT_ERROR_INVALID_KERNEL_ARGUMENT_INDEX, "ZE_RESULT_ERROR_INVALID_KERNEL_ARGUMENT_INDEX"},
{ZE_RESULT_ERROR_INVALID_KERNEL_ARGUMENT_SIZE, "ZE_RESULT_ERROR_INVALID_KERNEL_ARGUMENT_SIZE"},
{ZE_RESULT_ERROR_INVALID_KERNEL_ATTRIBUTE_VALUE, "ZE_RESULT_ERROR_INVALID_KERNEL_ATTRIBUTE_VALUE"},
{ZE_RESULT_ERROR_INVALID_MODULE_UNLINKED, "ZE_RESULT_ERROR_INVALID_MODULE_UNLINKED"},
{ZE_RESULT_ERROR_INVALID_COMMAND_LIST_TYPE, "ZE_RESULT_ERROR_INVALID_COMMAND_LIST_TYPE"},
{ZE_RESULT_ERROR_OVERLAPPING_REGIONS, "ZE_RESULT_ERROR_OVERLAPPING_REGIONS"},
{ZE_RESULT_ERROR_UNKNOWN, "ZE_RESULT_ERROR_UNKNOWN"}};
auto i = mgetErrorString.find(error);
if (i == mgetErrorString.end())
return "ZE_RESULT_ERROR_UNKNOWN";
else
return mgetErrorString.at(error);
}
inline bool isParamEnabled(int argc, char *argv[], const char *shortName, const char *longName, int *optind) {
if (argc < 2) {
return false;
}
int index = 1;
char **arg = &argv[1];
char **argE = &argv[argc];
for (; arg != argE; ++arg) {
if ((0 == strcmp(*arg, shortName)) || (0 == strcmp(*arg, longName))) {
*optind = index;
return true;
}
index++;
}
return false;
}
#define VALIDATECALL(myZeCall) \
do { \
ze_result_t r = myZeCall; \
if (r != ZE_RESULT_SUCCESS) { \
std::cout << getErrorString(r) \
<< " returned by " \
<< #myZeCall << ": " \
<< __FUNCTION__ << ": " \
<< __LINE__ << "\n"; \
} \
} while (0);
void usage() {
std::cout << "\n"
"\n zello_sysman [OPTIONS]"
"\n"
"\n OPTIONS:"
"\n -p, --pci selectively run pci black box test"
"\n -f, --frequency selectively run frequency black box test"
"\n -s, --standby selectively run standby black box test"
"\n -e, --engine selectively run engine black box test"
"\n -c, --scheduler selectively run scheduler black box test"
"\n -t, --temperature selectively run temperature black box test"
"\n -o, --power selectively run power black box test"
"\n [--setlimit --sustained/--peak/--instantaneous/--burst <deviceNo limit>] optionally set required power limit for particular device"
"\n -m, --memory selectively run memory black box test"
"\n -g, --global selectively run device/global operations black box test"
"\n -R, --ras selectively run ras black box test"
"\n -E, --event set and listen to events black box test"
"\n -r, --reset force|noforce selectively run device reset test on all devices"
"\n [deviceNo] optionally run device reset test only on specified device"
"\n -i, --firmware <image> selectively run device firmware test <image> is the firmware binary needed to flash"
"\n -F, --fabricport selectively run fabricport black box test"
"\n -d, --diagnostics selectively run diagnostics black box test"
"\n -P, --performance selectively run performance black box test"
"\n [--setconfig <deviceNo subdevId engineFlags pFactor>] optionally set the performance factor for the particular handle"
"\n -C, --ecc selectively run ecc black box test"
"\n -a, --fan selectively run fan black box test"
"\n -h, --help display help message"
"\n -re, --rasexp selectively run ras experimental API black box test"
"\n -v, --vftelemetry selectively run vf telemetry API black box test"
"\n"
"\n All L0 Syman APIs that set values require root privileged execution"
"\n"
"\n";
}
void getDeviceHandles(ze_driver_handle_t &driverHandle, std::vector<ze_device_handle_t> &devices) {
VALIDATECALL(zeInit(ZE_INIT_FLAG_GPU_ONLY));
uint32_t driverCount = 0;
VALIDATECALL(zeDriverGet(&driverCount, nullptr));
if (driverCount == 0) {
std::cout << "Error could not retrieve driver" << std::endl;
std::terminate();
}
VALIDATECALL(zeDriverGet(&driverCount, &driverHandle));
uint32_t deviceCount = 0;
VALIDATECALL(zeDeviceGet(driverHandle, &deviceCount, nullptr));
if (deviceCount == 0) {
std::cout << "Error could not retrieve device" << std::endl;
std::terminate();
}
devices.resize(deviceCount);
VALIDATECALL(zeDeviceGet(driverHandle, &deviceCount, devices.data()));
ze_device_properties_t deviceProperties = {ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES};
for (const auto &device : devices) {
VALIDATECALL(zeDeviceGetProperties(device, &deviceProperties));
if (verbose) {
std::cout << "Device Name = " << deviceProperties.name << std::endl;
std::cout << "UUID: " << std::endl;
for (uint32_t i = 0; i < ZE_MAX_UUID_SIZE; i++) {
std::cout << +deviceProperties.uuid.id[i] << " ";
}
std::cout << std::endl;
}
}
}
void getSysmanDeviceHandles(zes_driver_handle_t &sysmanDriverHandle, std::vector<zes_device_handle_t> &sysmanDevices) {
VALIDATECALL(zesInit(0));
uint32_t driverCount = 0;
VALIDATECALL(zesDriverGet(&driverCount, nullptr));
if (driverCount == 0) {
std::cout << "Error could not retrieve driver" << std::endl;
std::terminate();
}
VALIDATECALL(zesDriverGet(&driverCount, &sysmanDriverHandle));
uint32_t deviceCount = 0;
VALIDATECALL(zesDeviceGet(sysmanDriverHandle, &deviceCount, nullptr));
if (deviceCount == 0) {
std::cout << "Error could not retrieve device" << std::endl;
std::terminate();
}
sysmanDevices.resize(deviceCount);
VALIDATECALL(zesDeviceGet(sysmanDriverHandle, &deviceCount, sysmanDevices.data()));
}
std::string getPowerLimitSourceType(zes_power_source_t type) {
static const std::map<zes_power_source_t, std::string> powerLimitsSourceTypeMap{
{ZES_POWER_SOURCE_ANY, "ZES_POWER_SOURCE_ANY"},
{ZES_POWER_SOURCE_MAINS, "ZES_POWER_SOURCE_MAINS"},
{ZES_POWER_SOURCE_BATTERY, "ZES_POWER_SOURCE_BATTERY"}};
return powerLimitsSourceTypeMap.at(type);
}
void getPowerLimits(const zes_pwr_handle_t &handle) {
uint32_t limitCount = 0;
VALIDATECALL(zesPowerGetLimitsExt(handle, &limitCount, nullptr));
if (limitCount == 0) {
std::cout << "powerLimitDesc.count = " << limitCount << std::endl;
} else {
std::vector<zes_power_limit_ext_desc_t> allLimits(limitCount);
VALIDATECALL(zesPowerGetLimitsExt(handle, &limitCount, allLimits.data()));
if (verbose) {
for (uint32_t i = 0; i < limitCount; i++) {
switch (allLimits[i].level) {
case ZES_POWER_LEVEL_SUSTAINED:
std::cout << " --- Sustained Power Limit --- " << std::endl;
break;
case ZES_POWER_LEVEL_PEAK:
std::cout << " --- Peak Power Limit --- " << std::endl;
break;
case ZES_POWER_LEVEL_BURST:
std::cout << " --- Burst Power Limit --- " << std::endl;
break;
case ZES_POWER_LEVEL_INSTANTANEOUS:
std::cout << " --- Instantaneous Power Limit --- " << std::endl;
break;
default:
std::cout << " --- Invalid Power Limit --- " << std::endl;
return;
}
std::cout << "powerLimit.intervalValueLocked = " << +allLimits[i].intervalValueLocked << std::endl;
std::cout << "powerLimit.enabledStateLocked = " << +allLimits[i].enabledStateLocked << std::endl;
std::cout << "powerLimit.limitValueLocked = " << +allLimits[i].limitValueLocked << std::endl;
std::cout << "powerLimit.source = " << getPowerLimitSourceType(allLimits[i].source) << std::endl;
std::cout << "powerLimit.limitUnit = " << allLimits[i].limitUnit << std::endl;
std::cout << "powerLimit.limit = " << allLimits[i].limit << std::endl;
std::cout << "powerLimit.interval = " << allLimits[i].interval << std::endl;
}
}
}
}
void setPowerLimit(const zes_pwr_handle_t &handle, std::vector<std::string> &buf) {
zes_power_level_t level;
uint32_t limitCount = 0;
ze_bool_t isPowerLevelAvailable = false;
if (buf[1] == "--sustained") {
level = ZES_POWER_LEVEL_SUSTAINED;
} else if (buf[1] == "--peak") {
level = ZES_POWER_LEVEL_PEAK;
} else if (buf[1] == "--instantaneous") {
level = ZES_POWER_LEVEL_INSTANTANEOUS;
} else {
level = ZES_POWER_LEVEL_BURST;
}
VALIDATECALL(zesPowerGetLimitsExt(handle, &limitCount, nullptr));
if (limitCount != 0) {
std::vector<zes_power_limit_ext_desc_t> allLimits(limitCount);
VALIDATECALL(zesPowerGetLimitsExt(handle, &limitCount, allLimits.data()));
for (uint32_t i = 0; i < limitCount; i++) {
if (allLimits[i].level == level) {
allLimits[i].limit = static_cast<int32_t>(std::stoi(buf[3]));
isPowerLevelAvailable = true;
break;
}
}
if (isPowerLevelAvailable) {
VALIDATECALL(zesPowerSetLimitsExt(handle, &limitCount, allLimits.data()));
} else {
std::cout << "Unsupported Power Level to set limit" << std::endl;
}
} else {
std::cout << "Unsupported Power Level to set limit" << std::endl;
}
}
#if defined(_WIN32) || defined(_WIN64)
int geteuid() {
if (IsUserAnAdmin()) {
return 0;
} else {
return -1;
}
}
#endif // defined(_WIN32) || defined(_WIN64)
static std::string getPowerDomainType(zes_power_domain_t type) {
static const std::map<zes_power_domain_t, std::string> powerDomainEnumToStringMap{
{ZES_POWER_DOMAIN_CARD, "ZES_POWER_DOMAIN_CARD"},
{ZES_POWER_DOMAIN_PACKAGE, "ZES_POWER_DOMAIN_PACKAGE"},
{ZES_POWER_DOMAIN_STACK, "ZES_POWER_DOMAIN_STACK"},
{ZES_POWER_DOMAIN_MEMORY, "ZES_POWER_DOMAIN_MEMORY"},
{ZES_POWER_DOMAIN_GPU, "ZES_POWER_DOMAIN_GPU"}};
if (powerDomainEnumToStringMap.find(type) != powerDomainEnumToStringMap.end()) {
return powerDomainEnumToStringMap.at(type);
} else {
return "invalid";
}
}
void testSysmanPower(ze_device_handle_t &device, std::vector<std::string> &buf, uint32_t &curDeviceIndex) {
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
std::cout << std::endl
<< " ---- Power tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumPowerDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Power domains" << std::endl;
return;
}
std::vector<zes_pwr_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumPowerDomains(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_power_properties_t properties = {};
zes_power_ext_properties_t extProperties = {};
zes_power_limit_ext_desc_t defaultLimit = {};
extProperties.defaultLimit = &defaultLimit;
extProperties.stype = ZES_STRUCTURE_TYPE_POWER_EXT_PROPERTIES;
properties.pNext = &extProperties;
VALIDATECALL(zesPowerGetProperties(handle, &properties));
if (verbose) {
std::cout << "properties.onSubdevice = " << static_cast<uint32_t>(properties.onSubdevice) << std::endl;
std::cout << "properties.subdeviceId = " << properties.subdeviceId << std::endl;
std::cout << "properties.canControl = " << static_cast<uint32_t>(properties.canControl) << std::endl;
std::cout << "properties.isEnergyThresholdSupported = " << static_cast<uint32_t>(properties.isEnergyThresholdSupported) << std::endl;
