compute-runtime/unit_tests/command_queue/enqueue_read_image_tests.cpp

507 lines
22 KiB
C++

/*
* Copyright (C) 2017-2018 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "runtime/built_ins/builtins_dispatch_builder.h"
#include "runtime/memory_manager/allocations_list.h"
#include "reg_configs_common.h"
#include "unit_tests/command_queue/enqueue_read_image_fixture.h"
#include "unit_tests/gen_common/gen_commands_common_validation.h"
#include "unit_tests/helpers/unit_test_helper.h"
#include "unit_tests/helpers/debug_manager_state_restore.h"
#include "unit_tests/mocks/mock_builtin_dispatch_info_builder.h"
#include "unit_tests/mocks/mock_command_queue.h"
#include "test.h"
using namespace OCLRT;
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, gpgpuWalker) {
typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER;
enqueueReadImage<FamilyType>();
auto *cmd = reinterpret_cast<GPGPU_WALKER *>(cmdWalker);
ASSERT_NE(nullptr, cmd);
// Verify GPGPU_WALKER parameters
EXPECT_NE(0u, cmd->getThreadGroupIdXDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdYDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdZDimension());
EXPECT_NE(0u, cmd->getRightExecutionMask());
EXPECT_NE(0u, cmd->getBottomExecutionMask());
EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize());
EXPECT_NE(0u, cmd->getIndirectDataLength());
EXPECT_FALSE(cmd->getIndirectParameterEnable());
// Compute the SIMD lane mask
size_t simd =
cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8;
uint64_t simdMask = (1ull << simd) - 1;
// Mask off lanes based on the execution masks
auto laneMaskRight = cmd->getRightExecutionMask() & simdMask;
auto lanesPerThreadX = 0;
while (laneMaskRight) {
lanesPerThreadX += laneMaskRight & 1;
laneMaskRight >>= 1;
}
}
HWTEST_F(EnqueueReadImageTest, alignsToCSR_Blocking) {
//this test case assumes IOQ
auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
csr.taskCount = pCmdQ->taskCount + 100;
csr.taskLevel = pCmdQ->taskLevel + 50;
auto oldCsrTaskLevel = csr.peekTaskLevel();
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_TRUE);
EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount);
EXPECT_EQ(oldCsrTaskLevel, pCmdQ->taskLevel);
}
HWTEST_F(EnqueueReadImageTest, alignsToCSR_NonBlocking) {
//this test case assumes IOQ
auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
csr.taskCount = pCmdQ->taskCount + 100;
csr.taskLevel = pCmdQ->taskLevel + 50;
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_FALSE);
EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount);
EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1);
}
HWTEST_F(EnqueueReadImageTest, bumpsTaskLevel) {
auto taskLevelBefore = pCmdQ->taskLevel;
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, EnqueueReadImageTraits::blocking);
EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore);
}
HWTEST_F(EnqueueReadImageTest, addsCommands) {
auto usedCmdBufferBefore = pCS->getUsed();
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, EnqueueReadImageTraits::blocking);
EXPECT_NE(usedCmdBufferBefore, pCS->getUsed());
}
HWTEST_F(EnqueueReadImageTest, addsIndirectData) {
auto dshBefore = pDSH->getUsed();
auto iohBefore = pIOH->getUsed();
auto sshBefore = pSSH->getUsed();
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, EnqueueReadImageTraits::blocking);
EXPECT_TRUE(UnitTestHelper<FamilyType>::evaluateDshUsage(dshBefore, pDSH->getUsed(), nullptr));
EXPECT_NE(iohBefore, pIOH->getUsed());
EXPECT_NE(sshBefore, pSSH->getUsed());
}
HWTEST_F(EnqueueReadImageTest, loadRegisterImmediateL3CNTLREG) {
enqueueReadImage<FamilyType>();
validateL3Programming<FamilyType>(cmdList, itorWalker);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) {
enqueueReadImage<FamilyType>();
validateStateBaseAddress<FamilyType>(this->pDevice->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(),
pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, mediaInterfaceDescriptorLoad) {
typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueReadImage<FamilyType>();
// All state should be programmed before walker
auto cmd = reinterpret_cast<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdMediaInterfaceDescriptorLoad);
ASSERT_NE(nullptr, cmd);
// Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA));
// Validate the start address
size_t alignmentStartAddress = 64 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress);
// Validate the length
EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength());
size_t alignmentTotalLength = 32 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength);
// Generically validate this command
FamilyType::PARSE::template validateCommand<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdList.begin(), itorMediaInterfaceDescriptorLoad);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, interfaceDescriptorData) {
typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueReadImage<FamilyType>();
// Extract the interfaceDescriptorData
auto cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress;
auto &interfaceDescriptorData = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData;
// Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value.
