compute-runtime/shared/source/utilities/heap_allocator.h

285 lines
9.8 KiB
C++

/*
* Copyright (C) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/debug_helpers.h"
#include <algorithm>
#include <cstdint>
#include <unordered_map>
#include <vector>
namespace NEO {
struct HeapChunk {
HeapChunk(uint64_t ptr, size_t size) : ptr(ptr), size(size) {}
uint64_t ptr;
size_t size;
};
bool operator<(const HeapChunk &hc1, const HeapChunk &hc2);
class HeapAllocator {
public:
HeapAllocator(uint64_t address, uint64_t size) : HeapAllocator(address, size, MemoryConstants::pageSize) {
}
HeapAllocator(uint64_t address, uint64_t size, size_t allocationAlignment) : HeapAllocator(address, size, allocationAlignment, 4 * MemoryConstants::megaByte) {
}
HeapAllocator(uint64_t address, uint64_t size, size_t allocationAlignment, size_t threshold) : size(size), availableSize(size), allocationAlignment(allocationAlignment), sizeThreshold(threshold) {
pLeftBound = address;
pRightBound = address + size;
freedChunksBig.reserve(10);
freedChunksSmall.reserve(50);
}
uint64_t allocate(size_t &sizeToAllocate) {
return allocateWithCustomAlignment(sizeToAllocate, 0u);
}
uint64_t allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
if (alignment == 0) {
alignment = this->allocationAlignment;
}
UNRECOVERABLE_IF(alignment % allocationAlignment != 0); // custom alignment have to be a multiple of allocator alignment
sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment);
std::lock_guard<std::mutex> lock(mtx);
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
if (availableSize < sizeToAllocate) {
return 0llu;
}
std::vector<HeapChunk> &freedChunks = (sizeToAllocate > sizeThreshold) ? freedChunksBig : freedChunksSmall;
uint32_t defragmentCount = 0;
for (;;) {
size_t sizeOfFreedChunk = 0;
uint64_t ptrReturn = getFromFreedChunks(sizeToAllocate, freedChunks, sizeOfFreedChunk, alignment);
if (ptrReturn == 0llu) {
if (sizeToAllocate > sizeThreshold) {
const uint64_t misalignment = alignUp(pLeftBound, alignment) - pLeftBound;
if (pLeftBound + misalignment + sizeToAllocate <= pRightBound) {
if (misalignment) {
storeInFreedChunks(pLeftBound, static_cast<size_t>(misalignment), freedChunks);
pLeftBound += misalignment;
}
ptrReturn = pLeftBound;
pLeftBound += sizeToAllocate;
}
} else {
const uint64_t misalignment = pRightBound - alignDown(pRightBound, alignment);
if (pLeftBound + sizeToAllocate + misalignment <= pRightBound) {
if (misalignment) {
pRightBound -= misalignment;
storeInFreedChunks(pRightBound, static_cast<size_t>(misalignment), freedChunks);
}
pRightBound -= sizeToAllocate;
ptrReturn = pRightBound;
}
}
}
if (ptrReturn != 0llu) {
if (sizeOfFreedChunk > 0) {
availableSize -= sizeOfFreedChunk;
sizeToAllocate = sizeOfFreedChunk;
} else {
availableSize -= sizeToAllocate;
}
DEBUG_BREAK_IF(!isAligned(ptrReturn, alignment));
return ptrReturn;
}
if (defragmentCount == 1)
return 0llu;
defragment();
defragmentCount++;
}
}
void free(uint64_t ptr, size_t size) {
if (ptr == 0llu)
return;
std::lock_guard<std::mutex> lock(mtx);
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
if (ptr == pRightBound) {
pRightBound = ptr + size;
mergeLastFreedSmall();
} else if (ptr == pLeftBound - size) {
pLeftBound = ptr;
mergeLastFreedBig();
} else if (ptr < pLeftBound) {
DEBUG_BREAK_IF(size <= sizeThreshold);
storeInFreedChunks(ptr, size, freedChunksBig);
} else {
storeInFreedChunks(ptr, size, freedChunksSmall);
}
availableSize += size;
}
uint64_t getLeftSize() const {
return availableSize;
}
uint64_t getUsedSize() const {
return size - availableSize;
}
NO_SANITIZE
double getUsage() const {
return static_cast<double>(size - availableSize) / size;
}
protected:
const uint64_t size;
uint64_t availableSize;
uint64_t pLeftBound;
uint64_t pRightBound;
size_t allocationAlignment;
const size_t sizeThreshold;
std::vector<HeapChunk> freedChunksSmall;
std::vector<HeapChunk> freedChunksBig;
std::mutex mtx;
uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk, size_t requiredAlignment) {
size_t elements = freedChunks.size();
size_t bestFitIndex = -1;
size_t bestFitSize = 0;
sizeOfFreedChunk = 0;
for (size_t i = 0; i < elements; i++) {
const bool chunkAligned = isAligned(freedChunks[i].ptr, requiredAlignment);
if (!chunkAligned) {
continue;
}
if (freedChunks[i].size == size) {
auto ptr = freedChunks[i].ptr;
freedChunks.erase(freedChunks.begin() + i);
return ptr;
}
if (freedChunks[i].size > size) {
if (freedChunks[i].size < bestFitSize || bestFitSize == 0) {
bestFitIndex = i;
bestFitSize = freedChunks[i].size;
}
}
}
if (bestFitSize != 0) {
if (bestFitSize < (size << 1)) {
auto ptr = freedChunks[bestFitIndex].ptr;
sizeOfFreedChunk = freedChunks[bestFitIndex].size;
freedChunks.erase(freedChunks.begin() + bestFitIndex);
return ptr;
} else {
size_t sizeDelta = freedChunks[bestFitIndex].size - size;
DEBUG_BREAK_IF(!(size <= sizeThreshold || (size > sizeThreshold && sizeDelta > sizeThreshold)));
auto ptr = freedChunks[bestFitIndex].ptr + sizeDelta;
freedChunks[bestFitIndex].size = sizeDelta;
return ptr;
}
}
return 0llu;
}
void storeInFreedChunks(uint64_t ptr, size_t size, std::vector<HeapChunk> &freedChunks) {
for (auto &freedChunk : freedChunks) {
if (freedChunk.ptr == ptr + size) {
freedChunk.ptr = ptr;
freedChunk.size += size;
return;
}
if (freedChunk.ptr + freedChunk.size == ptr) {
freedChunk.size += size;
return;
}
if ((freedChunk.ptr + freedChunk.size) == (ptr + size)) {
if (ptr < freedChunk.ptr) {
freedChunk.ptr = ptr;
freedChunk.size = size;
return;
}
}
}
freedChunks.emplace_back(ptr, size);
}
void mergeLastFreedSmall() {
size_t maxSizeOfSmallChunks = freedChunksSmall.size();
if (maxSizeOfSmallChunks > 0) {
auto ptr = freedChunksSmall[maxSizeOfSmallChunks - 1].ptr;
size_t chunkSize = freedChunksSmall[maxSizeOfSmallChunks - 1].size;
if (ptr == pRightBound) {
pRightBound = ptr + chunkSize;
freedChunksSmall.pop_back();
}
}
}
void mergeLastFreedBig() {
size_t maxSizeOfBigChunks = freedChunksBig.size();
if (maxSizeOfBigChunks > 0) {
auto ptr = freedChunksBig[maxSizeOfBigChunks - 1].ptr;
size_t chunkSize = freedChunksBig[maxSizeOfBigChunks - 1].size;
if (ptr == pLeftBound - chunkSize) {
pLeftBound = ptr;
freedChunksBig.pop_back();
}
}
}
void defragment() {
if (freedChunksSmall.size() > 1) {
std::sort(freedChunksSmall.rbegin(), freedChunksSmall.rend());
size_t maxSize = freedChunksSmall.size();
for (size_t i = maxSize - 1; i > 0; --i) {
auto ptr = freedChunksSmall[i].ptr;
size_t chunkSize = freedChunksSmall[i].size;
if (freedChunksSmall[i - 1].ptr == ptr + chunkSize) {
freedChunksSmall[i - 1].ptr = ptr;
freedChunksSmall[i - 1].size += chunkSize;
freedChunksSmall.erase(freedChunksSmall.begin() + i);
}
}
}
mergeLastFreedSmall();
if (freedChunksBig.size() > 1) {
std::sort(freedChunksBig.begin(), freedChunksBig.end());
size_t maxSize = freedChunksBig.size();
for (size_t i = maxSize - 1; i > 0; --i) {
auto ptr = freedChunksBig[i].ptr;
size_t chunkSize = freedChunksBig[i].size;
if ((freedChunksBig[i - 1].ptr + freedChunksBig[i - 1].size) == ptr) {
freedChunksBig[i - 1].size += chunkSize;
freedChunksBig.erase(freedChunksBig.begin() + i);
}
}
}
mergeLastFreedBig();
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
}
};
} // namespace NEO