std::cout << "properties.defaultLimit = " << properties.defaultLimit << std::endl;
std::cout << "properties.maxLimit = " << properties.maxLimit << std::endl;
std::cout << "properties.minLimit = " << properties.minLimit << std::endl;
std::cout << "extProperties.domain = " << getPowerDomainType(extProperties.domain) << std::endl;
std::cout << "defaultLimit.limit = " << defaultLimit.limit << std::endl;
}
int count = 5; // Measure average power 5 times
for (; count > 0; count--) {
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
zes_power_energy_counter_t energyCounter1;
VALIDATECALL(zesPowerGetEnergyCounter(handle, &energyCounter1));
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
zes_power_energy_counter_t energyCounter2;
VALIDATECALL(zesPowerGetEnergyCounter(handle, &energyCounter2));
auto deltaE = static_cast<float>(energyCounter2.energy - energyCounter1.energy);
auto deltaT = static_cast<float>(energyCounter2.timestamp - energyCounter1.timestamp);
float powerWatt = deltaE / deltaT;
if (verbose) {
std::string deviceType;
if (static_cast<uint32_t>(properties.onSubdevice)) {
deviceType = "subDevice";
} else {
deviceType = "rootDevice";
}
std::cout << "CurrentPower = " << powerWatt << " W for" << deviceType << std::endl;
}
}
if (!properties.onSubdevice) {
zes_power_sustained_limit_t sustainedGetDefault = {};
zes_power_peak_limit_t peakGetDefault = {};
VALIDATECALL(zesPowerGetLimits(handle, &sustainedGetDefault, nullptr, &peakGetDefault));
if (iamroot) {
VALIDATECALL(zesPowerSetLimits(handle, &sustainedGetDefault, nullptr, &peakGetDefault));
}
if (buf.size() != 0) {
uint32_t deviceIndex = static_cast<uint32_t>(std::stoi(buf[2]));
if (deviceIndex == curDeviceIndex) {
if (iamroot) {
setPowerLimit(handle, buf);
} else {
std::cout << "In sufficient permissions to set power limit" << std::endl;
}
}
}
getPowerLimits(handle);
}
}
curDeviceIndex++;
}
std::string getEngineFlagType(zes_engine_type_flags_t engineFlag) {
static const std::map<zes_engine_type_flags_t, std::string> mgetEngineType{
{ZES_ENGINE_TYPE_FLAG_OTHER, "ZES_ENGINE_TYPE_FLAG_OTHER"},
{ZES_ENGINE_TYPE_FLAG_COMPUTE, "ZES_ENGINE_TYPE_FLAG_COMPUTE"},
{ZES_ENGINE_TYPE_FLAG_3D, "ZES_ENGINE_TYPE_FLAG_3D"},
{ZES_ENGINE_TYPE_FLAG_MEDIA, "ZES_ENGINE_TYPE_FLAG_MEDIA"},
{ZES_ENGINE_TYPE_FLAG_DMA, "ZES_ENGINE_TYPE_FLAG_DMA"},
{ZES_ENGINE_TYPE_FLAG_RENDER, "ZES_ENGINE_TYPE_FLAG_RENDER"}};
auto i = mgetEngineType.find(engineFlag);
if (i == mgetEngineType.end())
return "No supported engine type flag available";
else
return mgetEngineType.at(engineFlag);
}
zes_engine_type_flags_t getEngineFlagType(std::string engineFlagString) {
static const std::map<std::string, zes_engine_type_flags_t> mgetEngineType{
{"ZES_ENGINE_TYPE_FLAG_OTHER", ZES_ENGINE_TYPE_FLAG_OTHER},
{"ZES_ENGINE_TYPE_FLAG_COMPUTE", ZES_ENGINE_TYPE_FLAG_COMPUTE},
{"ZES_ENGINE_TYPE_FLAG_3D", ZES_ENGINE_TYPE_FLAG_3D},
{"ZES_ENGINE_TYPE_FLAG_MEDIA", ZES_ENGINE_TYPE_FLAG_MEDIA},
{"ZES_ENGINE_TYPE_FLAG_DMA", ZES_ENGINE_TYPE_FLAG_DMA},
{"ZES_ENGINE_TYPE_FLAG_RENDER", ZES_ENGINE_TYPE_FLAG_RENDER}};
auto i = mgetEngineType.find(engineFlagString);
if (i == mgetEngineType.end()) {
std::cout << "Engine type flag Unsupported" << std::endl;
return ZES_ENGINE_TYPE_FLAG_FORCE_UINT32;
} else
return mgetEngineType.at(engineFlagString);
}
void setPerformanceFactor(const zes_perf_handle_t &handle, const zes_perf_properties_t &properties, std::vector<std::string> &buf, bool &pFactorIsSet) {
uint32_t subdeviceId = static_cast<uint32_t>(std::stoi(buf[2]));
zes_engine_type_flags_t engineTypeFlag = getEngineFlagType(buf[3]);
double pFactor = static_cast<uint32_t>(std::stod(buf[4]));
if (properties.subdeviceId == subdeviceId && properties.engines == engineTypeFlag) {
if (properties.engines == engineTypeFlag) {
VALIDATECALL(zesPerformanceFactorSetConfig(handle, pFactor));
std::cout << "Performance factor is set successfully" << std::endl;
pFactorIsSet = true;
}
}
}
void testSysmanPerformance(ze_device_handle_t &device, std::vector<std::string> &buf, uint32_t &curDeviceIndex, bool &pFactorIsSet) {
std::cout << std::endl
<< " ---- Performance-factor tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumPerformanceFactorDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Performance factor domains" << std::endl;
return;
}
std::vector<zes_perf_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumPerformanceFactorDomains(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_perf_properties_t properties;
VALIDATECALL(zesPerformanceFactorGetProperties(handle, &properties));
if (verbose) {
std::cout << "properties.onSubdevice = " << static_cast<uint32_t>(properties.onSubdevice) << std::endl;
std::cout << "properties.subdeviceId = " << properties.subdeviceId << std::endl;
std::cout << "properties.engines = " << getEngineFlagType(properties.engines) << std::endl;
}
if (buf.size() != 0) {
uint32_t deviceIndex = static_cast<uint32_t>(std::stoi(buf[1]));
if (deviceIndex == curDeviceIndex) {
setPerformanceFactor(handle, properties, buf, pFactorIsSet);
}
}
double originalFactor = 0;
VALIDATECALL(zesPerformanceFactorGetConfig(handle, &originalFactor));
if (verbose) {
std::cout << "current Performance Factor = " << std::round(originalFactor) << std::endl;
}
std::cout << std::endl;
}
curDeviceIndex++;
}
std::string getTemperatureSensorType(zes_temp_sensors_t type) {
static const std::map<zes_temp_sensors_t, std::string> mgetSensorType{
{ZES_TEMP_SENSORS_GLOBAL, "ZES_TEMP_SENSORS_GLOBAL"},
{ZES_TEMP_SENSORS_GPU, "ZES_TEMP_SENSORS_GPU"},
{ZES_TEMP_SENSORS_MEMORY, "ZES_TEMP_SENSORS_MEMORY"},
{ZES_TEMP_SENSORS_GLOBAL_MIN, "ZES_TEMP_SENSORS_GLOBAL_MIN"},
{ZES_TEMP_SENSORS_GPU_MIN, "ZES_TEMP_SENSORS_GPU_MIN"},
{ZES_TEMP_SENSORS_MEMORY_MIN, "ZES_TEMP_SENSORS_MEMORY_MIN"}};
auto i = mgetSensorType.find(type);
if (i == mgetSensorType.end())
return "No supported temperature type available";
else
return mgetSensorType.at(type);
}
void testSysmanTemperature(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Temperature tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumTemperatureSensors(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Temperature domains" << std::endl;
return;
}
std::vector<zes_temp_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumTemperatureSensors(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_temp_properties_t properties = {};
VALIDATECALL(zesTemperatureGetProperties(handle, &properties));
double temperature;
VALIDATECALL(zesTemperatureGetState(handle, &temperature));
if (verbose) {
std::cout << "For subDevice " << properties.subdeviceId << " temperature current state for "
<< getTemperatureSensorType(properties.type) << " is: " << temperature << std::endl;
}
}
}
void testSysmanEcc(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Ecc tests ---- " << std::endl;
ze_bool_t eccAvailable = false;
VALIDATECALL(zesDeviceEccAvailable(device, &eccAvailable));
if (eccAvailable == false) {
std::cout << "Ecc not availabe" << std::endl;
return;
}
ze_bool_t eccConfigurable = false;
VALIDATECALL(zesDeviceEccConfigurable(device, &eccConfigurable));
if (eccConfigurable == false) {
std::cout << "Ecc not configurable" << std::endl;
return;
}
zes_device_ecc_properties_t getProps = {};
VALIDATECALL(zesDeviceGetEccState(device, &getProps));
if (verbose) {
std::cout << "getStateProps.pendingState " << getProps.pendingState << std::endl;
std::cout << "getStateProps.currentState " << getProps.currentState << std::endl;
std::cout << "getStateProps.pendingAction " << getProps.pendingAction << std::endl;
}
if (verbose) {
std::cout << "Setting Ecc state to " << ZES_DEVICE_ECC_STATE_ENABLED << std::endl;
}
zes_device_ecc_desc_t newState = {ZES_STRUCTURE_TYPE_DEVICE_ECC_DESC, nullptr, ZES_DEVICE_ECC_STATE_ENABLED};
zes_device_ecc_properties_t setProps = {};
VALIDATECALL(zesDeviceSetEccState(device, &newState, &setProps));
if (verbose) {
std::cout << "setStateProps.pendingState " << setProps.pendingState << std::endl;
std::cout << "setStateProps.currentState " << setProps.currentState << std::endl;
std::cout << "setStateProps.pendingAction " << setProps.pendingAction << std::endl;
}
if (verbose) {
std::cout << "Setting Ecc state to " << ZES_DEVICE_ECC_STATE_DISABLED << std::endl;
}
newState.state = ZES_DEVICE_ECC_STATE_DISABLED;
VALIDATECALL(zesDeviceSetEccState(device, &newState, &setProps));
if (verbose) {
std::cout << "setStateProps.pendingState " << setProps.pendingState << std::endl;
std::cout << "setStateProps.currentState " << setProps.currentState << std::endl;
std::cout << "setStateProps.pendingAction " << setProps.pendingAction << std::endl;
}
// Restore to original state
if (setProps.pendingState != getProps.pendingState) {
if (verbose) {
std::cout << "Restoring Ecc configuration to original state " << std::endl;
newState.state = getProps.pendingState;
}
VALIDATECALL(zesDeviceSetEccState(device, &newState, &setProps));
}
}
void testSysmanPci(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- PCI tests ---- " << std::endl;
zes_pci_properties_t properties = {};
VALIDATECALL(zesDevicePciGetProperties(device, &properties));
if (verbose) {
std::cout << "properties.address.domain = " << std::hex << properties.address.domain << std::endl;
std::cout << "properties.address.bus = " << std::hex << properties.address.bus << std::endl;
std::cout << "properties.address.device = " << std::hex << properties.address.device << std::endl;
std::cout << "properties.address.function = " << std::hex << properties.address.function << std::endl;
std::cout << "properties.maxSpeed.gen = " << std::dec << properties.maxSpeed.gen << std::endl;
std::cout << "properties.maxSpeed.width = " << std::dec << properties.maxSpeed.width << std::endl;
std::cout << "properties.maxSpeed.maxBandwidth = " << std::dec << properties.maxSpeed.maxBandwidth << std::endl;
std::cout << "properties.haveBandwidthCounters = " << static_cast<uint32_t>(properties.haveBandwidthCounters) << std::endl;
