compute-runtime/opencl/test/unit_test/fixtures/simple_arg_kernel_fixture.h

398 lines
10 KiB
C++

/*
* Copyright (C) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/device/device.h"
#include "shared/source/helpers/array_count.h"
#include "shared/source/helpers/file_io.h"
#include "shared/test/common/helpers/debug_manager_state_restore.h"
#include "opencl/source/kernel/kernel.h"
#include "opencl/source/program/program.h"
#include "opencl/test/unit_test/fixtures/cl_device_fixture.h"
#include "opencl/test/unit_test/fixtures/program_fixture.h"
#include "opencl/test/unit_test/mocks/mock_context.h"
#include "opencl/test/unit_test/mocks/mock_kernel.h"
#include "opencl/test/unit_test/mocks/mock_program.h"
#include "CL/cl.h"
#include "compiler_options.h"
#include "gtest/gtest.h"
#include <type_traits>
namespace NEO {
class Kernel;
class Program;
template <typename T>
inline const char *type_name(T &) {
return "unknown";
}
template <>
inline const char *type_name(char &) {
return "char";
}
template <>
inline const char *type_name(int &) {
return "int";
}
template <>
inline const char *type_name(float &) {
return "float";
}
template <>
inline const char *type_name(short &) {
return "short";
}
template <>
inline const char *type_name(unsigned char &) {
return "unsigned char";
}
template <>
inline const char *type_name(unsigned int &) {
return "unsigned int";
}
template <>
inline const char *type_name(unsigned short &) {
return "unsigned short";
}
class SimpleArgKernelFixture : public ProgramFixture {
public:
using ProgramFixture::SetUp;
protected:
virtual void SetUp(ClDevice *pDevice) {
ProgramFixture::SetUp();
std::string testFile;
int forTheName = 0;
testFile.append("simple_arg_");
testFile.append(type_name(forTheName));
auto pos = testFile.find(" ");
if (pos != (size_t)-1) {
testFile.replace(pos, 1, "_");
}
auto deviceVector = toClDeviceVector(*pDevice);
pContext = Context::create<MockContext>(nullptr, deviceVector, nullptr, nullptr, retVal);
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(nullptr, pContext);
CreateProgramFromBinary(
pContext,
deviceVector,
testFile);
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
// create a kernel
pKernel = Kernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfoForKernel("SimpleArg"),
*pDevice,
&retVal);
ASSERT_NE(nullptr, pKernel);
ASSERT_EQ(CL_SUCCESS, retVal);
}
void TearDown() override {
if (pKernel) {
delete pKernel;
pKernel = nullptr;
}
pContext->release();
ProgramFixture::TearDown();
}
cl_int retVal = CL_SUCCESS;
Kernel *pKernel = nullptr;
MockContext *pContext = nullptr;
};
class SimpleArgNonUniformKernelFixture : public ProgramFixture {
public:
using ProgramFixture::SetUp;
protected:
void SetUp(ClDevice *device, Context *context) {
ProgramFixture::SetUp();
CreateProgramFromBinary(
context,
context->getDevices(),
"simple_nonuniform",
"-cl-std=CL2.0");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
"-cl-std=CL2.0",
false);
ASSERT_EQ(CL_SUCCESS, retVal);
kernel = Kernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfoForKernel("simpleNonUniform"),
*device,
&retVal);
ASSERT_NE(nullptr, kernel);
ASSERT_EQ(CL_SUCCESS, retVal);
}
void TearDown() override {
if (kernel) {
delete kernel;
kernel = nullptr;
}
ProgramFixture::TearDown();
}
cl_int retVal = CL_SUCCESS;
Kernel *kernel = nullptr;
};
class SimpleKernelFixture : public ProgramFixture {
public:
using ProgramFixture::SetUp;
protected:
void SetUp(ClDevice *device, Context *context) {
ProgramFixture::SetUp();
std::string programName("simple_kernels");
CreateProgramFromBinary(
context,
toClDeviceVector(*device),
programName);
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
for (size_t i = 0; i < maxKernelsCount; i++) {
if ((1 << i) & kernelIds) {
std::string kernelName("simple_kernel_");
kernelName.append(std::to_string(i));
kernels[i].reset(Kernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfoForKernel(kernelName.c_str()),
*device,
&retVal));
ASSERT_NE(nullptr, kernels[i]);
ASSERT_EQ(CL_SUCCESS, retVal);
}
}
}
void TearDown() override {
for (size_t i = 0; i < maxKernelsCount; i++) {
if (kernels[i]) {
kernels[i].reset(nullptr);
}
}
ProgramFixture::TearDown();
}
uint32_t kernelIds = 0;
static constexpr size_t maxKernelsCount = std::numeric_limits<decltype(kernelIds)>::digits;
cl_int retVal = CL_SUCCESS;
std::array<std::unique_ptr<Kernel>, maxKernelsCount> kernels;
};
class SimpleKernelStatelessFixture : public ProgramFixture {
public:
DebugManagerStateRestore restorer;
using ProgramFixture::SetUp;
protected:
void SetUp(ClDevice *device, Context *context) {
ProgramFixture::SetUp();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(true);
DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.set(false);
CreateProgramFromBinary(
context,
toClDeviceVector(*device),
"stateless_kernel");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
CompilerOptions::greaterThan4gbBuffersRequired.data(),
false);
ASSERT_EQ(CL_SUCCESS, retVal);
kernel.reset(Kernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfoForKernel("statelessKernel"),
*device,
&retVal));
ASSERT_NE(nullptr, kernel);
ASSERT_EQ(CL_SUCCESS, retVal);
}
void TearDown() override {
ProgramFixture::TearDown();
}
std::unique_ptr<Kernel> kernel = nullptr;
cl_int retVal = CL_SUCCESS;
};
class StatelessCopyKernelFixture : public ProgramFixture {
public:
DebugManagerStateRestore restorer;
using ProgramFixture::SetUp;
protected:
void SetUp(ClDevice *device, Context *context) {
ProgramFixture::SetUp();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(true);
DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.set(false);
CreateProgramFromBinary(
context,
toClDeviceVector(*device),
"stateless_copy_buffer");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
CompilerOptions::greaterThan4gbBuffersRequired.data(),
false);
ASSERT_EQ(CL_SUCCESS, retVal);
multiDeviceKernel.reset(MultiDeviceKernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfosForKernel("StatelessCopyBuffer"),
&retVal));
kernel = static_cast<MockKernel *>(multiDeviceKernel->getKernel(device->getRootDeviceIndex()));
ASSERT_NE(nullptr, kernel);
ASSERT_EQ(CL_SUCCESS, retVal);
}
void TearDown() override {
ProgramFixture::TearDown();
}
std::unique_ptr<MultiDeviceKernel> multiDeviceKernel = nullptr;
MockKernel *kernel = nullptr;
cl_int retVal = CL_SUCCESS;
};
class StatelessKernelWithIndirectAccessFixture : public ProgramFixture {
public:
DebugManagerStateRestore restorer;
using ProgramFixture::SetUp;
protected:
void SetUp(ClDevice *device, Context *context) {
ProgramFixture::SetUp();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(true);
DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.set(false);
CreateProgramFromBinary(
context,
toClDeviceVector(*device),
"indirect_access_kernel");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
CompilerOptions::greaterThan4gbBuffersRequired.data(),
false);
ASSERT_EQ(CL_SUCCESS, retVal);
multiDeviceKernel.reset(MultiDeviceKernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfosForKernel("testIndirect"),
&retVal));
ASSERT_NE(nullptr, multiDeviceKernel);
ASSERT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(multiDeviceKernel->getKernel(device->getRootDeviceIndex())->getKernelInfo().hasIndirectStatelessAccess);
}
void TearDown() override {
ProgramFixture::TearDown();
}
std::unique_ptr<MultiDeviceKernel> multiDeviceKernel = nullptr;
cl_int retVal = CL_SUCCESS;
};
class BindlessKernelFixture : public ProgramFixture {
public:
using ProgramFixture::SetUp;
void SetUp(ClDevice *device, Context *context) {
ProgramFixture::SetUp();
this->deviceCl = device;
this->contextCl = context;
}
void TearDown() override {
ProgramFixture::TearDown();
}
void createKernel(const std::string &programName, const std::string &kernelName) {
DebugManager.flags.UseBindlessMode.set(1);
CreateProgramFromBinary(
contextCl,
contextCl->getDevices(),
programName);
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
pProgram->getDevices(),
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
kernel.reset(Kernel::create<MockKernel>(
pProgram,
pProgram->getKernelInfoForKernel(kernelName.c_str()),
*deviceCl,
&retVal));
ASSERT_NE(nullptr, kernel);
ASSERT_EQ(CL_SUCCESS, retVal);
}
DebugManagerStateRestore restorer;
std::unique_ptr<Kernel> kernel = nullptr;
cl_int retVal = CL_SUCCESS;
ClDevice *deviceCl = nullptr;
Context *contextCl = nullptr;
};
} // namespace NEO