auto kernelStartPointer = ((uint64_t)interfaceDescriptorData.getKernelStartPointerHigh() << 32) + interfaceDescriptorData.getKernelStartPointer();
EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize);
auto localWorkSize = 4u;
auto simd = 32u;
auto threadsPerThreadGroup = (localWorkSize + simd - 1) / simd;
EXPECT_EQ(threadsPerThreadGroup, interfaceDescriptorData.getNumberOfThreadsInGpgpuThreadGroup());
EXPECT_NE(0u, interfaceDescriptorData.getCrossThreadConstantDataReadLength());
EXPECT_NE(0u, interfaceDescriptorData.getConstantIndirectUrbEntryReadLength());
// We shouldn't have these pointers the same.
EXPECT_NE(kernelStartPointer, interfaceDescriptorData.getBindingTablePointer());
}
HWTEST_F(EnqueueReadImageTest, surfaceState) {
typedef typename FamilyType::RENDER_SURFACE_STATE RENDER_SURFACE_STATE;
enqueueReadImage<FamilyType>();
// BufferToImage kernel uses BTI=1 for destSurface
uint32_t bindingTableIndex = 0;
const auto &surfaceState = getSurfaceState<FamilyType>(bindingTableIndex);
// EnqueueReadImage uses multi-byte copies depending on per-pixel-size-in-bytes
const auto &imageDesc = srcImage->getImageDesc();
EXPECT_EQ(imageDesc.image_width, surfaceState.getWidth());
EXPECT_EQ(imageDesc.image_height, surfaceState.getHeight());
EXPECT_NE(0u, surfaceState.getSurfacePitch());
EXPECT_NE(0u, surfaceState.getSurfaceType());
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_FORMAT_R32_UINT, surfaceState.getSurfaceFormat());
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_HORIZONTAL_ALIGNMENT_HALIGN_4, surfaceState.getSurfaceHorizontalAlignment());
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_VERTICAL_ALIGNMENT_VALIGN_4, surfaceState.getSurfaceVerticalAlignment());
EXPECT_EQ(reinterpret_cast<uint64_t>(srcImage->getCpuAddress()), surfaceState.getSurfaceBaseAddress());
}
HWTEST_F(EnqueueReadImageTest, pipelineSelect) {
enqueueReadImage<FamilyType>();
int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect<FamilyType>();
EXPECT_EQ(1, numCommands);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, mediaVFEState) {
enqueueReadImage<FamilyType>();
validateMediaVFEState<FamilyType>(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, blockingEnqueueRequiresPCWithDCFlushSetAfterWalker) {
typedef typename FamilyType::PIPE_CONTROL PIPE_CONTROL;
bool blocking = true;
enqueueReadImage<FamilyType>(blocking);
auto itorWalker = find<typename FamilyType::GPGPU_WALKER *>(cmdList.begin(), cmdList.end());
auto itorCmd = find<PIPE_CONTROL *>(itorWalker, cmdList.end());
auto *cmd = (PIPE_CONTROL *)*itorCmd;
EXPECT_NE(cmdList.end(), itorCmd);
if (::renderCoreFamily != IGFX_GEN8_CORE) {
// SKL+: two PIPE_CONTROLs following GPGPU_WALKER: first has DcFlush and second has Write HwTag
EXPECT_TRUE(cmd->getDcFlushEnable());
// Move to next PPC
auto itorCmdP = ++((GenCmdList::iterator)itorCmd);
EXPECT_NE(cmdList.end(), itorCmdP);
auto itorCmd2 = find<PIPE_CONTROL *>(itorCmdP, cmdList.end());
cmd = (PIPE_CONTROL *)*itorCmd2;
EXPECT_FALSE(cmd->getDcFlushEnable());
} else {
// BDW: single PIPE_CONTROL following GPGPU_WALKER has DcFlush and Write HwTag