std::cout << "properties.havePacketCounters = " << static_cast<uint32_t>(properties.havePacketCounters) << std::endl;
std::cout << "properties.haveReplayCounters = " << static_cast<uint32_t>(properties.haveReplayCounters) << std::endl;
}
uint32_t count = 0;
VALIDATECALL(zesDevicePciGetBars(device, &count, nullptr));
if (verbose) {
std::cout << "Bar count = " << count << std::endl;
}
std::vector<zes_pci_bar_properties_t> pciBarProps(count);
std::vector<zes_pci_bar_properties_1_2_t> pciBarExtProps(count);
for (uint32_t i = 0; i < count; i++) {
pciBarExtProps[i].stype = ZES_STRUCTURE_TYPE_PCI_BAR_PROPERTIES_1_2;
pciBarExtProps[i].pNext = nullptr;
pciBarProps[i].stype = ZES_STRUCTURE_TYPE_PCI_BAR_PROPERTIES;
pciBarProps[i].pNext = static_cast<void *>(&pciBarExtProps[i]);
}
zes_pci_stats_t pciStats = {};
VALIDATECALL(zesDevicePciGetStats(device, &pciStats));
if (verbose) {
if (properties.haveReplayCounters) {
std::cout << "pciStats.replayCounter = " << std::dec << pciStats.replayCounter << std::endl;
}
if (properties.havePacketCounters) {
std::cout << "pciStats.packetCounter = " << std::dec << pciStats.packetCounter << std::endl;
}
if (properties.haveBandwidthCounters) {
std::cout << "pciStats.rxCounter = " << std::dec << pciStats.rxCounter << std::endl;
std::cout << "pciStats.txCounter = " << std::dec << pciStats.txCounter << std::endl;
}
std::cout << "pciStats.timestamp = " << std::dec << pciStats.timestamp << std::endl;
std::cout << "pciStats.speed.gen = " << std::dec << pciStats.speed.gen << std::endl;
std::cout << "pciStats.speed.width = " << std::dec << pciStats.speed.width << std::endl;
std::cout << "pciStats.speed.maxBandWidth = " << std::dec << pciStats.speed.maxBandwidth << std::endl;
}
VALIDATECALL(zesDevicePciGetBars(device, &count, pciBarProps.data()));
if (verbose) {
for (uint32_t i = 0; i < count; i++) {
std::cout << "pciBarProps.type = " << std::hex << pciBarProps[i].type << std::endl;
std::cout << "pciBarProps.index = " << std::hex << pciBarProps[i].index << std::endl;
std::cout << "pciBarProps.base = " << std::hex << pciBarProps[i].base << std::endl;
std::cout << "pciBarProps.size = " << std::hex << pciBarProps[i].size << std::endl;
std::cout << "pci_bar_properties_1_2_t.resizableBarSupported = " << static_cast<uint32_t>(pciBarExtProps[i].resizableBarSupported) << std::endl;
std::cout << "pci_bar_properties_1_2_t.resizableBarEnabled = " << static_cast<uint32_t>(pciBarExtProps[i].resizableBarEnabled) << std::endl;
}
}
}
void testSysmanFrequency(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Frequency tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumFrequencyDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve frequency domains" << std::endl;
return;
}
std::vector<zes_freq_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumFrequencyDomains(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_freq_properties_t freqProperties = {};
zes_freq_range_t freqRange = {};
zes_freq_range_t testFreqRange = {};
zes_freq_state_t freqState = {};
VALIDATECALL(zesFrequencyGetProperties(handle, &freqProperties));
if (verbose) {
std::cout << "freqProperties.type = " << freqProperties.type << std::endl;
std::cout << "freqProperties.canControl = " << static_cast<uint32_t>(freqProperties.canControl) << std::endl;
std::cout << "freqProperties.isThrottleEventSupported = " << static_cast<uint32_t>(freqProperties.isThrottleEventSupported) << std::endl;
std::cout << "freqProperties.min = " << freqProperties.min << std::endl;
std::cout << "freqProperties.max = " << freqProperties.max << std::endl;
if (freqProperties.onSubdevice) {
std::cout << "freqProperties.subdeviceId = " << freqProperties.subdeviceId << std::endl;
}
}
VALIDATECALL(zesFrequencyGetState(handle, &freqState));
if (verbose) {
std::cout << "freqState.currentVoltage = " << freqState.currentVoltage << std::endl;
std::cout << "freqState.request = " << freqState.request << std::endl;
std::cout << "freqState.tdp = " << freqState.tdp << std::endl;
std::cout << "freqState.efficient = " << freqState.efficient << std::endl;
std::cout << "freqState.actual = " << freqState.actual << std::endl;
std::cout << "freqState.throttleReasons = " << freqState.throttleReasons << std::endl;
}
VALIDATECALL(zesFrequencyGetRange(handle, &freqRange));
if (verbose) {
std::cout << "freqRange.min = " << freqRange.min << std::endl;
std::cout << "freqRange.max = " << freqRange.max << std::endl;
}
count = 0;
VALIDATECALL(zesFrequencyGetAvailableClocks(handle, &count, nullptr));
std::vector<double> frequency(count);
VALIDATECALL(zesFrequencyGetAvailableClocks(handle, &count, frequency.data()));
if (verbose) {
for (auto freq : frequency) {
std::cout << " frequency = " << freq << std::endl;
}
}
if (iamroot) {
// Test setting min and max frequency the same, then restore originals
testFreqRange.min = freqRange.min;
testFreqRange.max = freqRange.min;
if (verbose) {
std::cout << "Setting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "Setting Frequency Range . max " << testFreqRange.max << std::endl;
}
VALIDATECALL(zesFrequencySetRange(handle, &testFreqRange));
VALIDATECALL(zesFrequencyGetRange(handle, &testFreqRange));
if (verbose) {
std::cout << "After Setting Getting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "After Setting Getting Frequency Range . max " << testFreqRange.max << std::endl;
}
testFreqRange.min = freqRange.min;
testFreqRange.max = freqRange.max;
if (verbose) {
std::cout << "Setting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "Setting Frequency Range . max " << testFreqRange.max << std::endl;
}
VALIDATECALL(zesFrequencySetRange(handle, &testFreqRange));
VALIDATECALL(zesFrequencyGetRange(handle, &testFreqRange));
if (verbose) {
std::cout << "After Setting Getting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "After Setting Getting Frequency Range . max " << testFreqRange.max << std::endl;
}
} else {
std::cout << "Not running as Root. Skipping zetSysmanFrequencySetRange test." << std::endl;
}
}
}
void testSysmanRasExp(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Ras Exp tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumRasErrorSets(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Ras Error Sets" << std::endl;
return;
}
std::vector<zes_ras_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumRasErrorSets(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_ras_properties_t rasProperties = {};
VALIDATECALL(zesRasGetProperties(handle, &rasProperties));
if (verbose) {
std::cout << "rasProperties.type = " << rasProperties.type << std::endl;
if (rasProperties.onSubdevice) {
std::cout << "rasProperties.subdeviceId = " << rasProperties.subdeviceId << std::endl;
}
}
// Query for number of error categories supported by platform
uint32_t rasCategoryCount = 0;
VALIDATECALL(zesRasGetStateExp(handle, &rasCategoryCount, nullptr));
// Gather error states
std::vector<zes_ras_state_exp_t> rasStates(rasCategoryCount);
VALIDATECALL(zesRasGetStateExp(handle, &rasCategoryCount, rasStates.data()));
if (verbose) {
if (rasProperties.type == ZES_RAS_ERROR_TYPE_UNCORRECTABLE) {
std::cout << "Uncorrectable errors listing:" << std::endl;
} else {
std::cout << "Correctable errors listing:" << std::endl;
}
for (uint32_t i = 0; i < rasCategoryCount; i++) {
std::cout << " Error category: " << rasStates[i].category << "Count: " << rasStates[i].errorCounter << std::endl;
}
}
}
}
void testSysmanRas(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Ras tests ---- " << std::endl;
uint32_t count = 0;
bool iamroot = (geteuid() == 0);
VALIDATECALL(zesDeviceEnumRasErrorSets(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Ras Error Sets" << std::endl;
return;
}
std::vector<zes_ras_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumRasErrorSets(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_ras_properties_t rasProperties = {};
zes_ras_state_t rasState = {};
VALIDATECALL(zesRasGetProperties(handle, &rasProperties));
if (verbose) {
std::cout << "rasProperties.type = " << rasProperties.type << std::endl;
if (rasProperties.onSubdevice) {
std::cout << "rasProperties.subdeviceId = " << rasProperties.subdeviceId << std::endl;
}
}
ze_bool_t clear = 0;
VALIDATECALL(zesRasGetState(handle, clear, &rasState));
if (verbose) {
if (rasProperties.type == ZES_RAS_ERROR_TYPE_UNCORRECTABLE) {
std::cout << "Number of fatal accelerator engine resets attempted by the driver = " << rasState.category[ZES_RAS_ERROR_CAT_RESET] << std::endl;
std::cout << "Number of fatal errors that have occurred in caches = " << rasState.category[ZES_RAS_ERROR_CAT_CACHE_ERRORS] << std::endl;
std::cout << "Number of fatal programming errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_PROGRAMMING_ERRORS] << std::endl;
std::cout << "Number of fatal driver errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_DRIVER_ERRORS] << std::endl;
std::cout << "Number of fatal compute errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_COMPUTE_ERRORS] << std::endl;
std::cout << "Number of fatal non compute errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_NON_COMPUTE_ERRORS] << std::endl;
std::cout << "Number of fatal display errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_DISPLAY_ERRORS] << std::endl;
} else {
std::cout << "Number of correctable accelerator engine resets attempted by the driver = " << rasState.category[ZES_RAS_ERROR_CAT_RESET] << std::endl;
std::cout << "Number of correctable errors that have occurred in caches = " << rasState.category[ZES_RAS_ERROR_CAT_CACHE_ERRORS] << std::endl;
std::cout << "Number of correctable programming errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_PROGRAMMING_ERRORS] << std::endl;
std::cout << "Number of correctable driver errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_DRIVER_ERRORS] << std::endl;
std::cout << "Number of correctable compute errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_COMPUTE_ERRORS] << std::endl;
