compute-runtime/opencl/source/program/build.cpp

256 lines
11 KiB
C++

/*
* Copyright (C) 2018-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/compiler_interface/compiler_interface.h"
#include "shared/source/compiler_interface/compiler_options.h"
#include "shared/source/compiler_interface/compiler_warnings/compiler_warnings.h"
#include "shared/source/device/device.h"
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/helpers/addressing_mode_helper.h"
#include "shared/source/helpers/compiler_options_parser.h"
#include "shared/source/program/kernel_info.h"
#include "shared/source/source_level_debugger/source_level_debugger.h"
#include "shared/source/utilities/logger.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/gtpin/gtpin_notify.h"
#include "opencl/source/helpers/cl_validators.h"
#include "opencl/source/platform/platform.h"
#include "opencl/source/program/program.h"
#include <cstring>
#include <iterator>
#include <sstream>
namespace NEO {
cl_int Program::build(
const ClDeviceVector &deviceVector,
const char *buildOptions,
bool enableCaching) {
cl_int retVal = CL_SUCCESS;
auto internalOptions = getInternalOptions();
auto defaultClDevice = deviceVector[0];
UNRECOVERABLE_IF(defaultClDevice == nullptr);
auto &defaultDevice = defaultClDevice->getDevice();
std::unordered_map<uint32_t, BuildPhase> phaseReached;
for (const auto &clDevice : deviceVector) {
phaseReached[clDevice->getRootDeviceIndex()] = BuildPhase::Init;
}
do {
// check to see if a previous build request is in progress
if (std::any_of(deviceVector.begin(), deviceVector.end(), [&](auto device) { return CL_BUILD_IN_PROGRESS == deviceBuildInfos[device].buildStatus; })) {
retVal = CL_INVALID_OPERATION;
break;
}
if (isCreatedFromBinary == false) {
for (const auto &device : deviceVector) {
deviceBuildInfos[device].buildStatus = CL_BUILD_IN_PROGRESS;
}
if (false == requiresRebuild) {
if (nullptr != buildOptions) {
options = buildOptions;
} else if (this->createdFrom != CreatedFrom::BINARY) {
options = "";
}
}
const bool shouldSuppressRebuildWarning{CompilerOptions::extract(CompilerOptions::noRecompiledFromIr, options)};
extractInternalOptions(options, internalOptions);
CompilerOptions::applyAdditionalApiOptions(options);
CompilerOptions::applyAdditionalInternalOptions(internalOptions);
CompilerInterface *pCompilerInterface = defaultDevice.getCompilerInterface();
if (!pCompilerInterface) {
retVal = CL_OUT_OF_HOST_MEMORY;
break;
}
disableZebinIfVmeEnabled(options, internalOptions);
TranslationInput inputArgs = {IGC::CodeType::oclC, IGC::CodeType::oclGenBin};
if (createdFrom != CreatedFrom::SOURCE) {
inputArgs.srcType = isSpirV ? IGC::CodeType::spirV : IGC::CodeType::llvmBc;
inputArgs.src = ArrayRef<const char>(irBinary.get(), irBinarySize);
} else {
inputArgs.src = ArrayRef<const char>(sourceCode.c_str(), sourceCode.size());
}
if (inputArgs.src.size() == 0) {
retVal = CL_INVALID_PROGRAM;
break;
}
if (isKernelDebugEnabled()) {
std::string filename;
for (const auto &clDevice : deviceVector) {
if (BuildPhase::SourceCodeNotification == phaseReached[clDevice->getRootDeviceIndex()]) {
continue;
}
appendKernelDebugOptions(*clDevice, internalOptions);
notifyDebuggerWithSourceCode(*clDevice, filename);
prependFilePathToOptions(filename);
phaseReached[clDevice->getRootDeviceIndex()] = BuildPhase::SourceCodeNotification;
}
}
std::string extensions = requiresOpenClCFeatures(options) ? defaultClDevice->peekCompilerExtensionsWithFeatures()
: defaultClDevice->peekCompilerExtensions();
if (requiresAdditionalExtensions(options)) {
extensions.erase(extensions.length() - 1);
extensions += ",+cl_khr_3d_image_writes ";
}
CompilerOptions::concatenateAppend(internalOptions, extensions);
if (!this->getIsBuiltIn() && DebugManager.flags.InjectInternalBuildOptions.get() != "unk") {
NEO::CompilerOptions::concatenateAppend(internalOptions, NEO::DebugManager.flags.InjectInternalBuildOptions.get());
}
inputArgs.apiOptions = ArrayRef<const char>(options.c_str(), options.length());
inputArgs.internalOptions = ArrayRef<const char>(internalOptions.c_str(), internalOptions.length());
inputArgs.GTPinInput = gtpinGetIgcInit();
inputArgs.specializedValues = this->specConstantsValues;
DBG_LOG(LogApiCalls,
"Build Options", inputArgs.apiOptions.begin(),
"\nBuild Internal Options", inputArgs.internalOptions.begin());
inputArgs.allowCaching = enableCaching;
NEO::TranslationOutput compilerOuput = {};
for (const auto &clDevice : deviceVector) {
if (requiresRebuild && !shouldSuppressRebuildWarning) {
this->updateBuildLog(clDevice->getRootDeviceIndex(), CompilerWarnings::recompiledFromIr.data(), CompilerWarnings::recompiledFromIr.length());