EXPECT_TRUE(cmd->getDcFlushEnable());
}
}
HWTEST_F(EnqueueReadImageTest, GivenImage1DarrayWhenReadImageIsCalledThenHostPtrSizeIsCalculatedProperly) {
auto srcImage = Image1dArrayHelper<>::create(context);
auto imageDesc = srcImage->getImageDesc();
auto imageSize = imageDesc.image_width * imageDesc.image_array_size * 4;
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, imageDesc.image_array_size, 1};
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_FALSE, origin, region);
auto &csr = pCmdQ->getDevice().getCommandStreamReceiver();
auto temporaryAllocation = csr.getTemporaryAllocations().peekHead();
ASSERT_NE(nullptr, temporaryAllocation);
EXPECT_EQ(temporaryAllocation->getUnderlyingBufferSize(), imageSize);
delete srcImage;
}
HWTEST_F(EnqueueReadImageTest, GivenImage2DarrayWhenReadImageIsCalledThenHostPtrSizeIsCalculatedProperly) {
auto srcImage = Image2dArrayHelper<>::create(context);
auto imageDesc = srcImage->getImageDesc();
auto imageSize = imageDesc.image_width * imageDesc.image_height * imageDesc.image_array_size * 4;
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, imageDesc.image_height, imageDesc.image_array_size};
EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_FALSE, origin, region);
auto &csr = pCmdQ->getDevice().getCommandStreamReceiver();
auto temporaryAllocation = csr.getTemporaryAllocations().peekHead();
ASSERT_NE(nullptr, temporaryAllocation);
EXPECT_EQ(temporaryAllocation->getUnderlyingBufferSize(), imageSize);
delete srcImage;
}
HWTEST_F(EnqueueReadImageTest, GivenImage1DAndImageShareTheSameStorageWithHostPtrWhenReadReadImageIsCalledThenImageIsNotRead) {
cl_int retVal = CL_SUCCESS;
std::unique_ptr<Image> dstImage2(Image1dHelper<>::create(context));
auto imageDesc = dstImage2->getImageDesc();
std::unique_ptr<CommandQueue> pCmdOOQ(createCommandQueue(pDevice, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE));
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, 1, 1};
void *ptr = dstImage2->getCpuAddressForMemoryTransfer();
size_t rowPitch = dstImage2->getHostPtrRowPitch();
size_t slicePitch = dstImage2->getHostPtrSlicePitch();
retVal = pCmdOOQ->enqueueReadImage(dstImage2.get(),
CL_FALSE,
origin,
region,
rowPitch,
slicePitch,
ptr,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(pCmdOOQ->taskLevel, 0u);
}
HWTEST_F(EnqueueReadImageTest, GivenImage1DArrayAndImageShareTheSameStorageWithHostPtrWhenReadReadImageIsCalledThenImageIsNotRead) {
cl_int retVal = CL_SUCCESS;
std::unique_ptr<Image> dstImage2(Image1dArrayHelper<>::create(context));
auto imageDesc = dstImage2->getImageDesc();
size_t origin[] = {imageDesc.image_width / 2, imageDesc.image_array_size / 2, 0};
size_t region[] = {imageDesc.image_width - (imageDesc.image_width / 2), imageDesc.image_array_size - (imageDesc.image_array_size / 2), 1};
void *ptr = dstImage2->getCpuAddressForMemoryTransfer();
auto bytesPerPixel = 4;
size_t rowPitch = dstImage2->getHostPtrRowPitch();
size_t slicePitch = dstImage2->getHostPtrSlicePitch();
auto pOffset = origin[2] * rowPitch + origin[1] * slicePitch + origin[0] * bytesPerPixel;
void *ptrStorage = ptrOffset(ptr, pOffset);