std::cout << "Number of correctable non compute errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_NON_COMPUTE_ERRORS] << std::endl;
std::cout << "Number of correctable display errors that have occurred = " << rasState.category[ZES_RAS_ERROR_CAT_DISPLAY_ERRORS] << std::endl;
}
}
if (iamroot) {
zes_ras_config_t getConfig = {};
zes_ras_config_t setConfig = {};
setConfig.totalThreshold = 14;
memset(setConfig.detailedThresholds.category, 0, sizeof(setConfig.detailedThresholds.category));
VALIDATECALL(zesRasSetConfig(handle, &setConfig));
if (verbose) {
std::cout << "Setting Total threshold = " << setConfig.totalThreshold << std::endl;
std::cout << "Setting Threshold for Engine Resets = " << setConfig.detailedThresholds.category[0] << std::endl;
std::cout << "Setting Threshold for Programming Errors = " << setConfig.detailedThresholds.category[1] << std::endl;
std::cout << "Setting Threshold for Driver Errors = " << setConfig.detailedThresholds.category[2] << std::endl;
std::cout << "Setting Threshold for Compute Errors = " << setConfig.detailedThresholds.category[3] << std::endl;
std::cout << "Setting Threshold for Non Compute Errors = " << setConfig.detailedThresholds.category[4] << std::endl;
std::cout << "Setting Threshold for Cache Errors = " << setConfig.detailedThresholds.category[5] << std::endl;
std::cout << "Setting Threshold for Display Errors = " << setConfig.detailedThresholds.category[6] << std::endl;
}
VALIDATECALL(zesRasGetConfig(handle, &getConfig));
if (verbose) {
std::cout << "Getting Total threshold = " << getConfig.totalThreshold << std::endl;
std::cout << "Getting Threshold for Engine Resets = " << getConfig.detailedThresholds.category[0] << std::endl;
std::cout << "Getting Threshold for Programming Errors = " << getConfig.detailedThresholds.category[1] << std::endl;
std::cout << "Getting Threshold for Driver Errors = " << getConfig.detailedThresholds.category[2] << std::endl;
std::cout << "Getting Threshold for Compute Errors = " << getConfig.detailedThresholds.category[3] << std::endl;
std::cout << "Getting Threshold for Non Compute Errors = " << getConfig.detailedThresholds.category[4] << std::endl;
std::cout << "Getting Threshold for Cache Errors = " << getConfig.detailedThresholds.category[5] << std::endl;
std::cout << "Getting Threshold for Display Errors = " << getConfig.detailedThresholds.category[6] << std::endl;
}
}
}
}
std::string getStandbyType(zes_standby_type_t standbyType) {
if (standbyType == ZES_STANDBY_TYPE_GLOBAL)
return "ZES_STANDBY_TYPE_GLOBAL";
else
return "NOT SUPPORTED Standby Type ";
}
std::string getStandbyMode(zes_standby_promo_mode_t standbyMode) {
if (standbyMode == ZES_STANDBY_PROMO_MODE_DEFAULT)
return "ZES_STANDBY_PROMO_MODE_DEFAULT";
else if (standbyMode == ZES_STANDBY_PROMO_MODE_NEVER)
return "ZES_STANDBY_PROMO_MODE_NEVER";
else
return "NOT SUPPORTED Standby Type ";
}
void testSysmanStandby(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Standby tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumStandbyDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Standby domains" << std::endl;
return;
}
std::vector<zes_standby_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumStandbyDomains(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_standby_properties_t standbyProperties = {};
zes_standby_promo_mode_t standbyMode = ZES_STANDBY_PROMO_MODE_FORCE_UINT32;
VALIDATECALL(zesStandbyGetProperties(handle, &standbyProperties));
if (verbose) {
std::cout << "standbyProperties.type = " << getStandbyType(standbyProperties.type) << std::endl;
if (standbyProperties.onSubdevice) {
std::cout << "standbyProperties.subdeviceId = " << standbyProperties.subdeviceId << std::endl;
}
}
VALIDATECALL(zesStandbyGetMode(handle, &standbyMode));
if (verbose) {
std::cout << "standbyMode.type = " << getStandbyMode(standbyMode) << std::endl;
}
if (iamroot) {
std::cout << "Setting Standby Mode Default" << std::endl;
VALIDATECALL(zesStandbySetMode(handle, ZES_STANDBY_PROMO_MODE_DEFAULT));
std::cout << "Setting Standby Mode Never" << std::endl;
VALIDATECALL(zesStandbySetMode(handle, ZES_STANDBY_PROMO_MODE_NEVER));
// Restore the original mode after the test.
std::cout << "Restore Standby Mode" << std::endl;
VALIDATECALL(zesStandbyGetMode(handle, &standbyMode));
} else {
std::cout << "Not running as Root. Skipping zetSysmanStandbySetMode test." << std::endl;
}
}
}
std::string getEngineType(zes_engine_group_t engineGroup) {
static const std::map<zes_engine_group_t, std::string> mgetEngineType{
{ZES_ENGINE_GROUP_COMPUTE_SINGLE, "ZES_ENGINE_GROUP_COMPUTE_SINGLE"},
{ZES_ENGINE_GROUP_RENDER_SINGLE, "ZES_ENGINE_GROUP_RENDER_SINGLE"},
{ZES_ENGINE_GROUP_MEDIA_DECODE_SINGLE, "ZES_ENGINE_GROUP_MEDIA_DECODE_SINGLE"},
{ZES_ENGINE_GROUP_MEDIA_ENCODE_SINGLE, "ZES_ENGINE_GROUP_MEDIA_ENCODE_SINGLE"},
{ZES_ENGINE_GROUP_COPY_SINGLE, "ZES_ENGINE_GROUP_COPY_SINGLE"},
{ZES_ENGINE_GROUP_ALL, "ZES_ENGINE_GROUP_ALL"},
{ZES_ENGINE_GROUP_COMPUTE_ALL, "ZES_ENGINE_GROUP_COMPUTE_ALL"},
{ZES_ENGINE_GROUP_COPY_ALL, "ZES_ENGINE_GROUP_COPY_ALL"},
{ZES_ENGINE_GROUP_RENDER_ALL, "ZES_ENGINE_GROUP_RENDER_ALL"},
{ZES_ENGINE_GROUP_MEDIA_ALL, "ZES_ENGINE_GROUP_MEDIA_ALL"},
{ZES_ENGINE_GROUP_MEDIA_ENHANCEMENT_SINGLE, "ZES_ENGINE_GROUP_MEDIA_ENHANCEMENT_SINGLE"}};
auto i = mgetEngineType.find(engineGroup);
if (i == mgetEngineType.end())
return "No supported engine group type available";
else
return mgetEngineType.at(engineGroup);
}
void testSysmanEngine(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Engine tests ---- " << std::endl;
zes_device_properties_t deviceProperties = {ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES};
VALIDATECALL(zesDeviceGetProperties(device, &deviceProperties));
if (verbose) {
std::cout << "Device UUID: " << std::endl;
for (uint32_t i = 0; i < ZE_MAX_UUID_SIZE; i++) {
std::cout << static_cast<uint32_t>(deviceProperties.core.uuid.id[i]) << " ";
}
std::cout << std::endl;
}
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumEngineGroups(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Engine domains" << std::endl;
return;
}
std::vector<zes_engine_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumEngineGroups(device, &count, handles.data()));
for (uint32_t i = 0; i < 10; i++) {
std::cout << "[" << i << "]" << std::endl;
for (const auto &handle : handles) {
zes_engine_properties_t engineProperties = {};
zes_engine_stats_t engineStats = {};
VALIDATECALL(zesEngineGetProperties(handle, &engineProperties));
if (verbose) {
std::cout << "Engine Type = " << getEngineType(engineProperties.type);
if (engineProperties.onSubdevice) {
std::cout << " || Subdevice Id = " << engineProperties.subdeviceId;
}
}
VALIDATECALL(zesEngineGetActivity(handle, &engineStats));
if (verbose) {
std::cout << " || Active Time = " << engineStats.activeTime;
std::cout << " || Timestamp = " << engineStats.timestamp;
}
std::cout << std::endl;
}
std::this_thread::sleep_for(std::chrono::milliseconds(150));
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" << std::endl;
}
}
std::string getSchedulerModeName(zes_sched_mode_t mode) {
static const std::map<zes_sched_mode_t, std::string> mgetSchedulerModeName{
{ZES_SCHED_MODE_TIMEOUT, "ZES_SCHED_MODE_TIMEOUT"},
{ZES_SCHED_MODE_TIMESLICE, "ZES_SCHED_MODE_TIMESLICE"},
{ZES_SCHED_MODE_EXCLUSIVE, "ZES_SCHED_MODE_EXCLUSIVE"},
{ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG, "ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG"}};
auto i = mgetSchedulerModeName.find(mode);
if (i == mgetSchedulerModeName.end())
return "NOT SUPPORTED MODE SET";
else
return mgetSchedulerModeName.at(mode);
}
void testSysmanScheduler(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Scheduler tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumSchedulers(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve scheduler domains" << std::endl;
return;
}
std::vector<zes_sched_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumSchedulers(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_sched_properties_t pProperties = {};
VALIDATECALL(zesSchedulerGetProperties(handle, &pProperties));
if (verbose) {
std::cout << "On subdevice = " << static_cast<uint32_t>(pProperties.onSubdevice) << std::endl;
std::cout << "SubdeviceId = " << static_cast<uint32_t>(pProperties.subdeviceId) << std::endl;
std::cout << "Can control = " << static_cast<uint32_t>(pProperties.canControl) << std::endl;
std::cout << "Engines = " << static_cast<uint32_t>(pProperties.engines) << std::endl;
std::cout << "Supported Mode = " << static_cast<uint32_t>(pProperties.supportedModes) << std::endl;
}
zes_sched_mode_t currentMode = {};
VALIDATECALL(zesSchedulerGetCurrentMode(handle, &currentMode));
if (verbose) {
std::cout << "Current Mode = " << getSchedulerModeName(currentMode) << std::endl;
}
zes_sched_timeout_properties_t timeoutProperties = {};
zes_sched_timeslice_properties_t timesliceProperties = {};
VALIDATECALL(zesSchedulerGetTimeoutModeProperties(handle, false, &timeoutProperties));
if (verbose) {
std::cout << "Timeout Mode Watchdog Timeout = " << timeoutProperties.watchdogTimeout << std::endl;
}
VALIDATECALL(zesSchedulerGetTimesliceModeProperties(handle, false, &timesliceProperties));
if (verbose) {
std::cout << "Timeslice Mode Interval = " << timesliceProperties.interval << std::endl;
std::cout << "Timeslice Mode Yield Timeout = " << timesliceProperties.yieldTimeout << std::endl;
}
ze_bool_t needReload = 0;
if (iamroot) {
std::cout << "Setting Scheduler Timeout Mode" << std::endl;
VALIDATECALL(zesSchedulerSetTimeoutMode(handle, &timeoutProperties, &needReload));
std::cout << "Setting Scheduler TimeSlice Mode" << std::endl;
VALIDATECALL(zesSchedulerSetTimesliceMode(handle, &timesliceProperties, &needReload));
std::cout << "Setting Scheduler Exclusive Mode" << std::endl;
VALIDATECALL(zesSchedulerSetExclusiveMode(handle, &needReload));
std::cout << "Restoring Scheduler Mode" << std::endl;
// Restore the original mode after the test.