}
auto compilerErr = pCompilerInterface->build(clDevice->getDevice(), inputArgs, compilerOuput);
this->updateBuildLog(clDevice->getRootDeviceIndex(), compilerOuput.frontendCompilerLog.c_str(), compilerOuput.frontendCompilerLog.size());
this->updateBuildLog(clDevice->getRootDeviceIndex(), compilerOuput.backendCompilerLog.c_str(), compilerOuput.backendCompilerLog.size());
retVal = asClError(compilerErr);
if (retVal != CL_SUCCESS) {
break;
}
if (inputArgs.srcType == IGC::CodeType::oclC) {
this->irBinary = std::move(compilerOuput.intermediateRepresentation.mem);
this->irBinarySize = compilerOuput.intermediateRepresentation.size;
this->isSpirV = compilerOuput.intermediateCodeType == IGC::CodeType::spirV;
}
this->buildInfos[clDevice->getRootDeviceIndex()].debugData = std::move(compilerOuput.debugData.mem);
this->buildInfos[clDevice->getRootDeviceIndex()].debugDataSize = compilerOuput.debugData.size;
if (BuildPhase::BinaryCreation == phaseReached[clDevice->getRootDeviceIndex()]) {
continue;
}
this->replaceDeviceBinary(std::move(compilerOuput.deviceBinary.mem), compilerOuput.deviceBinary.size, clDevice->getRootDeviceIndex());
phaseReached[clDevice->getRootDeviceIndex()] = BuildPhase::BinaryCreation;
}
if (retVal != CL_SUCCESS) {
break;
}
}
updateNonUniformFlag();
retVal = processGenBinaries(deviceVector, phaseReached);
auto containsStatefulAccess = AddressingModeHelper::containsStatefulAccess(buildInfos[clDevices[0]->getRootDeviceIndex()].kernelInfoArray);
auto isUserKernel = !isBuiltIn;
auto failBuildProgram = (containsStatefulAccess &&
isUserKernel &&
AddressingModeHelper::failBuildProgramWithStatefulAccess(clDevices[0]->getHardwareInfo()));
if (failBuildProgram) {
retVal = CL_BUILD_PROGRAM_FAILURE;
}
if (retVal != CL_SUCCESS) {
break;
}
if (isKernelDebugEnabled() || gtpinIsGTPinInitialized()) {
debugNotify(deviceVector, phaseReached);
}
} while (false);
if (retVal != CL_SUCCESS) {
for (const auto &device : deviceVector) {
deviceBuildInfos[device].buildStatus = CL_BUILD_ERROR;
deviceBuildInfos[device].programBinaryType = CL_PROGRAM_BINARY_TYPE_NONE;
}
} else {
setBuildStatusSuccess(deviceVector, CL_PROGRAM_BINARY_TYPE_EXECUTABLE);
}
return retVal;
}
bool Program::appendKernelDebugOptions(ClDevice &clDevice, std::string &internalOptions) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::debugKernelEnable);
CompilerOptions::concatenateAppend(options, CompilerOptions::generateDebugInfo);
auto debugger = clDevice.getSourceLevelDebugger();
if (debugger && (NEO::SourceLevelDebugger::shouldAppendOptDisable(*debugger))) {
CompilerOptions::concatenateAppend(options, CompilerOptions::optDisable);
}
return true;
}
void Program::notifyDebuggerWithSourceCode(ClDevice &clDevice, std::string &filename) {
if (clDevice.getSourceLevelDebugger()) {
clDevice.getSourceLevelDebugger()->notifySourceCode(sourceCode.c_str(), sourceCode.size(), filename);
}
}
cl_int Program::build(const ClDeviceVector &deviceVector, const char *buildOptions, bool enableCaching,
std::unordered_map<std::string, BuiltinDispatchInfoBuilder *> &builtinsMap) {
auto ret = this->build(deviceVector, buildOptions, enableCaching);
if (ret != CL_SUCCESS) {
return ret;
}
for (auto &ki : buildInfos[deviceVector[0]->getRootDeviceIndex()].kernelInfoArray) {
auto fit = builtinsMap.find(ki->kernelDescriptor.kernelMetadata.kernelName);
if (fit == builtinsMap.end()) {
continue;
}
ki->builtinDispatchBuilder = fit->second;
}
return ret;
}
void Program::extractInternalOptions(const std::string &options, std::string &internalOptions) {
auto tokenized = CompilerOptions::tokenize(options);
for (auto &optionString : internalOptionsToExtract) {
auto element = std::find(tokenized.begin(), tokenized.end(), optionString);
if (element == tokenized.end()) {
continue;
}
if (isFlagOption(optionString)) {
CompilerOptions::concatenateAppend(internalOptions, optionString);
} else if ((element + 1 != tokenized.end()) &&
isOptionValueValid(optionString, *(element + 1))) {
CompilerOptions::concatenateAppend(internalOptions, optionString);
CompilerOptions::concatenateAppend(internalOptions, *(element + 1));
}
}
}
void Program::debugNotify(const ClDeviceVector &deviceVector, std::unordered_map<uint32_t, BuildPhase> &phasesReached) {
for (auto &clDevice : deviceVector) {
auto rootDeviceIndex = clDevice->getRootDeviceIndex();
if (BuildPhase::DebugDataNotification == phasesReached[rootDeviceIndex]) {
continue;
}
notifyDebuggerWithDebugData(clDevice);
phasesReached[rootDeviceIndex] = BuildPhase::DebugDataNotification;
}
}
} // namespace NEO