retVal = pCmdQ->enqueueReadImage(dstImage2.get(),
CL_FALSE,
origin,
region,
rowPitch,
slicePitch,
ptrStorage,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(pCmdQ->taskLevel, 0u);
}
HWTEST_F(EnqueueReadImageTest, GivenSharedContextZeroCopy2DImageWhenEnqueueReadImageWithMappedPointerIsCalledThenImageIsNotRead) {
cl_int retVal = CL_SUCCESS;
context->isSharedContext = true;
std::unique_ptr<Image> dstImage(ImageHelper<ImageUseHostPtr<Image2dDefaults>>::create(context));
EXPECT_TRUE(dstImage->isMemObjZeroCopy());
auto imageDesc = dstImage->getImageDesc();
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, imageDesc.image_height, 1};
void *ptr = dstImage->getCpuAddressForMemoryTransfer();
size_t rowPitch = dstImage->getHostPtrRowPitch();
size_t slicePitch = dstImage->getHostPtrSlicePitch();
retVal = pCmdQ->enqueueReadImage(dstImage.get(),
CL_FALSE,
origin,
region,
rowPitch,
slicePitch,
ptr,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(pCmdQ->taskLevel, 0u);
}
HWTEST_F(EnqueueReadImageTest, GivenImage1DThatIsZeroCopyWhenReadImageWithTheSamePointerAndOutputEventIsPassedThenEventHasCorrectCommandTypeSet) {
cl_int retVal = CL_SUCCESS;
std::unique_ptr<Image> dstImage(Image1dHelper<>::create(context));
auto imageDesc = dstImage->getImageDesc();
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, imageDesc.image_height, 1};
void *ptr = dstImage->getCpuAddressForMemoryTransfer();
size_t rowPitch = dstImage->getHostPtrRowPitch();
size_t slicePitch = dstImage->getHostPtrSlicePitch();
cl_uint numEventsInWaitList = 0;
cl_event event = nullptr;
retVal = pCmdQ->enqueueReadImage(dstImage.get(),
CL_FALSE,
origin,
region,
rowPitch,
slicePitch,
ptr,
numEventsInWaitList,
nullptr,
&event);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(nullptr, event);
auto pEvent = static_cast<Event *>(event);
EXPECT_EQ(static_cast<cl_command_type>(CL_COMMAND_READ_IMAGE), pEvent->getCommandType());
pEvent->release();
}
HWTEST_F(EnqueueReadImageTest, givenCommandQueueWhenEnqueueReadImageIsCalledThenItCallsNotifyFunction) {
auto mockCmdQ = std::make_unique<MockCommandQueueHw<FamilyType>>(context, pDevice, nullptr);
std::unique_ptr<Image> srcImage(Image2dArrayHelper<>::create(context));
auto imageDesc = srcImage->getImageDesc();
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, imageDesc.image_height, imageDesc.image_array_size};
EnqueueReadImageHelper<>::enqueueReadImage(mockCmdQ.get(), srcImage.get(), CL_TRUE, origin, region);
EXPECT_TRUE(mockCmdQ->notifyEnqueueReadImageCalled);
}
typedef EnqueueReadImageMipMapTest MipMapReadImageTest;
HWTEST_P(MipMapReadImageTest, GivenImageWithMipLevelNonZeroWhenReadImageIsCalledThenProperMipLevelIsSet) {
auto &builtIns = *pCmdQ->getDevice().getExecutionEnvironment()->getBuiltIns();
auto image_type = (cl_mem_object_type)GetParam();
auto &origBuilder = builtIns.getBuiltinDispatchInfoBuilder(
EBuiltInOps::CopyImage3dToBuffer,
pCmdQ->getContext(),
pCmdQ->getDevice());
// substitute original builder with mock builder
auto oldBuilder = builtIns.setBuiltinDispatchInfoBuilder(
EBuiltInOps::CopyImage3dToBuffer,
pCmdQ->getContext(),
pCmdQ->getDevice(),
std::unique_ptr<OCLRT::BuiltinDispatchInfoBuilder>(new MockBuiltinDispatchInfoBuilder(builtIns, &origBuilder)));
cl_int retVal = CL_SUCCESS;
cl_image_desc imageDesc = {};
uint32_t expectedMipLevel = 3;
imageDesc.image_type = image_type;
imageDesc.num_mip_levels = 10;
imageDesc.image_width = 4;
imageDesc.image_height = 1;
imageDesc.image_depth = 1;
size_t origin[] = {0, 0, 0, 0};
size_t region[] = {imageDesc.image_width, 1, 1};
std::unique_ptr<Image> image;
switch (image_type) {
case CL_MEM_OBJECT_IMAGE1D:
origin[1] = expectedMipLevel;
image = std::unique_ptr<Image>(ImageHelper<Image1dDefaults>::create(context, &imageDesc));
break;
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
imageDesc.image_array_size = 2;
origin[2] = expectedMipLevel;
image = std::unique_ptr<Image>(ImageHelper<Image1dArrayDefaults>::create(context, &imageDesc));
break;
case CL_MEM_OBJECT_IMAGE2D:
origin[2] = expectedMipLevel;
image = std::unique_ptr<Image>(ImageHelper<Image2dDefaults>::create(context, &imageDesc));
break;
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
imageDesc.image_array_size = 2;
origin[3] = expectedMipLevel;
image = std::unique_ptr<Image>(ImageHelper<Image2dArrayDefaults>::create(context, &imageDesc));
break;
case CL_MEM_OBJECT_IMAGE3D:
origin[3] = expectedMipLevel;
image = std::unique_ptr<Image>(ImageHelper<Image3dDefaults>::create(context, &imageDesc));
break;
}
EXPECT_NE(nullptr, image.get());
std::unique_ptr<uint32_t[]> ptr = std::unique_ptr<uint32_t[]>(new uint32_t[3]);
retVal = pCmdQ->enqueueReadImage(image.get(),
CL_FALSE,
origin,
region,
0,
0,
ptr.get(),
0,
nullptr,
nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
auto &mockBuilder = static_cast<MockBuiltinDispatchInfoBuilder &>(builtIns.getBuiltinDispatchInfoBuilder(EBuiltInOps::CopyImage3dToBuffer,
pCmdQ->getContext(),
pCmdQ->getDevice()));
auto params = mockBuilder.getBuiltinOpParams();
EXPECT_EQ(expectedMipLevel, params->srcMipLevel);
// restore original builder and retrieve mock builder
auto newBuilder = builtIns.setBuiltinDispatchInfoBuilder(
EBuiltInOps::CopyImage3dToBuffer,
pCmdQ->getContext(),
pCmdQ->getDevice(),
std::move(oldBuilder));
EXPECT_NE(nullptr, newBuilder);
}
INSTANTIATE_TEST_CASE_P(MipMapReadImageTest_GivenImageWithMipLevelNonZeroWhenWriteImageIsCalledThenProperMipLevelIsSet,
MipMapReadImageTest, ::testing::Values(CL_MEM_OBJECT_IMAGE1D, CL_MEM_OBJECT_IMAGE1D_ARRAY, CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE2D_ARRAY, CL_MEM_OBJECT_IMAGE3D));
using NegativeFailAllocationTest = Test<NegativeFailAllocationCommandEnqueueBaseFixture>;
HWTEST_F(NegativeFailAllocationTest, givenEnqueueWriteImageWhenHostPtrAllocationCreationFailsThenReturnOutOfResource) {
cl_int retVal = CL_SUCCESS;
auto imageDesc = image->getImageDesc();
size_t origin[] = {0, 0, 0};
size_t region[] = {imageDesc.image_width, imageDesc.image_height, 1};
size_t rowPitch = image->getHostPtrRowPitch();
size_t slicePitch = image->getHostPtrSlicePitch();
retVal = pCmdQ->enqueueWriteImage(image.get(),
CL_FALSE,
origin,
region,
rowPitch,
slicePitch,
ptr,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_OUT_OF_RESOURCES, retVal);
}