if (currentMode == ZES_SCHED_MODE_TIMEOUT) {
VALIDATECALL(zesSchedulerSetTimeoutMode(handle, &timeoutProperties, &needReload));
} else if (currentMode == ZES_SCHED_MODE_TIMESLICE) {
VALIDATECALL(zesSchedulerSetTimesliceMode(handle, &timesliceProperties, &needReload));
} else if (currentMode == ZES_SCHED_MODE_EXCLUSIVE) {
VALIDATECALL(zesSchedulerSetExclusiveMode(handle, &needReload));
}
} else {
std::cout << "Not running as Root. Skipping zetSysmanSchedulerSetTimeoutMode test." << std::endl;
std::cout << "Not running as Root. Skipping zetSysmanSchedulerSetTimesliceMode test." << std::endl;
std::cout << "Not running as Root. Skipping zetSysmanSchedulerSetExclusiveMode test." << std::endl;
}
}
}
std::string getMemoryType(zes_mem_type_t memType) {
static const std::map<zes_mem_type_t, std::string> mgetMemoryType{
{ZES_MEM_TYPE_HBM, "ZES_MEM_TYPE_HBM"},
{ZES_MEM_TYPE_DDR, "ZES_MEM_TYPE_DDR"},
{ZES_MEM_TYPE_DDR3, "ZES_MEM_TYPE_DDR3"},
{ZES_MEM_TYPE_DDR4, "ZES_MEM_TYPE_DDR4"},
{ZES_MEM_TYPE_DDR5, "ZES_MEM_TYPE_DDR5"},
{ZES_MEM_TYPE_LPDDR, "ZES_MEM_TYPE_LPDDR"},
{ZES_MEM_TYPE_LPDDR3, "ZES_MEM_TYPE_LPDDR3"},
{ZES_MEM_TYPE_LPDDR4, "ZES_MEM_TYPE_LPDDR4"},
{ZES_MEM_TYPE_LPDDR5, "ZES_MEM_TYPE_LPDDR5"},
{ZES_MEM_TYPE_SRAM, "ZES_MEM_TYPE_SRAM"},
{ZES_MEM_TYPE_L1, "ZES_MEM_TYPE_L1"},
{ZES_MEM_TYPE_L3, "ZES_MEM_TYPE_L3"},
{ZES_MEM_TYPE_GRF, "ZES_MEM_TYPE_GRF"},
{ZES_MEM_TYPE_SLM, "ZES_MEM_TYPE_SLM"}};
auto i = mgetMemoryType.find(memType);
if (i == mgetMemoryType.end())
return "NOT SUPPORTED MEMORY TYPE SET";
else
return mgetMemoryType.at(memType);
}
std::string getMemoryHealth(zes_mem_health_t memHealth) {
static const std::map<zes_mem_health_t, std::string> mgetMemoryHealth{
{ZES_MEM_HEALTH_UNKNOWN, "ZES_MEM_HEALTH_UNKNOWN"},
{ZES_MEM_HEALTH_OK, "ZES_MEM_HEALTH_OK"},
{ZES_MEM_HEALTH_DEGRADED, "ZES_MEM_HEALTH_DEGRADED"},
{ZES_MEM_HEALTH_CRITICAL, "ZES_MEM_HEALTH_CRITICAL"},
{ZES_MEM_HEALTH_REPLACE, "ZES_MEM_HEALTH_REPLACE"}};
auto i = mgetMemoryHealth.find(memHealth);
if (i == mgetMemoryHealth.end())
return "NOT SUPPORTED MEMORY HEALTH SET";
else
return mgetMemoryHealth.at(memHealth);
}
void testSysmanMemory(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Memory tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumMemoryModules(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Memory domains" << std::endl;
return;
}
std::vector<zes_mem_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumMemoryModules(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_mem_properties_t memoryProperties = {};
zes_mem_state_t memoryState = {};
zes_mem_bandwidth_t memoryBandwidth = {};
VALIDATECALL(zesMemoryGetProperties(handle, &memoryProperties));
if (verbose) {
std::cout << "Memory Type = " << getMemoryType(memoryProperties.type) << std::endl;
std::cout << "On Subdevice = " << static_cast<uint32_t>(memoryProperties.onSubdevice) << std::endl;
std::cout << "Subdevice Id = " << memoryProperties.subdeviceId << std::endl;
std::cout << "Memory Size = " << memoryProperties.physicalSize << std::endl;
std::cout << "Number of channels = " << memoryProperties.numChannels << std::endl;
}
VALIDATECALL(zesMemoryGetState(handle, &memoryState));
if (verbose) {
std::cout << "Memory Health = " << getMemoryHealth(memoryState.health) << std::endl;
std::cout << "The total allocatable memory in bytes = " << memoryState.size << std::endl;
std::cout << "The free memory in bytes = " << memoryState.free << std::endl;
}
VALIDATECALL(zesMemoryGetBandwidth(handle, &memoryBandwidth));
if (verbose) {
std::cout << "Memory Read Counter = " << memoryBandwidth.readCounter << std::endl;
std::cout << "Memory Write Counter = " << memoryBandwidth.writeCounter << std::endl;
std::cout << "Memory Maximum Bandwidth = " << memoryBandwidth.maxBandwidth << std::endl;
std::cout << "Memory Timestamp = " << memoryBandwidth.timestamp << std::endl;
}
}
}
static void trackFirmwareFlashProgress(FirmwareFlashInfo *flashData) {
bool loopContinue = true;
uint32_t progressPercent = 0;
do {
progressPercent = 0;
ze_result_t result = zesFirmwareGetFlashProgress(flashData->firmwareHandle, &progressPercent);
if (result != ZE_RESULT_SUCCESS) {
break;
}
printf("\rFirmware Flash Progress: %d %%", progressPercent);
fflush(stdout);
std::this_thread::sleep_for(std::chrono::seconds(1));
flashData->firmwareProgressMutex.lock();
loopContinue = !flashData->flashComplete;
flashData->firmwareProgressMutex.unlock();
} while (loopContinue);
progressPercent = 0;
ze_result_t result = zesFirmwareGetFlashProgress(flashData->firmwareHandle, &progressPercent);
if (result != ZE_RESULT_SUCCESS) {
return;
}
printf("\rFirmware Flash Progress: %d %%\n", progressPercent);
fflush(stdout);
}
void testSysmanFirmware(ze_device_handle_t &device, std::string imagePath) {
std::cout << std::endl
<< " ---- firmware tests ---- " << std::endl;
uint32_t count = 0;
std::ifstream imageFile;
uint64_t imgSize = 0;
FirmwareFlashInfo flashData{};
if (imagePath.size() != 0) {
struct stat statBuf;
auto status = stat(imagePath.c_str(), &statBuf);
if (!status) {
imageFile.open(imagePath.c_str(), std::ios::binary);
imgSize = statBuf.st_size;
}
}
VALIDATECALL(zesDeviceEnumFirmwares(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Firmware domains" << std::endl;
return;
}
std::vector<zes_firmware_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumFirmwares(device, &count, handles.data()));
for (auto handle : handles) {
zes_firmware_properties_t fwProperties = {};
VALIDATECALL(zesFirmwareGetProperties(handle, &fwProperties));
if (verbose) {
std::cout << "firmware name = " << fwProperties.name << std::endl;
std::cout << "On Subdevice = " << static_cast<uint32_t>(fwProperties.onSubdevice) << std::endl;
std::cout << "Subdevice Id = " << fwProperties.subdeviceId << std::endl;
std::cout << "firmware version = " << fwProperties.version << std::endl;
}
if (imagePath.size() != 0 && imgSize > 0) {
std::vector<char> img(imgSize);
imageFile.read(img.data(), imgSize);
flashData.flashComplete = false;
flashData.firmwareHandle = handle;
std::thread thread(trackFirmwareFlashProgress, &flashData);
VALIDATECALL(zesFirmwareFlash(handle, img.data(), static_cast<uint32_t>(imgSize)));
flashData.firmwareProgressMutex.lock();
flashData.flashComplete = true;
flashData.firmwareProgressMutex.unlock();
thread.join();
VALIDATECALL(zesFirmwareGetProperties(handle, &fwProperties));
if (verbose) {
std::cout << "firmware name = " << fwProperties.name << std::endl;
std::cout << "On Subdevice = " << static_cast<uint32_t>(fwProperties.onSubdevice) << std::endl;
std::cout << "Subdevice Id = " << fwProperties.subdeviceId << std::endl;
std::cout << "firmware version = " << fwProperties.version << std::endl;
}
}
}
}
void testSysmanReset(ze_device_handle_t &device, bool force) {
std::cout << std::endl
<< " ---- Reset test (force = " << (force ? "true" : "false") << ") ---- " << std::endl;
VALIDATECALL(zesDeviceReset(device, force));
}
void testSysmanListenEvents(ze_driver_handle_t driver, std::vector<ze_device_handle_t> &devices, zes_event_type_flags_t events) {
uint32_t numDeviceEvents = 0;
zes_event_type_flags_t *pEvents = new zes_event_type_flags_t[devices.size()];
uint32_t timeout = 100000u;
uint32_t numDevices = static_cast<uint32_t>(devices.size());
VALIDATECALL(zesDriverEventListen(driver, timeout, numDevices, devices.data(), &numDeviceEvents, pEvents));
if (verbose) {
if (numDeviceEvents) {
for (auto index = 0u; index < devices.size(); index++) {
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_DEVICE_RESET_REQUIRED) {
std::cout << "Device " << index << " got reset required event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_DEVICE_DETACH) {
std::cout << "Device " << index << " got DEVICE_DETACH event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_DEVICE_ATTACH) {
std::cout << "Device " << index << " got DEVICE_ATTACH event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_RAS_UNCORRECTABLE_ERRORS) {
std::cout << "Device " << index << " got RAS UNCORRECTABLE event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_RAS_CORRECTABLE_ERRORS) {
std::cout << "Device " << index << " got RAS CORRECTABLE event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_FABRIC_PORT_HEALTH) {
std::cout << "Device " << index << " got Fabric Health event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_MEM_HEALTH) {
std::cout << "Device " << index << " got memory Health event" << std::endl;
}
}
}
}
}
