compute-runtime/opencl/source/program/kernel_info.cpp

489 lines
20 KiB
C++

/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/device_binary_format/patchtokens_decoder.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/blit_commands_helper.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/helpers/dispatch_info.h"
#include "opencl/source/kernel/kernel.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/mem_obj/image.h"
#include "opencl/source/sampler/sampler.h"
#include "hw_cmds.h"
#include <cstdint>
#include <cstring>
#include <map>
#include <sstream>
#include <unordered_map>
namespace NEO {
bool useKernelDescriptor = false;
struct KernelArgumentType {
const char *argTypeQualifier;
uint64_t argTypeQualifierValue;
};
std::map<std::string, size_t> typeSizeMap = {
{"char", sizeof(cl_char)},
{"char2", sizeof(cl_char2)},
{"char3", sizeof(cl_char3)},
{"char4", sizeof(cl_char4)},
{"char8", sizeof(cl_char8)},
{"char16", sizeof(cl_char16)},
{"uchar", sizeof(cl_uchar)},
{"uchar2", sizeof(cl_uchar2)},
{"uchar3", sizeof(cl_uchar3)},
{"uchar4", sizeof(cl_uchar4)},
{"uchar8", sizeof(cl_uchar8)},
{"uchar16", sizeof(cl_uchar16)},
{"short", sizeof(cl_short)},
{"short2", sizeof(cl_short2)},
{"short3", sizeof(cl_short3)},
{"short4", sizeof(cl_short4)},
{"short8", sizeof(cl_short8)},
{"short16", sizeof(cl_short16)},
{"ushort", sizeof(cl_ushort)},
{"ushort2", sizeof(cl_ushort2)},
{"ushort3", sizeof(cl_ushort3)},
{"ushort4", sizeof(cl_ushort4)},
{"ushort8", sizeof(cl_ushort8)},
{"ushort16", sizeof(cl_ushort16)},
{"int", sizeof(cl_int)},
{"int2", sizeof(cl_int2)},
{"int3", sizeof(cl_int3)},
{"int4", sizeof(cl_int4)},
{"int8", sizeof(cl_int8)},
{"int16", sizeof(cl_int16)},
{"uint", sizeof(cl_uint)},
{"uint2", sizeof(cl_uint2)},
{"uint3", sizeof(cl_uint3)},
{"uint4", sizeof(cl_uint4)},
{"uint8", sizeof(cl_uint8)},
{"uint16", sizeof(cl_uint16)},
{"long", sizeof(cl_long)},
{"long2", sizeof(cl_long2)},
{"long3", sizeof(cl_long3)},
{"long4", sizeof(cl_long4)},
{"long8", sizeof(cl_long8)},
{"long16", sizeof(cl_long16)},
{"ulong", sizeof(cl_ulong)},
{"ulong2", sizeof(cl_ulong2)},
{"ulong3", sizeof(cl_ulong3)},
{"ulong4", sizeof(cl_ulong4)},
{"ulong8", sizeof(cl_ulong8)},
{"ulong16", sizeof(cl_ulong16)},
{"half", sizeof(cl_half)},
{"float", sizeof(cl_float)},
{"float2", sizeof(cl_float2)},
{"float3", sizeof(cl_float3)},
{"float4", sizeof(cl_float4)},
{"float8", sizeof(cl_float8)},
{"float16", sizeof(cl_float16)},
#ifdef cl_khr_fp16
{"half2", sizeof(cl_half2)},
{"half3", sizeof(cl_half3)},
{"half4", sizeof(cl_half4)},
{"half8", sizeof(cl_half8)},
{"half16", sizeof(cl_half16)},
#endif
{"double", sizeof(cl_double)},
{"double2", sizeof(cl_double2)},
{"double3", sizeof(cl_double3)},
{"double4", sizeof(cl_double4)},
{"double8", sizeof(cl_double8)},
{"double16", sizeof(cl_double16)},
};
WorkSizeInfo::WorkSizeInfo(uint32_t maxWorkGroupSize, bool hasBarriers, uint32_t simdSize, uint32_t slmTotalSize, GFXCORE_FAMILY coreFamily, uint32_t numThreadsPerSubSlice, uint32_t localMemSize, bool imgUsed, bool yTiledSurface) {
this->maxWorkGroupSize = maxWorkGroupSize;
this->hasBarriers = hasBarriers;
this->simdSize = simdSize;
this->slmTotalSize = slmTotalSize;
this->coreFamily = coreFamily;
this->numThreadsPerSubSlice = numThreadsPerSubSlice;
this->localMemSize = localMemSize;
this->imgUsed = imgUsed;
this->yTiledSurfaces = yTiledSurface;
setMinWorkGroupSize();
}
WorkSizeInfo::WorkSizeInfo(const DispatchInfo &dispatchInfo) {
this->maxWorkGroupSize = dispatchInfo.getKernel()->maxKernelWorkGroupSize;
auto pExecutionEnvironment = dispatchInfo.getKernel()->getKernelInfo().patchInfo.executionEnvironment;
this->hasBarriers = (pExecutionEnvironment != nullptr) && (pExecutionEnvironment->HasBarriers);
this->simdSize = (uint32_t)dispatchInfo.getKernel()->getKernelInfo().getMaxSimdSize();
this->slmTotalSize = (uint32_t)dispatchInfo.getKernel()->slmTotalSize;
this->coreFamily = dispatchInfo.getKernel()->getDevice().getHardwareInfo().platform.eRenderCoreFamily;
this->numThreadsPerSubSlice = (uint32_t)dispatchInfo.getKernel()->getDevice().getSharedDeviceInfo().maxNumEUsPerSubSlice *
dispatchInfo.getKernel()->getDevice().getSharedDeviceInfo().numThreadsPerEU;
this->localMemSize = (uint32_t)dispatchInfo.getKernel()->getDevice().getSharedDeviceInfo().localMemSize;
setIfUseImg(dispatchInfo.getKernel());
setMinWorkGroupSize();
}
void WorkSizeInfo::setIfUseImg(Kernel *pKernel) {
auto ParamsCount = pKernel->getKernelArgsNumber();
for (auto i = 0u; i < ParamsCount; i++) {
if (pKernel->getKernelInfo().kernelArgInfo[i].isImage) {
imgUsed = true;
yTiledSurfaces = true;
}
}
}
void WorkSizeInfo::setMinWorkGroupSize() {
minWorkGroupSize = 0;
if (hasBarriers) {
uint32_t maxBarriersPerHSlice = (coreFamily >= IGFX_GEN9_CORE) ? 32 : 16;
minWorkGroupSize = numThreadsPerSubSlice * simdSize / maxBarriersPerHSlice;
}
if (slmTotalSize > 0) {
minWorkGroupSize = std::max(maxWorkGroupSize / ((localMemSize / slmTotalSize)), minWorkGroupSize);
}
}
void WorkSizeInfo::checkRatio(const size_t workItems[3]) {
if (slmTotalSize > 0) {
useRatio = true;
targetRatio = log((float)workItems[0]) - log((float)workItems[1]);
useStrictRatio = false;
} else if (yTiledSurfaces == true) {
useRatio = true;
targetRatio = YTilingRatioValue;
useStrictRatio = true;
}
}
KernelInfo::~KernelInfo() {
kernelArgInfo.clear();
patchInfo.stringDataMap.clear();
delete[] crossThreadData;
}
void KernelInfo::storePatchToken(const SPatchExecutionEnvironment *execEnv) {
this->patchInfo.executionEnvironment = execEnv;
if (execEnv->RequiredWorkGroupSizeX != 0) {
this->reqdWorkGroupSize[0] = execEnv->RequiredWorkGroupSizeX;
this->reqdWorkGroupSize[1] = execEnv->RequiredWorkGroupSizeY;
this->reqdWorkGroupSize[2] = execEnv->RequiredWorkGroupSizeZ;
DEBUG_BREAK_IF(!(execEnv->RequiredWorkGroupSizeY > 0));
DEBUG_BREAK_IF(!(execEnv->RequiredWorkGroupSizeZ > 0));
}
this->workgroupWalkOrder[0] = 0;
this->workgroupWalkOrder[1] = 1;
this->workgroupWalkOrder[2] = 2;
if (execEnv->WorkgroupWalkOrderDims) {
constexpr auto dimensionMask = 0b11;
constexpr auto dimensionSize = 2;
this->workgroupWalkOrder[0] = execEnv->WorkgroupWalkOrderDims & dimensionMask;
this->workgroupWalkOrder[1] = (execEnv->WorkgroupWalkOrderDims >> dimensionSize) & dimensionMask;
this->workgroupWalkOrder[2] = (execEnv->WorkgroupWalkOrderDims >> dimensionSize * 2) & dimensionMask;
this->requiresWorkGroupOrder = true;
}
for (uint32_t i = 0; i < 3; ++i) {
// inverts the walk order mapping (from ORDER_ID->DIM_ID to DIM_ID->ORDER_ID)
this->workgroupDimensionsOrder[this->workgroupWalkOrder[i]] = i;
}
if (execEnv->CompiledForGreaterThan4GBBuffers == false) {
this->requiresSshForBuffers = true;
}
}
void KernelInfo::storeArgInfo(uint32_t argNum, ArgTypeTraits metadata, std::unique_ptr<ArgTypeMetadataExtended> metadataExtended) {
resizeKernelArgInfoAndRegisterParameter(argNum);
auto &argInfo = kernelArgInfo[argNum];
argInfo.metadata = metadata;
argInfo.metadataExtended = std::move(metadataExtended);
argInfo.isReadOnly |= argInfo.metadata.typeQualifiers.constQual;
}
void KernelInfo::storeKernelArgument(
const SPatchDataParameterBuffer *pDataParameterKernelArg) {
uint32_t argNum = pDataParameterKernelArg->ArgumentNumber;
uint32_t dataSize = pDataParameterKernelArg->DataSize;
uint32_t offset = pDataParameterKernelArg->Offset;
uint32_t sourceOffset = pDataParameterKernelArg->SourceOffset;
storeKernelArgPatchInfo(argNum, dataSize, offset, sourceOffset, 0);
}
void KernelInfo::storeKernelArgument(
const SPatchStatelessGlobalMemoryObjectKernelArgument *pStatelessGlobalKernelArg) {
uint32_t argNum = pStatelessGlobalKernelArg->ArgumentNumber;
uint32_t offsetSSH = pStatelessGlobalKernelArg->SurfaceStateHeapOffset;
usesSsh |= true;
storeKernelArgPatchInfo(argNum, pStatelessGlobalKernelArg->DataParamSize, pStatelessGlobalKernelArg->DataParamOffset, 0, offsetSSH);
kernelArgInfo[argNum].isBuffer = true;
patchInfo.statelessGlobalMemObjKernelArgs.push_back(pStatelessGlobalKernelArg);
}
void KernelInfo::storeKernelArgument(
const SPatchImageMemoryObjectKernelArgument *pImageMemObjKernelArg) {
uint32_t argNum = pImageMemObjKernelArg->ArgumentNumber;
uint32_t offsetSurfaceState = pImageMemObjKernelArg->Offset;
usesSsh |= true;
storeKernelArgPatchInfo(argNum, 0, 0, 0, offsetSurfaceState);
kernelArgInfo[argNum].isImage = true;
if (pImageMemObjKernelArg->Type == iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA) {
kernelArgInfo[argNum].isMediaImage = true;
}
if (pImageMemObjKernelArg->Type == iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA_BLOCK) {
kernelArgInfo[argNum].isMediaBlockImage = true;
}
kernelArgInfo[argNum].metadata.argByValSize = sizeof(cl_mem);
kernelArgInfo[argNum].isTransformable = pImageMemObjKernelArg->Transformable != 0;
patchInfo.imageMemObjKernelArgs.push_back(pImageMemObjKernelArg);
if (NEO::KernelArgMetadata::AccessUnknown == kernelArgInfo[argNum].metadata.accessQualifier) {
auto accessQual = pImageMemObjKernelArg->Writeable ? NEO::KernelArgMetadata::AccessReadWrite
: NEO::KernelArgMetadata::AccessReadOnly;
kernelArgInfo[argNum].metadata.accessQualifier = accessQual;
}
}
void KernelInfo::storeKernelArgument(
const SPatchGlobalMemoryObjectKernelArgument *pGlobalMemObjKernelArg) {
uint32_t argNum = pGlobalMemObjKernelArg->ArgumentNumber;
uint32_t offsetSurfaceState = pGlobalMemObjKernelArg->Offset;
usesSsh |= true;
storeKernelArgPatchInfo(argNum, 0, 0, 0, offsetSurfaceState);
kernelArgInfo[argNum].isBuffer = true;
}
void KernelInfo::storeKernelArgument(
const SPatchSamplerKernelArgument *pSamplerArgument) {
uint32_t argNum = pSamplerArgument->ArgumentNumber;
uint32_t offsetSurfaceState = pSamplerArgument->Offset;
storeKernelArgPatchInfo(argNum, 0, 0, 0, offsetSurfaceState);
kernelArgInfo[argNum].samplerArgumentType = pSamplerArgument->Type;
if (pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_TEXTURE) {
DEBUG_BREAK_IF(pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_VME &&
pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_VE &&
pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_VD);
kernelArgInfo[argNum].isAccelerator = true;
isVmeWorkload = true;
} else {
kernelArgInfo[argNum].isSampler = true;
}
}
void KernelInfo::storeKernelArgument(
const SPatchStatelessConstantMemoryObjectKernelArgument *pStatelessConstMemObjKernelArg) {
uint32_t argNum = pStatelessConstMemObjKernelArg->ArgumentNumber;
uint32_t offsetSSH = pStatelessConstMemObjKernelArg->SurfaceStateHeapOffset;
usesSsh |= true;
storeKernelArgPatchInfo(argNum, pStatelessConstMemObjKernelArg->DataParamSize, pStatelessConstMemObjKernelArg->DataParamOffset, 0, offsetSSH);
kernelArgInfo[argNum].isBuffer = true;
kernelArgInfo[argNum].isReadOnly = true;
patchInfo.statelessGlobalMemObjKernelArgs.push_back(reinterpret_cast<const SPatchStatelessGlobalMemoryObjectKernelArgument *>(pStatelessConstMemObjKernelArg));
}
void KernelInfo::storeKernelArgument(const SPatchStatelessDeviceQueueKernelArgument *pStatelessDeviceQueueKernelArg) {
uint32_t argNum = pStatelessDeviceQueueKernelArg->ArgumentNumber;
resizeKernelArgInfoAndRegisterParameter(argNum);
kernelArgInfo[argNum].isDeviceQueue = true;
storeKernelArgPatchInfo(argNum, pStatelessDeviceQueueKernelArg->DataParamSize, pStatelessDeviceQueueKernelArg->DataParamOffset, 0, pStatelessDeviceQueueKernelArg->SurfaceStateHeapOffset);
}
void KernelInfo::storePatchToken(
const SPatchAllocateStatelessPrivateSurface *pStatelessPrivateSurfaceArg) {
usesSsh |= true;
patchInfo.pAllocateStatelessPrivateSurface = pStatelessPrivateSurfaceArg;
}
void KernelInfo::storePatchToken(const SPatchAllocateStatelessConstantMemorySurfaceWithInitialization *pStatelessConstantMemorySurfaceWithInitializationArg) {
usesSsh |= true;
patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization = pStatelessConstantMemorySurfaceWithInitializationArg;
}
void KernelInfo::storePatchToken(const SPatchAllocateStatelessGlobalMemorySurfaceWithInitialization *pStatelessGlobalMemorySurfaceWithInitializationArg) {
usesSsh |= true;
patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization = pStatelessGlobalMemorySurfaceWithInitializationArg;
}
void KernelInfo::storePatchToken(const SPatchAllocateStatelessPrintfSurface *pStatelessPrintfSurfaceArg) {
usesSsh |= true;
patchInfo.pAllocateStatelessPrintfSurface = pStatelessPrintfSurfaceArg;
}
void KernelInfo::storePatchToken(const SPatchAllocateStatelessEventPoolSurface *pStatelessEventPoolSurfaceArg) {
usesSsh |= true;
patchInfo.pAllocateStatelessEventPoolSurface = pStatelessEventPoolSurfaceArg;
}
void KernelInfo::storePatchToken(const SPatchAllocateStatelessDefaultDeviceQueueSurface *pStatelessDefaultDeviceQueueSurfaceArg) {
usesSsh |= true;
patchInfo.pAllocateStatelessDefaultDeviceQueueSurface = pStatelessDefaultDeviceQueueSurfaceArg;
}
void KernelInfo::storePatchToken(const SPatchString *pStringArg) {
uint32_t stringIndex = pStringArg->Index;
if (pStringArg->StringSize > 0) {
const char *stringData = reinterpret_cast<const char *>(pStringArg + 1);
patchInfo.stringDataMap.emplace(stringIndex, std::string(stringData, stringData + pStringArg->StringSize));
}
}
void KernelInfo::storePatchToken(const SPatchKernelAttributesInfo *pKernelAttributesInfo) {
this->patchInfo.pKernelAttributesInfo = pKernelAttributesInfo;
attributes = reinterpret_cast<const char *>(pKernelAttributesInfo) + sizeof(SPatchKernelAttributesInfo);
auto start = attributes.find("intel_reqd_sub_group_size(");
if (start != std::string::npos) {
start += strlen("intel_reqd_sub_group_size(");
auto stop = attributes.find(")", start);
std::stringstream requiredSubGroupSizeStr(attributes.substr(start, stop - start));
requiredSubGroupSizeStr >> requiredSubGroupSize;
}
}
void KernelInfo::storePatchToken(const SPatchAllocateSystemThreadSurface *pSystemThreadSurface) {
usesSsh |= true;
patchInfo.pAllocateSystemThreadSurface = pSystemThreadSurface;
}
void KernelInfo::storePatchToken(const SPatchAllocateSyncBuffer *pAllocateSyncBuffer) {
usesSsh |= true;
patchInfo.pAllocateSyncBuffer = pAllocateSyncBuffer;
}
void KernelInfo::storeKernelArgPatchInfo(uint32_t argNum, uint32_t dataSize, uint32_t dataOffset, uint32_t sourceOffset, uint32_t offsetSSH) {
resizeKernelArgInfoAndRegisterParameter(argNum);
KernelArgPatchInfo kernelArgPatchInfo;
kernelArgPatchInfo.crossthreadOffset = dataOffset;
kernelArgPatchInfo.size = dataSize;
kernelArgPatchInfo.sourceOffset = sourceOffset;
kernelArgInfo[argNum].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
kernelArgInfo[argNum].offsetHeap = offsetSSH;
}
size_t KernelInfo::getSamplerStateArrayCount() const {
size_t count = patchInfo.samplerStateArray ? (size_t)patchInfo.samplerStateArray->Count : 0;
return count;
}
size_t KernelInfo::getSamplerStateArraySize(const HardwareInfo &hwInfo) const {
size_t samplerStateArraySize = getSamplerStateArrayCount() * Sampler::getSamplerStateSize(hwInfo);
return samplerStateArraySize;
}
size_t KernelInfo::getBorderColorStateSize() const {
size_t borderColorSize = 0;
if (patchInfo.samplerStateArray) {
borderColorSize = patchInfo.samplerStateArray->Offset - patchInfo.samplerStateArray->BorderColorOffset;
}
return borderColorSize;
}
size_t KernelInfo::getBorderColorOffset() const {
size_t borderColorOffset = 0;