void testSysmanListenEventsEx(ze_driver_handle_t driver, std::vector<ze_device_handle_t> &devices, zes_event_type_flags_t events) {
uint32_t numDeviceEvents = 0;
zes_event_type_flags_t *pEvents = new zes_event_type_flags_t[devices.size()];
uint64_t timeout = 10000u;
uint32_t numDevices = static_cast<uint32_t>(devices.size());
VALIDATECALL(zesDriverEventListenEx(driver, timeout, numDevices, devices.data(), &numDeviceEvents, pEvents));
if (verbose) {
if (numDeviceEvents) {
for (auto index = 0u; index < devices.size(); index++) {
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_DEVICE_RESET_REQUIRED) {
std::cout << "Device " << index << " got reset required event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_DEVICE_DETACH) {
std::cout << "Device " << index << " got DEVICE_DETACH event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_DEVICE_ATTACH) {
std::cout << "Device " << index << " got DEVICE_ATTACH event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_RAS_UNCORRECTABLE_ERRORS) {
std::cout << "Device " << index << " got RAS UNCORRECTABLE event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_RAS_CORRECTABLE_ERRORS) {
std::cout << "Device " << index << " got RAS CORRECTABLE event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_FABRIC_PORT_HEALTH) {
std::cout << "Device " << index << " got Fabric Health event" << std::endl;
}
if (pEvents[index] & ZES_EVENT_TYPE_FLAG_MEM_HEALTH) {
std::cout << "Device " << index << " got memory Health event" << std::endl;
}
}
}
}
}
std::string getFabricPortStatus(zes_fabric_port_status_t status) {
static const std::map<zes_fabric_port_status_t, std::string> fabricPortStatus{
{ZES_FABRIC_PORT_STATUS_UNKNOWN, "ZES_FABRIC_PORT_STATUS_UNKNOWN"},
{ZES_FABRIC_PORT_STATUS_HEALTHY, "ZES_FABRIC_PORT_STATUS_HEALTHY"},
{ZES_FABRIC_PORT_STATUS_DEGRADED, "ZES_FABRIC_PORT_STATUS_DEGRADED"},
{ZES_FABRIC_PORT_STATUS_FAILED, "ZES_FABRIC_PORT_STATUS_FAILED"},
{ZES_FABRIC_PORT_STATUS_DISABLED, "ZES_FABRIC_PORT_STATUS_DISABLED"}};
auto i = fabricPortStatus.find(status);
if (i == fabricPortStatus.end())
return "UNEXPECTED STATUS";
else
return fabricPortStatus.at(status);
}
std::string getFabricPortQualityIssues(zes_fabric_port_qual_issue_flags_t qualityIssues) {
std::string returnValue;
returnValue.clear();
if (qualityIssues & ZES_FABRIC_PORT_QUAL_ISSUE_FLAG_LINK_ERRORS) {
returnValue.append("ZES_FABRIC_PORT_QUAL_ISSUE_FLAG_LINK_ERRORS ");
}
if (qualityIssues & ZES_FABRIC_PORT_QUAL_ISSUE_FLAG_SPEED) {
returnValue.append("ZES_FABRIC_PORT_QUAL_ISSUE_FLAG_SPEED");
}
return returnValue;
}
std::string getFabricPortFailureReasons(zes_fabric_port_failure_flags_t failureReasons) {
std::string returnValue;
returnValue.clear();
if (failureReasons & ZES_FABRIC_PORT_FAILURE_FLAG_FAILED) {
returnValue.append("ZES_FABRIC_PORT_FAILURE_FLAG_FAILED ");
}
if (failureReasons & ZES_FABRIC_PORT_FAILURE_FLAG_TRAINING_TIMEOUT) {
returnValue.append("ZES_FABRIC_PORT_FAILURE_FLAG_TRAINING_TIMEOUT ");
}
if (failureReasons & ZES_FABRIC_PORT_FAILURE_FLAG_FLAPPING) {
returnValue.append("ZES_FABRIC_PORT_FAILURE_FLAG_FLAPPING ");
}
return returnValue;
}
void testSysmanFabricPort(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- FabricPort tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumFabricPorts(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve FabricPorts" << std::endl;
return;
}
std::vector<zes_fabric_port_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumFabricPorts(device, &count, handles.data()));
for (auto handle : handles) {
zes_fabric_port_properties_t fabricPortProperties = {};
zes_fabric_link_type_t fabricPortLinkType = {};
zes_fabric_port_config_t fabricPortConfig = {};
zes_fabric_port_state_t fabricPortState = {};
zes_fabric_port_throughput_t fabricPortThroughput = {};
VALIDATECALL(zesFabricPortGetProperties(handle, &fabricPortProperties));
if (verbose) {
std::cout << "Model = \"" << fabricPortProperties.model << "\"" << std::endl;
std::cout << "On Subdevice = " << static_cast<uint32_t>(fabricPortProperties.onSubdevice) << std::endl;
std::cout << "Subdevice Id = " << fabricPortProperties.subdeviceId << std::endl;
std::cout << "Port ID = [" << fabricPortProperties.portId.fabricId
<< ":" << fabricPortProperties.portId.attachId
<< ":" << static_cast<uint32_t>(fabricPortProperties.portId.portNumber) << "]" << std::endl;
std::cout << "Max Rx Speed = " << fabricPortProperties.maxRxSpeed.bitRate
<< " pbs, " << fabricPortProperties.maxRxSpeed.width << " lanes" << std::endl;
std::cout << "Max Tx Speed = " << fabricPortProperties.maxTxSpeed.bitRate
<< " pbs, " << fabricPortProperties.maxTxSpeed.width << " lanes" << std::endl;
}
VALIDATECALL(zesFabricPortGetLinkType(handle, &fabricPortLinkType));
if (verbose) {
std::cout << "Link Type = \"" << fabricPortLinkType.desc << "\"" << std::endl;
}
VALIDATECALL(zesFabricPortGetConfig(handle, &fabricPortConfig));
if (verbose) {
std::cout << "Enabled = " << static_cast<uint32_t>(fabricPortConfig.enabled) << std::endl;
std::cout << "Beaconing = " << static_cast<uint32_t>(fabricPortConfig.beaconing) << std::endl;
}
VALIDATECALL(zesFabricPortGetState(handle, &fabricPortState));
if (verbose) {
std::cout << "Status = " << getFabricPortStatus(fabricPortState.status) << std::endl;
std::cout << "Quality Issues = " << getFabricPortQualityIssues(fabricPortState.qualityIssues)
<< std::hex << fabricPortState.qualityIssues << std::endl;
std::cout << "Failure Reasons = " << getFabricPortFailureReasons(fabricPortState.failureReasons)
<< std::hex << fabricPortState.failureReasons << std::endl;
std::cout << "Remote Port ID = [" << fabricPortState.remotePortId.fabricId
<< ":" << fabricPortState.remotePortId.attachId
<< ":" << static_cast<uint32_t>(fabricPortState.remotePortId.portNumber) << "]" << std::endl;
std::cout << "Rx Speed = " << fabricPortState.rxSpeed.bitRate
<< " pbs, " << fabricPortState.rxSpeed.width << " lanes" << std::endl;
std::cout << "Tx Speed = " << fabricPortState.txSpeed.bitRate
<< " pbs, " << fabricPortState.txSpeed.width << " lanes" << std::endl;
}
VALIDATECALL(zesFabricPortGetThroughput(handle, &fabricPortThroughput));
if (verbose) {
std::cout << "Timestamp = " << fabricPortThroughput.timestamp << std::endl;
std::cout << "RX Counter = " << fabricPortThroughput.rxCounter << std::endl;
std::cout << "TX Counter = " << fabricPortThroughput.txCounter << std::endl;
}
}
}
void testSysmanGlobalOperations(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Global Operations tests ---- " << std::endl;
zes_device_properties_t properties = {};
VALIDATECALL(zesDeviceGetProperties(device, &properties));
if (verbose) {
std::cout << "properties.numSubdevices = " << properties.numSubdevices << std::endl;
std::cout << "properties.serialNumber = " << properties.serialNumber << std::endl;
std::cout << "properties.boardNumber = " << properties.boardNumber << std::endl;
std::cout << "properties.brandName = " << properties.brandName << std::endl;
std::cout << "properties.modelName = " << properties.modelName << std::endl;
std::cout << "properties.vendorName = " << properties.vendorName << std::endl;
std::cout << "properties.driverVersion = " << properties.driverVersion << std::endl;
std::cout << "properties.core.type = " << properties.core.type << std::endl;
std::cout << "properties.core.vendorId = " << properties.core.vendorId << std::endl;
std::cout << "properties.core.deviceId = " << properties.core.deviceId << std::endl;
std::cout << "properties.core.flags = " << properties.core.flags << std::endl;
std::cout << "properties.core.coreClockRate = " << properties.core.coreClockRate << std::endl;
std::cout << "properties.core.maxHardwareContexts = " << properties.core.maxHardwareContexts << std::endl;
std::cout << "properties.core.maxCommandQueuePriority = " << properties.core.maxCommandQueuePriority << std::endl;
std::cout << "properties.core.numThreadsPerEU = " << properties.core.numThreadsPerEU << std::endl;
std::cout << "properties.core.numEUsPerSubslice = " << properties.core.numEUsPerSubslice << std::endl;
std::cout << "properties.core.numSubslicesPerSlice = " << properties.core.numSubslicesPerSlice << std::endl;
std::cout << "properties.core.numSlices = " << properties.core.numSlices << std::endl;
std::cout << "properties.core.timerResolution = " << properties.core.timerResolution << std::endl;
std::cout << "properties.core.timestampValidBits = " << properties.core.timestampValidBits << std::endl;
std::cout << "properties.core.kernelTimestampValidBits = " << properties.core.kernelTimestampValidBits << std::endl;
std::cout << "properties.core.uuid = " << std::endl;
for (uint32_t i = 0; i < ZE_MAX_UUID_SIZE; i++) {
std::cout << +properties.core.uuid.id[i] << " ";
}
std::cout << std::endl;
std::cout << "properties.core.name = " << properties.core.name << std::endl;
}
uint32_t count = 0;
VALIDATECALL(zesDeviceProcessesGetState(device, &count, nullptr));
std::vector<zes_process_state_t> processes(count);
VALIDATECALL(zesDeviceProcessesGetState(device, &count, processes.data()));
if (verbose) {
for (const auto &process : processes) {
std::cout << "processes.processId = " << process.processId << std::endl;
std::cout << "processes.memSize = " << process.memSize << std::endl;
std::cout << "processes.sharedSize = " << process.sharedSize << std::endl;
std::cout << "processes.engines = " << process.engines << std::endl;
}
}
zes_device_state_t deviceState = {};
VALIDATECALL(zesDeviceGetState(device, &deviceState));
if (verbose) {
std::cout << "reset status: " << deviceState.reset << std::endl;
std::cout << "repair" << deviceState.repaired << std::endl;
if (deviceState.reset & ZES_RESET_REASON_FLAG_WEDGED) {
std::cout << "state reset wedged = " << deviceState.reset << std::endl;
}
if (deviceState.reset & ZES_RESET_REASON_FLAG_REPAIR) {
std::cout << "state reset repair = " << deviceState.reset << std::endl;
std::cout << "repair state = " << deviceState.repaired << std::endl;
}
}
}
void testSysmanDiagnostics(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- diagnostics tests ---- " << std::endl;
uint32_t count = 0;
uint32_t subTestCount = 0;
zes_diag_test_t tests = {};
zes_diag_result_t results;
uint32_t start = 0, end = 0;
VALIDATECALL(zesDeviceEnumDiagnosticTestSuites(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve diagnostics domains" << std::endl;
return;
}
std::vector<zes_diag_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumDiagnosticTestSuites(device, &count, handles.data()));
for (auto handle : handles) {
zes_diag_properties_t diagProperties = {};
VALIDATECALL(zesDiagnosticsGetProperties(handle, &diagProperties));
if (verbose) {
std::cout << "diagnostics name = " << diagProperties.name << std::endl;
std::cout << "On Subdevice = " << diagProperties.onSubdevice << std::endl;
std::cout << "Subdevice Id = " << diagProperties.subdeviceId << std::endl;
std::cout << "diagnostics have sub tests = " << diagProperties.haveTests << std::endl;
}
if (diagProperties.haveTests != 0) {
VALIDATECALL(zesDiagnosticsGetTests(handle, &subTestCount, &tests));
if (verbose) {
std::cout << "diagnostics subTestCount = " << subTestCount << "for " << diagProperties.name << std::endl;
for (uint32_t i = 0; i < subTestCount; i++) {
std::cout << "subTest#" << tests.index << " = " << tests.name << std::endl;
}
}
end = subTestCount - 1;
}
VALIDATECALL(zesDiagnosticsRunTests(handle, start, end, &results));
if (verbose) {
switch (results) {
case ZES_DIAG_RESULT_NO_ERRORS:
std::cout << "No errors have occurred" << std::endl;
break;
case ZES_DIAG_RESULT_REBOOT_FOR_REPAIR:
std::cout << "diagnostics successful and repair applied, reboot needed" << std::endl;
break;
case ZES_DIAG_RESULT_FAIL_CANT_REPAIR:
std::cout << "diagnostics run, unable to fix" << std::endl;
break;
case ZES_DIAG_RESULT_ABORT:
std::cout << "diagnostics run fialed, unknown error" << std::endl;
break;
case ZES_DIAG_RESULT_FORCE_UINT32:
default:
std::cout << "undefined error" << std::endl;
}
}
}
}
std::string getFanModes(uint32_t fanMode) {
static const std::map<uint32_t, std::string> mgetFanMode{
{0, "ZES_FAN_SPEED_MODE_DEFAULT"},
{1, "ZES_FAN_SPEED_MODE_FIXED"},
{2, "ZES_FAN_SPEED_MODE_TABLE"}};
auto i = mgetFanMode.find(fanMode);
if (i == mgetFanMode.end())
return "NOT SUPPORTED FAN MODE SET";
else
return mgetFanMode.at(fanMode);
}
std::string getFanUnits(uint32_t fanUnit) {
static const std::map<uint32_t, std::string> mgetFanUnit{
{0, "ZES_FAN_SPEED_UNITS_RPM"},
{1, "ZES_FAN_SPEED_UNITS_PERCENT"}};
auto i = mgetFanUnit.find(fanUnit);
if (i == mgetFanUnit.end())
return "NOT SUPPORTED FAN UNIT SET";
else
return mgetFanUnit.at(fanUnit);
}
void testSysmanFan(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Fan tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumFans(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Fans" << std::endl;
return;
}
std::vector<zes_fan_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumFans(device, &count, handles.data()));
for (auto handle : handles) {
zes_fan_properties_t fanProperties = {};
zes_fan_config_t fanConfig = {};
zes_fan_speed_units_t fanUnit = {};
int32_t fanSpeed;
VALIDATECALL(zesFanGetProperties(handle, &fanProperties));
if (verbose) {
std::cout << "On Subdevice = " << static_cast<uint32_t>(fanProperties.onSubdevice) << std::endl;
std::cout << "Subdevice Id = " << fanProperties.subdeviceId << std::endl;
std::cout << "Can control = " << static_cast<uint32_t>(fanProperties.canControl) << std::endl;
std::cout << "Supported modes = " << getFanModes(fanProperties.supportedModes) << std::endl;
std::cout << "Supported units = " << getFanUnits(fanProperties.supportedUnits) << std::endl;
std::cout << "Max RPM = " << fanProperties.maxRPM << std::endl;
std::cout << "MAX Points = " << fanProperties.maxPoints << std::endl;
}
VALIDATECALL(zesFanGetConfig(handle, &fanConfig));
if (verbose) {
std::cout << std::endl
<< " ---- Fan get config tests ---- " << std::endl;
std::cout << "Mode = " << getFanModes(fanConfig.mode) << std::endl;
std::cout << "Fan Speed = " << fanConfig.speedFixed.speed << std::endl;
std::cout << "Fan Speed Unit = " << getFanUnits(fanConfig.speedFixed.units) << std::endl;
}
VALIDATECALL(zesFanGetState(handle, fanUnit, &fanSpeed));
if (verbose) {
std::cout << std::endl
<< " ---- Fan get State tests ---- " << std::endl;
std::cout << "Fan Speed = " << fanSpeed << std::endl;
std::cout << "Fan Speed Unit = " << getFanUnits(fanUnit) << std::endl;
}
}
}
static std::string getMemoryModuleLocation(zes_mem_loc_t type) {
static const std::map<zes_mem_loc_t, std::string> memoryModuleLocationEnumToStringMap{
{ZES_MEM_LOC_SYSTEM, "ZES_MEM_LOC_SYSTEM"},
{ZES_MEM_LOC_DEVICE, "ZES_MEM_LOC_DEVICE"}};
if (memoryModuleLocationEnumToStringMap.find(type) != memoryModuleLocationEnumToStringMap.end()) {
return memoryModuleLocationEnumToStringMap.at(type);
} else {
return "NOT SUPPORTED MEMORY MODULE LOCATION";
}
}
void testSysmanVfTelemetry(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- VF Telemetry tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumEnabledVFExp(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Active VF handles" << std::endl;
return;
}
std::cout << "Enabled VF Handle count = " << count << std::endl;
std::vector<zes_vf_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumEnabledVFExp(device, &count, handles.data()));
for (const auto &handle : handles) {
zes_vf_exp_capabilities_t props = {};
VALIDATECALL(zesVFManagementGetVFCapabilitiesExp(handle, &props));
if (verbose) {
std::cout << std::endl
<< "----- PCI BDF ------ " << std::endl;
std::cout << "Domain: Bus: Device: Function = " << props.address.domain << " : " << props.address.bus << " : " << props.address.device << " : " << props.address.function << std::endl;
std::cout << "Memory Size in KiloBytes = " << props.vfDeviceMemSize << std::endl;
std::cout << "VF Id = " << props.vfID << std::endl;
}
// Get Mem utilization
count = 0;
VALIDATECALL(zesVFManagementGetVFMemoryUtilizationExp2(handle, &count, nullptr));
std::vector<zes_vf_util_mem_exp2_t> memUtils(count);
VALIDATECALL(zesVFManagementGetVFMemoryUtilizationExp2(handle, &count, memUtils.data()));
std::cout << std::endl
<< "----- Memory Activity Stats ----- " << std::endl;
for (uint32_t it = 0; it < count; it++) {
if (verbose) {
std::cout << "Location of the Memory = " << getMemoryModuleLocation(memUtils[it].vfMemLocation) << std::endl;
std::cout << "Memory Utilized in KiloBytes = " << memUtils[it].vfMemUtilized << std::endl;
}
}
count = 0;
VALIDATECALL(zesVFManagementGetVFEngineUtilizationExp2(handle, &count, nullptr));
std::vector<zes_vf_util_engine_exp2_t> engineUtils(count);
VALIDATECALL(zesVFManagementGetVFEngineUtilizationExp2(handle, &count, engineUtils.data()));
std::cout << std::endl
<< "----- Engine Activity Stats ----- " << std::endl;
for (uint32_t it = 0; it < count; it++) {
if (verbose) {