if (patchInfo.samplerStateArray) {
borderColorOffset = patchInfo.samplerStateArray->BorderColorOffset;
}
return borderColorOffset;
}
uint32_t KernelInfo::getConstantBufferSize() const {
return patchInfo.dataParameterStream ? patchInfo.dataParameterStream->DataParameterStreamSize : 0;
}
bool KernelInfo::createKernelAllocation(const Device &device) {
UNRECOVERABLE_IF(kernelAllocation);
auto kernelIsaSize = heapInfo.KernelHeapSize;
kernelAllocation = device.getMemoryManager()->allocateGraphicsMemoryWithProperties({device.getRootDeviceIndex(), kernelIsaSize, GraphicsAllocation::AllocationType::KERNEL_ISA, device.getDeviceBitfield()});
if (!kernelAllocation) {
return false;
}
auto &hwInfo = device.getHardwareInfo();
auto &hwHelper = HwHelper::get(hwInfo.platform.eRenderCoreFamily);
if (kernelAllocation->isAllocatedInLocalMemoryPool() && hwHelper.isBlitCopyRequiredForLocalMemory(hwInfo)) {
auto status = BlitHelperFunctions::blitMemoryToAllocation(device, kernelAllocation, 0, heapInfo.pKernelHeap, {kernelIsaSize, 1, 1});
return (status == BlitOperationResult::Success);
}
return device.getMemoryManager()->copyMemoryToAllocation(kernelAllocation, heapInfo.pKernelHeap, kernelIsaSize);
}
void KernelInfo::apply(const DeviceInfoKernelPayloadConstants &constants) {
if (nullptr == this->crossThreadData) {
return;
}
uint32_t privateMemoryStatelessSizeOffset = this->workloadInfo.privateMemoryStatelessSizeOffset;
uint32_t localMemoryStatelessWindowSizeOffset = this->workloadInfo.localMemoryStatelessWindowSizeOffset;
uint32_t localMemoryStatelessWindowStartAddressOffset = this->workloadInfo.localMemoryStatelessWindowStartAddressOffset;
if (localMemoryStatelessWindowStartAddressOffset != WorkloadInfo::undefinedOffset) {
*(uintptr_t *)&(this->crossThreadData[localMemoryStatelessWindowStartAddressOffset]) = reinterpret_cast<uintptr_t>(constants.slmWindow);
}
if (localMemoryStatelessWindowSizeOffset != WorkloadInfo::undefinedOffset) {
*(uint32_t *)&(this->crossThreadData[localMemoryStatelessWindowSizeOffset]) = constants.slmWindowSize;
}
uint32_t privateMemorySize = 0U;
if (this->patchInfo.pAllocateStatelessPrivateSurface) {
privateMemorySize = this->patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize * constants.computeUnitsUsedForScratch * this->getMaxSimdSize();
}
if (privateMemoryStatelessSizeOffset != WorkloadInfo::undefinedOffset) {
*(uint32_t *)&(this->crossThreadData[privateMemoryStatelessSizeOffset]) = privateMemorySize;
}
if (this->workloadInfo.maxWorkGroupSizeOffset != WorkloadInfo::undefinedOffset) {
*(uint32_t *)&(this->crossThreadData[this->workloadInfo.maxWorkGroupSizeOffset]) = constants.maxWorkGroupSize;
}
}
std::string concatenateKernelNames(ArrayRef<KernelInfo *> kernelInfos) {
std::string semiColonDelimitedKernelNameStr;
for (const auto &kernelInfo : kernelInfos) {
if (!semiColonDelimitedKernelNameStr.empty()) {
semiColonDelimitedKernelNameStr += ';';
}
semiColonDelimitedKernelNameStr += kernelInfo->name;
}
return semiColonDelimitedKernelNameStr;
}
} // namespace NEO