std::cout << "Engine Type = " << getEngineType(engineUtils[it].vfEngineType) << std::endl;
std::cout << "Active Counter Value = " << engineUtils[it].activeCounterValue << std::endl;
std::cout << "Sampling Counter Value = " << engineUtils[it].samplingCounterValue << std::endl;
}
}
}
}
bool checkpFactorArguments(std::vector<ze_device_handle_t> &devices, std::vector<std::string> &buf) {
uint32_t deviceIndex = static_cast<uint32_t>(std::stoi(buf[1]));
if (deviceIndex >= devices.size()) {
return false;
}
uint32_t subDeviceCount = 0;
zes_device_properties_t properties = {};
VALIDATECALL(zesDeviceGetProperties(devices[deviceIndex], &properties));
subDeviceCount = properties.numSubdevices;
uint32_t subDeviceIndex = static_cast<uint32_t>(std::stoi(buf[2]));
if (subDeviceCount > 0 && subDeviceIndex >= subDeviceCount) {
return false;
}
zes_engine_type_flags_t engineTypeFlag = getEngineFlagType(buf[3]);
if (engineTypeFlag == ZES_ENGINE_TYPE_FLAG_FORCE_UINT32) {
return false;
}
return true;
}
bool validatePowerLimitArguments(const size_t devCount, std::vector<std::string> &buf) {
if ((buf.size() != 4 || buf[0] != "--setlimit" || (!(buf[1] == "--sustained" || buf[1] == "--peak" || buf[1] == "--instantaneous" || buf[1] == "--burst")))) {
return false;
}
uint32_t devIndex = static_cast<uint32_t>(std::stoi(buf[2]));
if (devIndex >= devCount) {
return false;
}
return true;
}
bool validateGetenv(const char *name) {
const char *env = getenv(name);
if ((nullptr == env) || (0 == strcmp("0", env)))
return false;
return (0 == strcmp("1", env));
}
int enableSysman() {
int ret = 0;
#if defined(_WIN32) || defined(_WIN64)
ret = _putenv_s("ZES_ENABLE_SYSMAN", "1");
#else // defined(_WIN32) || defined(_WIN64)
ret = setenv("ZES_ENABLE_SYSMAN", "1", 1);
#endif // defined(_WIN32) || defined(_WIN64)
return ret;
}
int main(int argc, char *argv[]) {
std::vector<ze_device_handle_t> devices;
ze_driver_handle_t driver;
if (validateGetenv("ZELLO_SYSMAN_USE_ZESINIT")) {
if (validateGetenv("ZES_ENABLE_SYSMAN")) {
std::cout << "ZES_ENABLE_SYSMAN environment variable Set" << std::endl;
}
else {
std::cout << "ZES_ENABLE_SYSMAN environment variable Not Set" << std::endl;
}
getSysmanDeviceHandles(driver, devices);
std::cout << "Sysman Initialization done via zesInit" << std::endl;
}
else {
if (validateGetenv("ZES_ENABLE_SYSMAN")) {
std::cout << "ZES_ENABLE_SYSMAN environment variable Set" << std::endl;
}
else {
std::cout << "ZES_ENABLE_SYSMAN environment variable Not Set" << std::endl;
std::cout << "Setting the environment variable ZES_ENABLE_SYSMAN " << std::endl;
if (enableSysman()) {
return 0;
}
std::cout << "ZES_ENABLE_SYSMAN environment variable Set" << std::endl;
}
getDeviceHandles(driver, devices);
std::cout << "Sysman Initialization done via zeInit" << std::endl;
}
bool force = false;
bool pFactorIsSet = true;
std::vector<std::string> buf;
uint32_t deviceIndex = 0;
int optind = 0;
char *optarg = nullptr;
if (isParamEnabled(argc, argv, "-h", "--help", &optind)) {
usage();
exit(0);
}
if (isParamEnabled(argc, argv, "-p", "--pci", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanPci(device);
});
}
if (isParamEnabled(argc, argv, "-P", "--performance", &optind)) {
deviceIndex = 0;
optind = optind + 1;
while (optind < argc) {
buf.push_back(argv[optind]);
optind++;
}
if (buf.size() != 0 && (buf.size() != 5 || buf[0] != "--setconfig")) {
usage();
exit(0);
}
if (buf.size() != 0) {
if (checkpFactorArguments(devices, buf) == false) {
std::cout << "Invalid arguments passed for setting performance factor" << std::endl;
usage();
exit(0);
}
pFactorIsSet = false;
}
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanPerformance(device, buf, deviceIndex, pFactorIsSet);
});
if (pFactorIsSet == false) {
std::cout << "Unable to set the Performance factor" << std::endl;
}
buf.clear();
}
if (isParamEnabled(argc, argv, "-f", "--frequency", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanFrequency(device);
});
}
if (isParamEnabled(argc, argv, "-s", "--standby", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanStandby(device);
});
}
if (isParamEnabled(argc, argv, "-e", "--engine", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanEngine(device);
});
}
if (isParamEnabled(argc, argv, "-c", "--scheduler", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanScheduler(device);
});
}
if (isParamEnabled(argc, argv, "-t", "--temperature", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanTemperature(device);
});
}
if (isParamEnabled(argc, argv, "-C", "--ecc", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanEcc(device);
});
}
if (isParamEnabled(argc, argv, "-o", "--power", &optind)) {
deviceIndex = 0;
optind = optind + 1;
while (optind < argc) {
buf.push_back(argv[optind]);
optind++;
}
if (buf.size() != 0) {
if (validatePowerLimitArguments(devices.size(), buf) == false) {
std::cout << "Invalid Arguments passed to set power limit" << std::endl;
usage();
exit(0);
}
}
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanPower(device, buf, deviceIndex);
});
}
if (isParamEnabled(argc, argv, "-g", "--global", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanGlobalOperations(device);
});
}
if (isParamEnabled(argc, argv, "-m", "--memory", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanMemory(device);
});
}
if (isParamEnabled(argc, argv, "-R", "--ras", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanRas(device);
});
}
if (isParamEnabled(argc, argv, "-re", "--rasexp", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanRasExp(device);
});
}
if (isParamEnabled(argc, argv, "-i", "--firmware", &optind)) {
optind = optind + 1;
if (optind < argc) {
optarg = argv[optind];
}
std::string filePathFirmware;
if (optarg != nullptr) {
filePathFirmware = optarg;
}
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanFirmware(device, filePathFirmware);
});
}
if (isParamEnabled(argc, argv, "-r", "--reset", &optind)) {
optind = optind + 1;
if (optind < argc) {
optarg = argv[optind];
}
if (!strcmp(optarg, "force")) {
force = true;
} else if (!strcmp(optarg, "noforce")) {
force = false;
} else {
usage();
exit(0);
}
optind++;
if (optind < argc) {
deviceIndex = static_cast<uint32_t>(std::stoi(argv[optind]));
if (deviceIndex >= devices.size()) {
std::cout << "Invalid deviceId specified for device reset" << std::endl;
usage();
exit(0);
}
testSysmanReset(devices[deviceIndex], force);
} else {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanReset(device, force);
});
}
}
if (isParamEnabled(argc, argv, "-E", "--event", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
VALIDATECALL(zesDeviceEventRegister(device,
ZES_EVENT_TYPE_FLAG_DEVICE_RESET_REQUIRED | ZES_EVENT_TYPE_FLAG_DEVICE_DETACH |
ZES_EVENT_TYPE_FLAG_DEVICE_ATTACH | ZES_EVENT_TYPE_FLAG_RAS_CORRECTABLE_ERRORS |
ZES_EVENT_TYPE_FLAG_RAS_UNCORRECTABLE_ERRORS | ZES_EVENT_TYPE_FLAG_FABRIC_PORT_HEALTH | ZES_EVENT_TYPE_FLAG_MEM_HEALTH));
});
testSysmanListenEvents(driver, devices,
ZES_EVENT_TYPE_FLAG_DEVICE_RESET_REQUIRED | ZES_EVENT_TYPE_FLAG_DEVICE_DETACH |
ZES_EVENT_TYPE_FLAG_DEVICE_ATTACH | ZES_EVENT_TYPE_FLAG_RAS_CORRECTABLE_ERRORS |
ZES_EVENT_TYPE_FLAG_RAS_UNCORRECTABLE_ERRORS | ZES_EVENT_TYPE_FLAG_FABRIC_PORT_HEALTH);
std::for_each(devices.begin(), devices.end(), [&](auto device) {
VALIDATECALL(zesDeviceEventRegister(device,
ZES_EVENT_TYPE_FLAG_DEVICE_RESET_REQUIRED | ZES_EVENT_TYPE_FLAG_DEVICE_DETACH |
ZES_EVENT_TYPE_FLAG_DEVICE_ATTACH | ZES_EVENT_TYPE_FLAG_RAS_CORRECTABLE_ERRORS |
ZES_EVENT_TYPE_FLAG_RAS_UNCORRECTABLE_ERRORS | ZES_EVENT_TYPE_FLAG_FABRIC_PORT_HEALTH | ZES_EVENT_TYPE_FLAG_MEM_HEALTH));
});
testSysmanListenEventsEx(driver, devices,
ZES_EVENT_TYPE_FLAG_DEVICE_RESET_REQUIRED | ZES_EVENT_TYPE_FLAG_DEVICE_DETACH |
ZES_EVENT_TYPE_FLAG_DEVICE_ATTACH | ZES_EVENT_TYPE_FLAG_RAS_CORRECTABLE_ERRORS |
ZES_EVENT_TYPE_FLAG_RAS_UNCORRECTABLE_ERRORS | ZES_EVENT_TYPE_FLAG_FABRIC_PORT_HEALTH);
}
if (isParamEnabled(argc, argv, "-F", "--fabricport", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanFabricPort(device);
});
}
if (isParamEnabled(argc, argv, "-d", "--diagnostics", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanDiagnostics(device);
});
}
if (isParamEnabled(argc, argv, "-a", "--fan", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanFan(device);
});
}
if (isParamEnabled(argc, argv, "-v", "--vftelemetry", &optind)) {
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanVfTelemetry(device);
});
}
return 0;
}
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif