compute-runtime/opencl/source/built_ins/builtins_dispatch_builder.cpp

1042 lines
53 KiB
C++

/*
* Copyright (C) 2020-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/source/built_ins/builtins_dispatch_builder.h"
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/debug_helpers.h"
#include "opencl/source/built_ins/aux_translation_builtin.h"
#include "opencl/source/built_ins/built_ins.inl"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/execution_environment/cl_execution_environment.h"
#include "opencl/source/helpers/convert_color.h"
#include "opencl/source/helpers/dispatch_info_builder.h"
#include "opencl/source/kernel/kernel.h"
#include "opencl/source/mem_obj/image.h"
#include "opencl/source/program/program.h"
#include <cstdint>
namespace NEO {
template <>
class BuiltInOp<EBuiltInOps::copyBufferToBuffer> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp(kernelsLib, device, true) {}
template <typename OffsetType>
bool buildDispatchInfosTyped(MultiDispatchInfo &multiDispatchInfo) const {
DispatchInfoBuilder<SplitDispatch::Dim::d1D, SplitDispatch::SplitMode::kernelSplit> kernelSplit1DBuilder(clDevice);
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
uintptr_t start = reinterpret_cast<uintptr_t>(operationParams.dstPtr) + operationParams.dstOffset.x;
size_t middleAlignment = MemoryConstants::cacheLineSize;
size_t middleElSize = sizeof(uint32_t) * 4;
uintptr_t leftSize = start % middleAlignment;
leftSize = (leftSize > 0) ? (middleAlignment - leftSize) : 0; // calc left leftover size
leftSize = std::min(leftSize, operationParams.size.x); // clamp left leftover size to requested size
uintptr_t rightSize = (start + operationParams.size.x) % middleAlignment; // calc right leftover size
rightSize = std::min(rightSize, operationParams.size.x - leftSize); // clamp
uintptr_t middleSizeBytes = operationParams.size.x - leftSize - rightSize; // calc middle size
// corner case - fully optimized kernel requires DWORD alignment. If we don't have it, run slower, misaligned kernel
const auto srcMiddleStart = reinterpret_cast<uintptr_t>(operationParams.srcPtr) + operationParams.srcOffset.x + leftSize;
const auto srcMisalignment = srcMiddleStart % sizeof(uint32_t);
const auto isSrcMisaligned = srcMisalignment != 0u;
auto middleSizeEls = middleSizeBytes / middleElSize; // num work items in middle walker
uint32_t rootDeviceIndex = clDevice.getRootDeviceIndex();
// Set-up ISA
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::left, kernLeftLeftover->getKernel(rootDeviceIndex));
if (isSrcMisaligned) {
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::middle, kernMiddleMisaligned->getKernel(rootDeviceIndex));
} else {
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::middle, kernMiddle->getKernel(rootDeviceIndex));
}
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::right, kernRightLeftover->getKernel(rootDeviceIndex));
// Set-up common kernel args
if (operationParams.srcSvmAlloc) {
kernelSplit1DBuilder.setArgSvmAlloc(0, operationParams.srcPtr, operationParams.srcSvmAlloc);
} else if (operationParams.srcMemObj) {
kernelSplit1DBuilder.setArg(0, operationParams.srcMemObj);
} else {
kernelSplit1DBuilder.setArgSvm(0, operationParams.size.x + operationParams.srcOffset.x, operationParams.srcPtr, nullptr, CL_MEM_READ_ONLY);
}
bool isDestinationInSystem = false;
if (operationParams.dstSvmAlloc) {
kernelSplit1DBuilder.setArgSvmAlloc(1, operationParams.dstPtr, operationParams.dstSvmAlloc);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstSvmAlloc->getAllocationType());
} else if (operationParams.dstMemObj) {
kernelSplit1DBuilder.setArg(1, operationParams.dstMemObj);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstMemObj->getGraphicsAllocation(rootDeviceIndex)->getAllocationType());
} else {
kernelSplit1DBuilder.setArgSvm(1, operationParams.size.x + operationParams.dstOffset.x, operationParams.dstPtr, nullptr, 0u);
isDestinationInSystem = operationParams.dstPtr != nullptr;
}
kernelSplit1DBuilder.setKernelDestinationArgumentInSystem(isDestinationInSystem);
kernelSplit1DBuilder.setUnifiedMemorySyncRequirement(operationParams.unifiedMemoryArgsRequireMemSync);
// Set-up srcOffset
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::left, 2, static_cast<OffsetType>(operationParams.srcOffset.x));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 2, static_cast<OffsetType>(operationParams.srcOffset.x + leftSize));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::right, 2, static_cast<OffsetType>(operationParams.srcOffset.x + leftSize + middleSizeBytes));
// Set-up dstOffset
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::left, 3, static_cast<OffsetType>(operationParams.dstOffset.x));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 3, static_cast<OffsetType>(operationParams.dstOffset.x + leftSize));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::right, 3, static_cast<OffsetType>(operationParams.dstOffset.x + leftSize + middleSizeBytes));
if (isSrcMisaligned) {
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 4, static_cast<uint32_t>(srcMisalignment * 8));
}
// Set-up work sizes
// Note for split walker, it would be just builder.SetDipatchGeometry(GWS, ELWS, OFFSET)
kernelSplit1DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::left, Vec3<size_t>{leftSize, 0, 0}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit1DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::middle, Vec3<size_t>{middleSizeEls, 0, 0}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit1DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::right, Vec3<size_t>{rightSize, 0, 0}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit1DBuilder.bake(multiDispatchInfo);
return true;
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint32_t>(multiDispatchInfo);
}
protected:
MultiDeviceKernel *kernLeftLeftover = nullptr;
MultiDeviceKernel *kernMiddle = nullptr;
MultiDeviceKernel *kernMiddleMisaligned = nullptr;
MultiDeviceKernel *kernRightLeftover = nullptr;
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device, bool populateKernels)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
if (populateKernels) {
populate(EBuiltInOps::copyBufferToBuffer,
"",
"CopyBufferToBufferLeftLeftover", kernLeftLeftover,
"CopyBufferToBufferMiddle", kernMiddle,
"CopyBufferToBufferMiddleMisaligned", kernMiddleMisaligned,
"CopyBufferToBufferRightLeftover", kernRightLeftover);
}
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferToBufferStateless> : public BuiltInOp<EBuiltInOps::copyBufferToBuffer> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp<EBuiltInOps::copyBufferToBuffer>(kernelsLib, device, false) {
populate(EBuiltInOps::copyBufferToBufferStateless,
CompilerOptions::greaterThan4gbBuffersRequired,
"CopyBufferToBufferLeftLeftover", kernLeftLeftover,
"CopyBufferToBufferMiddle", kernMiddle,
"CopyBufferToBufferMiddleMisaligned", kernMiddleMisaligned,
"CopyBufferToBufferRightLeftover", kernRightLeftover);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfo);
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferToBufferStatelessHeapless> : public BuiltInOp<EBuiltInOps::copyBufferToBuffer> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp<EBuiltInOps::copyBufferToBuffer>(kernelsLib, device, false) {
populate(EBuiltInOps::copyBufferToBufferStatelessHeapless,
CompilerOptions::greaterThan4gbBuffersRequired,
"CopyBufferToBufferLeftLeftover", kernLeftLeftover,
"CopyBufferToBufferMiddle", kernMiddle,
"CopyBufferToBufferMiddleMisaligned", kernMiddleMisaligned,
"CopyBufferToBufferRightLeftover", kernRightLeftover);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfo);
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferRect> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp(kernelsLib, device, true) {}
template <typename OffsetType>
bool buildDispatchInfosTyped(MultiDispatchInfo &multiDispatchInfo) const {
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
size_t hostPtrSize = 0;
size_t srcOffsetFromAlignedPtr = 0;
size_t dstOffsetFromAlignedPtr = 0;
bool is3D = false;
auto srcPtr = operationParams.srcPtr;
auto dstPtr = operationParams.dstPtr;
if (operationParams.srcMemObj && operationParams.dstMemObj) {
DEBUG_BREAK_IF(!((srcPtr == nullptr) && (dstPtr == nullptr)));
is3D = (operationParams.size.z > 1) || (operationParams.srcOffset.z > 0) || (operationParams.dstOffset.z > 0);
} else {
if (srcPtr) {
size_t origin[] = {operationParams.srcOffset.x, operationParams.srcOffset.y, operationParams.srcOffset.z};
size_t region[] = {operationParams.size.x, operationParams.size.y, operationParams.size.z};
hostPtrSize = Buffer::calculateHostPtrSize(origin, region, operationParams.srcRowPitch, operationParams.srcSlicePitch);
is3D = (operationParams.size.z > 1) || (operationParams.dstOffset.z > 0);
if (!is3D) {
auto srcPtrOffset = ptrOffset(srcPtr, operationParams.srcOffset.z * operationParams.srcSlicePitch);
srcPtr = alignDown(srcPtrOffset, 4);
srcOffsetFromAlignedPtr = ptrDiff(srcPtrOffset, srcPtr);
}
} else if (dstPtr) {
size_t origin[] = {operationParams.dstOffset.x, operationParams.dstOffset.y, operationParams.dstOffset.z};
size_t region[] = {operationParams.size.x, operationParams.size.y, operationParams.size.z};
hostPtrSize = Buffer::calculateHostPtrSize(origin, region, operationParams.dstRowPitch, operationParams.dstSlicePitch);
is3D = (operationParams.size.z > 1) || (operationParams.srcOffset.z > 0);
if (!is3D) {
auto dstPtrOffset = ptrOffset(dstPtr, operationParams.dstOffset.z * operationParams.dstSlicePitch);
dstPtr = alignDown(dstPtrOffset, 4);
dstOffsetFromAlignedPtr = ptrDiff(dstPtrOffset, dstPtr);
}
} else {
DEBUG_BREAK_IF(!false);
}
}
const uint32_t rootDeviceIndex = clDevice.getRootDeviceIndex();
const int dimensions = is3D ? 3 : 2;
if (this->clDevice.getProductHelper().isCopyBufferRectSplitSupported()) {
DispatchInfoBuilder<SplitDispatch::Dim::d1D, SplitDispatch::SplitMode::kernelSplit> kernelSplit3DBuilder(clDevice);
const auto totalSize = operationParams.size.x * operationParams.size.y * operationParams.size.z;
if (totalSize == 0u) {
return true;
}
const uintptr_t start = reinterpret_cast<uintptr_t>(dstPtr) + operationParams.dstOffset.x;
constexpr size_t middleAlignment = MemoryConstants::cacheLineSize;
constexpr size_t middleElSize = sizeof(uint32_t) * 4;
uintptr_t leftSize = start % middleAlignment;
leftSize = (leftSize > 0) ? (middleAlignment - leftSize) : 0; // calc left leftover size
leftSize = std::min(leftSize, operationParams.size.x); // clamp left leftover size to requested size
uintptr_t rightSize = (start + operationParams.size.x) % middleAlignment; // calc right leftover size
rightSize = std::min(rightSize, operationParams.size.x - leftSize); // clamp
const uintptr_t middleSizeBytes = (operationParams.size.x > leftSize + rightSize) ? operationParams.size.x - leftSize - rightSize : 0u; // calc middle size
// corner case - fully optimized kernel requires DWORD alignment. If we don't have it, run slower, misaligned kernel
const auto srcMiddleStart = reinterpret_cast<uintptr_t>(srcPtr) + operationParams.srcOffset.x + leftSize;
const auto srcMisalignment = srcMiddleStart % sizeof(uint32_t);
const auto srcRowPitchMisalignment = operationParams.srcRowPitch % sizeof(uint32_t);
const auto srcSlicePitchMisalignment = operationParams.srcSlicePitch % sizeof(uint32_t);
const auto dstRowPitchMisalignment = operationParams.dstRowPitch % sizeof(uint32_t);
const auto dstSlicePitchMisalignment = operationParams.dstSlicePitch % sizeof(uint32_t);
const auto isSrcMisaligned = srcMisalignment != 0u || srcRowPitchMisalignment != 0u || srcSlicePitchMisalignment != 0u || dstRowPitchMisalignment != 0u || dstSlicePitchMisalignment != 0u;
;
const auto middleSizeEls = middleSizeBytes / middleElSize; // num work items in middle walker
// Set-up ISA
kernelSplit3DBuilder.setKernel(SplitDispatch::RegionCoordX::left, kernelLeft[dimensions - 1]->getKernel(rootDeviceIndex));
if (isSrcMisaligned) {
kernelSplit3DBuilder.setKernel(SplitDispatch::RegionCoordX::middle, kernelBytes[dimensions - 1]->getKernel(rootDeviceIndex));
} else {
kernelSplit3DBuilder.setKernel(SplitDispatch::RegionCoordX::middle, kernelMiddle[dimensions - 1]->getKernel(rootDeviceIndex));
}
kernelSplit3DBuilder.setKernel(SplitDispatch::RegionCoordX::right, kernelRight[dimensions - 1]->getKernel(rootDeviceIndex));
// arg0 = src
if (operationParams.srcMemObj) {
kernelSplit3DBuilder.setArg(0, operationParams.srcMemObj);
} else {
kernelSplit3DBuilder.setArgSvm(0, hostPtrSize, srcPtr, nullptr, CL_MEM_READ_ONLY);
}
bool isDestinationInSystem = false;
// arg1 = dst
if (operationParams.dstMemObj) {
kernelSplit3DBuilder.setArg(1, operationParams.dstMemObj);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstMemObj->getGraphicsAllocation(rootDeviceIndex)->getAllocationType());
} else {
kernelSplit3DBuilder.setArgSvm(1, hostPtrSize, dstPtr, nullptr, 0u);
isDestinationInSystem = dstPtr != nullptr;
}
kernelSplit3DBuilder.setKernelDestinationArgumentInSystem(isDestinationInSystem);
// arg2 = srcOrigin
OffsetType kSrcOrigin[4] = {static_cast<OffsetType>(operationParams.srcOffset.x + srcOffsetFromAlignedPtr), static_cast<OffsetType>(operationParams.srcOffset.y), static_cast<OffsetType>(operationParams.srcOffset.z), 0};
kernelSplit3DBuilder.setArg(SplitDispatch::RegionCoordX::left, 2, sizeof(OffsetType) * 4, kSrcOrigin);
kSrcOrigin[0] += static_cast<uint32_t>(leftSize);
kernelSplit3DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 2, sizeof(OffsetType) * 4, kSrcOrigin);
kSrcOrigin[0] += static_cast<uint32_t>(middleSizeBytes);
kernelSplit3DBuilder.setArg(SplitDispatch::RegionCoordX::right, 2, sizeof(OffsetType) * 4, kSrcOrigin);
// arg3 = dstOrigin
OffsetType kDstOrigin[4] = {static_cast<OffsetType>(operationParams.dstOffset.x + dstOffsetFromAlignedPtr), static_cast<OffsetType>(operationParams.dstOffset.y), static_cast<OffsetType>(operationParams.dstOffset.z), 0};
kernelSplit3DBuilder.setArg(SplitDispatch::RegionCoordX::left, 3, sizeof(OffsetType) * 4, kDstOrigin);
kDstOrigin[0] += static_cast<uint32_t>(leftSize);
kernelSplit3DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 3, sizeof(OffsetType) * 4, kDstOrigin);
kDstOrigin[0] += static_cast<uint32_t>(middleSizeBytes);
kernelSplit3DBuilder.setArg(SplitDispatch::RegionCoordX::right, 3, sizeof(OffsetType) * 4, kDstOrigin);
// arg4 = srcPitch
OffsetType kSrcPitch[2] = {static_cast<OffsetType>(operationParams.srcRowPitch), static_cast<OffsetType>(operationParams.srcSlicePitch)};
kernelSplit3DBuilder.setArg(4, sizeof(OffsetType) * 2, kSrcPitch);
// arg5 = dstPitch
OffsetType kDstPitch[2] = {static_cast<OffsetType>(operationParams.dstRowPitch), static_cast<OffsetType>(operationParams.dstSlicePitch)};
kernelSplit3DBuilder.setArg(5, sizeof(OffsetType) * 2, kDstPitch);
// Set-up work sizes
kernelSplit3DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::left, Vec3<size_t>{leftSize, operationParams.size.y, operationParams.size.z}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit3DBuilder.getDispatchInfo(0u).setDim(0u);
kernelSplit3DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::middle, Vec3<size_t>{isSrcMisaligned ? middleSizeBytes : middleSizeEls, operationParams.size.y, operationParams.size.z}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit3DBuilder.getDispatchInfo(1u).setDim(0u);
kernelSplit3DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::right, Vec3<size_t>{rightSize, operationParams.size.y, operationParams.size.z}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit3DBuilder.getDispatchInfo(2u).setDim(0u);
kernelSplit3DBuilder.bake(multiDispatchInfo);
UNRECOVERABLE_IF(leftSize + rightSize + middleSizeEls * middleElSize != operationParams.size.x);
return true;
} else {
DispatchInfoBuilder<SplitDispatch::Dim::d3D, SplitDispatch::SplitMode::noSplit> kernelNoSplit3DBuilder(clDevice);
// Set-up ISA
kernelNoSplit3DBuilder.setKernel(kernelBytes[dimensions - 1]->getKernel(rootDeviceIndex));
// arg0 = src
if (operationParams.srcMemObj) {
kernelNoSplit3DBuilder.setArg(0, operationParams.srcMemObj);
} else {
kernelNoSplit3DBuilder.setArgSvm(0, hostPtrSize, srcPtr, nullptr, CL_MEM_READ_ONLY);
}
bool isDestinationInSystem = false;
// arg1 = dst
if (operationParams.dstMemObj) {
kernelNoSplit3DBuilder.setArg(1, operationParams.dstMemObj);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstMemObj->getGraphicsAllocation(rootDeviceIndex)->getAllocationType());
} else {
kernelNoSplit3DBuilder.setArgSvm(1, hostPtrSize, dstPtr, nullptr, 0u);
isDestinationInSystem = dstPtr != nullptr;
}
kernelNoSplit3DBuilder.setKernelDestinationArgumentInSystem(isDestinationInSystem);
// arg2 = srcOrigin
OffsetType kSrcOrigin[4] = {static_cast<OffsetType>(operationParams.srcOffset.x + srcOffsetFromAlignedPtr), static_cast<OffsetType>(operationParams.srcOffset.y), static_cast<OffsetType>(operationParams.srcOffset.z), 0};
kernelNoSplit3DBuilder.setArg(2, sizeof(OffsetType) * 4, kSrcOrigin);
// arg3 = dstOrigin
OffsetType kDstOrigin[4] = {static_cast<OffsetType>(operationParams.dstOffset.x + dstOffsetFromAlignedPtr), static_cast<OffsetType>(operationParams.dstOffset.y), static_cast<OffsetType>(operationParams.dstOffset.z), 0};
kernelNoSplit3DBuilder.setArg(3, sizeof(OffsetType) * 4, kDstOrigin);
// arg4 = srcPitch
OffsetType kSrcPitch[2] = {static_cast<OffsetType>(operationParams.srcRowPitch), static_cast<OffsetType>(operationParams.srcSlicePitch)};
kernelNoSplit3DBuilder.setArg(4, sizeof(OffsetType) * 2, kSrcPitch);
// arg5 = dstPitch
OffsetType kDstPitch[2] = {static_cast<OffsetType>(operationParams.dstRowPitch), static_cast<OffsetType>(operationParams.dstSlicePitch)};
kernelNoSplit3DBuilder.setArg(5, sizeof(OffsetType) * 2, kDstPitch);
// Set-up work sizes
kernelNoSplit3DBuilder.setDispatchGeometry(operationParams.size, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelNoSplit3DBuilder.bake(multiDispatchInfo);
return true;
}
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint32_t>(multiDispatchInfo);
}
protected:
MultiDeviceKernel *kernelBytes[3]{};
MultiDeviceKernel *kernelLeft[3]{};
MultiDeviceKernel *kernelMiddle[3]{};
MultiDeviceKernel *kernelRight[3]{};
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device, bool populateKernels)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
if (populateKernels) {
populate(EBuiltInOps::copyBufferRect,
"",
"CopyBufferRectBytes2d", kernelBytes[0],
"CopyBufferRectBytes2d", kernelBytes[1],
"CopyBufferRectBytes3d", kernelBytes[2],
"CopyBufferRectBytes2d", kernelLeft[0],
"CopyBufferRectBytes2d", kernelLeft[1],
"CopyBufferRectBytes3d", kernelLeft[2],
"CopyBufferRectBytesMiddle2d", kernelMiddle[0],
"CopyBufferRectBytesMiddle2d", kernelMiddle[1],
"CopyBufferRectBytesMiddle3d", kernelMiddle[2],
"CopyBufferRectBytes2d", kernelRight[0],
"CopyBufferRectBytes2d", kernelRight[1],
"CopyBufferRectBytes3d", kernelRight[2]);
}
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferRectStateless> : public BuiltInOp<EBuiltInOps::copyBufferRect> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp<EBuiltInOps::copyBufferRect>(kernelsLib, device, false) {
populate(EBuiltInOps::copyBufferRectStateless,
CompilerOptions::greaterThan4gbBuffersRequired,
"CopyBufferRectBytes2d", kernelBytes[0],
"CopyBufferRectBytes2d", kernelBytes[1],
"CopyBufferRectBytes3d", kernelBytes[2],
"CopyBufferRectBytes2d", kernelLeft[0],
"CopyBufferRectBytes2d", kernelLeft[1],
"CopyBufferRectBytes3d", kernelLeft[2],
"CopyBufferRectBytesMiddle2d", kernelMiddle[0],
"CopyBufferRectBytesMiddle2d", kernelMiddle[1],
"CopyBufferRectBytesMiddle3d", kernelMiddle[2],
"CopyBufferRectBytes2d", kernelRight[0],
"CopyBufferRectBytes2d", kernelRight[1],
"CopyBufferRectBytes3d", kernelRight[2]);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfo);
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferRectStatelessHeapless> : public BuiltInOp<EBuiltInOps::copyBufferRect> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp<EBuiltInOps::copyBufferRect>(kernelsLib, device, false) {
populate(EBuiltInOps::copyBufferRectStatelessHeapless,
CompilerOptions::greaterThan4gbBuffersRequired,
"CopyBufferRectBytes2d", kernelBytes[0],
"CopyBufferRectBytes2d", kernelBytes[1],
"CopyBufferRectBytes3d", kernelBytes[2],
"CopyBufferRectBytes2d", kernelLeft[0],
"CopyBufferRectBytes2d", kernelLeft[1],
"CopyBufferRectBytes3d", kernelLeft[2],
"CopyBufferRectBytesMiddle2d", kernelMiddle[0],
"CopyBufferRectBytesMiddle2d", kernelMiddle[1],
"CopyBufferRectBytesMiddle3d", kernelMiddle[2],
"CopyBufferRectBytes2d", kernelRight[0],
"CopyBufferRectBytes2d", kernelRight[1],
"CopyBufferRectBytes3d", kernelRight[2]);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfo);
}
};
template <>
class BuiltInOp<EBuiltInOps::fillBuffer> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp(kernelsLib, device, true) {}
template <typename OffsetType>
bool buildDispatchInfosTyped(MultiDispatchInfo &multiDispatchInfo) const {
DispatchInfoBuilder<SplitDispatch::Dim::d1D, SplitDispatch::SplitMode::kernelSplit> kernelSplit1DBuilder(clDevice);
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
uintptr_t start = reinterpret_cast<uintptr_t>(operationParams.dstPtr) + operationParams.dstOffset.x;
size_t middleAlignment = MemoryConstants::cacheLineSize;
size_t middleElSize = sizeof(uint32_t);
uintptr_t leftSize = start % middleAlignment;
leftSize = (leftSize > 0) ? (middleAlignment - leftSize) : 0; // calc left leftover size
leftSize = std::min(leftSize, operationParams.size.x); // clamp left leftover size to requested size
uintptr_t rightSize = (start + operationParams.size.x) % middleAlignment; // calc right leftover size
rightSize = std::min(rightSize, operationParams.size.x - leftSize); // clamp
uintptr_t middleSizeBytes = operationParams.size.x - leftSize - rightSize; // calc middle size
auto middleSizeEls = middleSizeBytes / middleElSize; // num work items in middle walker
uint32_t rootDeviceIndex = clDevice.getRootDeviceIndex();
// Set-up ISA
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::left, kernLeftLeftover->getKernel(rootDeviceIndex));
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::middle, kernMiddle->getKernel(rootDeviceIndex));
kernelSplit1DBuilder.setKernel(SplitDispatch::RegionCoordX::right, kernRightLeftover->getKernel(rootDeviceIndex));
DEBUG_BREAK_IF((operationParams.srcMemObj == nullptr) || (operationParams.srcOffset != 0));
DEBUG_BREAK_IF((operationParams.dstMemObj == nullptr) && (operationParams.dstSvmAlloc == nullptr));
bool isDestinationInSystem = false;
// Set-up dstMemObj with buffer
if (operationParams.dstSvmAlloc) {
kernelSplit1DBuilder.setArgSvmAlloc(0, operationParams.dstPtr, operationParams.dstSvmAlloc);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstSvmAlloc->getAllocationType());
} else {
kernelSplit1DBuilder.setArg(0, operationParams.dstMemObj);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstMemObj->getGraphicsAllocation(rootDeviceIndex)->getAllocationType());
}
kernelSplit1DBuilder.setKernelDestinationArgumentInSystem(isDestinationInSystem);
// Set-up dstOffset
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::left, 1, static_cast<OffsetType>(operationParams.dstOffset.x));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 1, static_cast<OffsetType>(operationParams.dstOffset.x + leftSize));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::right, 1, static_cast<OffsetType>(operationParams.dstOffset.x + leftSize + middleSizeBytes));
// Set-up srcMemObj with pattern
auto graphicsAllocation = operationParams.srcMemObj->getMultiGraphicsAllocation().getDefaultGraphicsAllocation();
kernelSplit1DBuilder.setArgSvm(2, operationParams.srcMemObj->getSize(), reinterpret_cast<void *>(graphicsAllocation->getGpuAddressToPatch()), graphicsAllocation, CL_MEM_READ_ONLY);
// Set-up patternSizeInEls
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::left, 3, static_cast<OffsetType>(operationParams.srcMemObj->getSize()));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::middle, 3, static_cast<OffsetType>(operationParams.srcMemObj->getSize() / middleElSize));
kernelSplit1DBuilder.setArg(SplitDispatch::RegionCoordX::right, 3, static_cast<OffsetType>(operationParams.srcMemObj->getSize()));
// Set-up work sizes
// Note for split walker, it would be just builder.SetDipatchGeomtry(GWS, ELWS, OFFSET)
kernelSplit1DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::left, Vec3<size_t>{leftSize, 0, 0}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit1DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::middle, Vec3<size_t>{middleSizeEls, 0, 0}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit1DBuilder.setDispatchGeometry(SplitDispatch::RegionCoordX::right, Vec3<size_t>{rightSize, 0, 0}, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelSplit1DBuilder.bake(multiDispatchInfo);
return true;
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint32_t>(multiDispatchInfo);
}
protected:
MultiDeviceKernel *kernLeftLeftover = nullptr;
MultiDeviceKernel *kernMiddle = nullptr;
MultiDeviceKernel *kernRightLeftover = nullptr;
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device, bool populateKernels)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
if (populateKernels) {
populate(EBuiltInOps::fillBuffer,
"",
"FillBufferLeftLeftover", kernLeftLeftover,
"FillBufferMiddle", kernMiddle,
"FillBufferRightLeftover", kernRightLeftover);
}
}
};
template <>
class BuiltInOp<EBuiltInOps::fillBufferStateless> : public BuiltInOp<EBuiltInOps::fillBuffer> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device) : BuiltInOp<EBuiltInOps::fillBuffer>(kernelsLib, device, false) {
populate(EBuiltInOps::fillBufferStateless,
CompilerOptions::greaterThan4gbBuffersRequired,
"FillBufferLeftLeftover", kernLeftLeftover,
"FillBufferMiddle", kernMiddle,
"FillBufferRightLeftover", kernRightLeftover);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfos) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfos);
}
};
template <>
class BuiltInOp<EBuiltInOps::fillBufferStatelessHeapless> : public BuiltInOp<EBuiltInOps::fillBuffer> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device) : BuiltInOp<EBuiltInOps::fillBuffer>(kernelsLib, device, false) {
populate(EBuiltInOps::fillBufferStatelessHeapless,
CompilerOptions::greaterThan4gbBuffersRequired,
"FillBufferLeftLeftover", kernLeftLeftover,
"FillBufferMiddle", kernMiddle,
"FillBufferRightLeftover", kernRightLeftover);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfos) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfos);
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferToImage3d> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp(kernelsLib, device, true) {}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint32_t>(multiDispatchInfo);
}
protected:
MultiDeviceKernel *kernelBytes[5] = {nullptr};
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device, bool populateKernels)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
if (populateKernels) {
populate(EBuiltInOps::copyBufferToImage3d,
"",
"CopyBufferToImage3dBytes", kernelBytes[0],
"CopyBufferToImage3d2Bytes", kernelBytes[1],
"CopyBufferToImage3d4Bytes", kernelBytes[2],
"CopyBufferToImage3d8Bytes", kernelBytes[3],
"CopyBufferToImage3d16Bytes", kernelBytes[4]);
}
}
template <typename OffsetType>
bool buildDispatchInfosTyped(MultiDispatchInfo &multiDispatchInfo) const {
DispatchInfoBuilder<SplitDispatch::Dim::d3D, SplitDispatch::SplitMode::noSplit> kernelNoSplit3DBuilder(clDevice);
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
DEBUG_BREAK_IF(!(((operationParams.srcPtr != nullptr) || (operationParams.srcMemObj != nullptr)) && (operationParams.dstPtr == nullptr)));
auto dstImage = castToObjectOrAbort<Image>(operationParams.dstMemObj);
// Redescribe image to be byte-copy
auto dstImageRedescribed = dstImage->redescribe();
multiDispatchInfo.pushRedescribedMemObj(std::unique_ptr<MemObj>(dstImageRedescribed)); // life range same as mdi's
// Calculate srcRowPitch and srcSlicePitch
auto bytesPerPixel = dstImage->getSurfaceFormatInfo().surfaceFormat.imageElementSizeInBytes;
size_t region[] = {operationParams.size.x, operationParams.size.y, operationParams.size.z};
auto srcRowPitch = operationParams.srcRowPitch ? operationParams.srcRowPitch : region[0] * bytesPerPixel;
auto srcSlicePitch =
operationParams.srcSlicePitch ? operationParams.srcSlicePitch : ((dstImage->getImageDesc().image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY ? 1 : region[1]) * srcRowPitch);
// Determine size of host ptr surface for residency purposes
size_t hostPtrSize = operationParams.srcPtr ? Image::calculateHostPtrSize(region, srcRowPitch, srcSlicePitch, bytesPerPixel, dstImage->getImageDesc().image_type) : 0;
hostPtrSize += operationParams.srcOffset.x;
// Set-up kernel
auto bytesExponent = Math::log2(bytesPerPixel);
DEBUG_BREAK_IF(bytesExponent >= 5);
kernelNoSplit3DBuilder.setKernel(kernelBytes[bytesExponent]->getKernel(clDevice.getRootDeviceIndex()));
// Set-up source host ptr / buffer
if (operationParams.srcPtr) {
kernelNoSplit3DBuilder.setArgSvm(0, hostPtrSize, operationParams.srcPtr, nullptr, CL_MEM_READ_ONLY);
} else {
kernelNoSplit3DBuilder.setArg(0, operationParams.srcMemObj);
}
// Set-up destination image
kernelNoSplit3DBuilder.setArg(1, dstImageRedescribed, operationParams.dstMipLevel);
// Set-up srcOffset
kernelNoSplit3DBuilder.setArg(2, static_cast<OffsetType>(operationParams.srcOffset.x));
// Set-up dstOrigin
{
uint32_t origin[] = {
static_cast<uint32_t>(operationParams.dstOffset.x),
static_cast<uint32_t>(operationParams.dstOffset.y),
static_cast<uint32_t>(operationParams.dstOffset.z),
0};
kernelNoSplit3DBuilder.setArg(3, sizeof(origin), origin);
}
// Set-up srcRowPitch
{
OffsetType pitch[] = {
static_cast<OffsetType>(srcRowPitch),
static_cast<OffsetType>(srcSlicePitch)};
kernelNoSplit3DBuilder.setArg(4, sizeof(pitch), pitch);
}
// Set-up work sizes
kernelNoSplit3DBuilder.setDispatchGeometry(operationParams.size, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelNoSplit3DBuilder.bake(multiDispatchInfo);
return true;
}
};
template <>
class BuiltInOp<EBuiltInOps::copyBufferToImage3dStateless> : public BuiltInOp<EBuiltInOps::copyBufferToImage3d> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp<EBuiltInOps::copyBufferToImage3d>(kernelsLib, device, false) {
populate(EBuiltInOps::copyBufferToImage3dStateless,
CompilerOptions::greaterThan4gbBuffersRequired,
"CopyBufferToImage3dBytes", kernelBytes[0],
"CopyBufferToImage3d2Bytes", kernelBytes[1],
"CopyBufferToImage3d4Bytes", kernelBytes[2],
"CopyBufferToImage3d8Bytes", kernelBytes[3],
"CopyBufferToImage3d16Bytes", kernelBytes[4]);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfo);
}
};
template <>
class BuiltInOp<EBuiltInOps::copyImage3dToBuffer> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp(kernelsLib, device, true) {}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint32_t>(multiDispatchInfo);
}
protected:
MultiDeviceKernel *kernelBytes[5] = {nullptr};
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device, bool populateKernels)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
if (populateKernels) {
populate(EBuiltInOps::copyImage3dToBuffer,
"",
"CopyImage3dToBufferBytes", kernelBytes[0],
"CopyImage3dToBuffer2Bytes", kernelBytes[1],
"CopyImage3dToBuffer4Bytes", kernelBytes[2],
"CopyImage3dToBuffer8Bytes", kernelBytes[3],
"CopyImage3dToBuffer16Bytes", kernelBytes[4]);
}
}
template <typename OffsetType>
bool buildDispatchInfosTyped(MultiDispatchInfo &multiDispatchInfo) const {
DispatchInfoBuilder<SplitDispatch::Dim::d3D, SplitDispatch::SplitMode::noSplit> kernelNoSplit3DBuilder(clDevice);
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
DEBUG_BREAK_IF(!((operationParams.srcPtr == nullptr) && ((operationParams.dstPtr != nullptr) || (operationParams.dstMemObj != nullptr))));
auto srcImage = castToObjectOrAbort<Image>(operationParams.srcMemObj);
// Redescribe image to be byte-copy
auto srcImageRedescribed = srcImage->redescribe();
multiDispatchInfo.pushRedescribedMemObj(std::unique_ptr<MemObj>(srcImageRedescribed)); // life range same as mdi's
// Calculate dstRowPitch and dstSlicePitch
auto bytesPerPixel = srcImage->getSurfaceFormatInfo().surfaceFormat.imageElementSizeInBytes;
size_t region[] = {operationParams.size.x, operationParams.size.y, operationParams.size.z};
auto dstRowPitch = operationParams.dstRowPitch ? operationParams.dstRowPitch : region[0] * bytesPerPixel;
auto dstSlicePitch =
operationParams.dstSlicePitch ? operationParams.dstSlicePitch : ((srcImage->getImageDesc().image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY ? 1 : region[1]) * dstRowPitch);
// Determine size of host ptr surface for residency purposes
size_t hostPtrSize = operationParams.dstPtr ? Image::calculateHostPtrSize(region, dstRowPitch, dstSlicePitch, bytesPerPixel, srcImage->getImageDesc().image_type) : 0;
hostPtrSize += operationParams.dstOffset.x;
uint32_t rootDeviceIndex = clDevice.getRootDeviceIndex();
// Set-up ISA
auto bytesExponent = Math::log2(bytesPerPixel);
DEBUG_BREAK_IF(bytesExponent >= 5);
kernelNoSplit3DBuilder.setKernel(kernelBytes[bytesExponent]->getKernel(rootDeviceIndex));
// Set-up source image
kernelNoSplit3DBuilder.setArg(0, srcImageRedescribed, operationParams.srcMipLevel);
bool isDestinationInSystem = false;
// Set-up destination host ptr / buffer
if (operationParams.dstPtr) {
kernelNoSplit3DBuilder.setArgSvm(1, hostPtrSize, operationParams.dstPtr, nullptr, 0u);
isDestinationInSystem = operationParams.dstPtr != nullptr;
} else {
kernelNoSplit3DBuilder.setArg(1, operationParams.dstMemObj);
isDestinationInSystem = Kernel::graphicsAllocationTypeUseSystemMemory(operationParams.dstMemObj->getGraphicsAllocation(rootDeviceIndex)->getAllocationType());
}
kernelNoSplit3DBuilder.setKernelDestinationArgumentInSystem(isDestinationInSystem);
// Set-up srcOrigin
{
uint32_t origin[] = {
static_cast<uint32_t>(operationParams.srcOffset.x),
static_cast<uint32_t>(operationParams.srcOffset.y),
static_cast<uint32_t>(operationParams.srcOffset.z),
0};
kernelNoSplit3DBuilder.setArg(2, sizeof(origin), origin);
}
// Set-up dstOffset
kernelNoSplit3DBuilder.setArg(3, static_cast<OffsetType>(operationParams.dstOffset.x));
// Set-up dstRowPitch
{
OffsetType pitch[] = {
static_cast<OffsetType>(dstRowPitch),
static_cast<OffsetType>(dstSlicePitch)};
kernelNoSplit3DBuilder.setArg(4, sizeof(pitch), pitch);
}
// Set-up work sizes
kernelNoSplit3DBuilder.setDispatchGeometry(operationParams.size, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelNoSplit3DBuilder.bake(multiDispatchInfo);
return true;
}
};
template <>
class BuiltInOp<EBuiltInOps::copyImage3dToBufferStateless> : public BuiltInOp<EBuiltInOps::copyImage3dToBuffer> {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltInOp<EBuiltInOps::copyImage3dToBuffer>(kernelsLib, device, false) {
populate(EBuiltInOps::copyImage3dToBufferStateless,
CompilerOptions::greaterThan4gbBuffersRequired,
"CopyImage3dToBufferBytes", kernelBytes[0],
"CopyImage3dToBuffer2Bytes", kernelBytes[1],
"CopyImage3dToBuffer4Bytes", kernelBytes[2],
"CopyImage3dToBuffer8Bytes", kernelBytes[3],
"CopyImage3dToBuffer16Bytes", kernelBytes[4]);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
return buildDispatchInfosTyped<uint64_t>(multiDispatchInfo);
}
};
template <>
class BuiltInOp<EBuiltInOps::copyImageToImage3d> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
populate(EBuiltInOps::copyImageToImage3d,
"",
"CopyImageToImage3d", kernel);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
DispatchInfoBuilder<SplitDispatch::Dim::d3D, SplitDispatch::SplitMode::noSplit> kernelNoSplit3DBuilder(clDevice);
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
DEBUG_BREAK_IF(!((operationParams.srcPtr == nullptr) && (operationParams.dstPtr == nullptr)));
auto srcImage = castToObjectOrAbort<Image>(operationParams.srcMemObj);
auto dstImage = castToObjectOrAbort<Image>(operationParams.dstMemObj);
// Redescribe images to be byte-copies
auto srcImageRedescribed = srcImage->redescribe();
auto dstImageRedescribed = dstImage->redescribe();
multiDispatchInfo.pushRedescribedMemObj(std::unique_ptr<MemObj>(srcImageRedescribed)); // life range same as mdi's
multiDispatchInfo.pushRedescribedMemObj(std::unique_ptr<MemObj>(dstImageRedescribed)); // life range same as mdi's
// Set-up kernel
kernelNoSplit3DBuilder.setKernel(kernel->getKernel(clDevice.getRootDeviceIndex()));
// Set-up source image
kernelNoSplit3DBuilder.setArg(0, srcImageRedescribed, operationParams.srcMipLevel);
// Set-up destination image
kernelNoSplit3DBuilder.setArg(1, dstImageRedescribed, operationParams.dstMipLevel);
// Set-up srcOrigin
{
uint32_t origin[] = {
static_cast<uint32_t>(operationParams.srcOffset.x),
static_cast<uint32_t>(operationParams.srcOffset.y),
static_cast<uint32_t>(operationParams.srcOffset.z),
0};
kernelNoSplit3DBuilder.setArg(2, sizeof(origin), origin);
}
// Set-up dstOrigin
{
uint32_t origin[] = {
static_cast<uint32_t>(operationParams.dstOffset.x),
static_cast<uint32_t>(operationParams.dstOffset.y),
static_cast<uint32_t>(operationParams.dstOffset.z),
0};
kernelNoSplit3DBuilder.setArg(3, sizeof(origin), origin);
}
// Set-up work sizes
kernelNoSplit3DBuilder.setDispatchGeometry(operationParams.size, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelNoSplit3DBuilder.bake(multiDispatchInfo);
return true;
}
protected:
MultiDeviceKernel *kernel = nullptr;
};
template <>
class BuiltInOp<EBuiltInOps::fillImage3d> : public BuiltinDispatchInfoBuilder {
public:
BuiltInOp(BuiltIns &kernelsLib, ClDevice &device)
: BuiltinDispatchInfoBuilder(kernelsLib, device) {
populate(EBuiltInOps::fillImage3d,
"",
"FillImage3d", kernel);
}
bool buildDispatchInfos(MultiDispatchInfo &multiDispatchInfo) const override {
DispatchInfoBuilder<SplitDispatch::Dim::d3D, SplitDispatch::SplitMode::noSplit> kernelNoSplit3DBuilder(clDevice);
auto &operationParams = multiDispatchInfo.peekBuiltinOpParams();
DEBUG_BREAK_IF(!((operationParams.srcMemObj == nullptr) && (operationParams.srcPtr != nullptr) && (operationParams.dstPtr == nullptr)));
auto image = castToObjectOrAbort<Image>(operationParams.dstMemObj);
// Redescribe image to be byte-copy
auto imageRedescribed = image->redescribeFillImage();
multiDispatchInfo.pushRedescribedMemObj(std::unique_ptr<MemObj>(imageRedescribed));
// Set-up kernel
kernelNoSplit3DBuilder.setKernel(kernel->getKernel(clDevice.getRootDeviceIndex()));
// Set-up destination image
kernelNoSplit3DBuilder.setArg(0, imageRedescribed);
// Set-up fill color
int iFillColor[4] = {0};
const void *fillColor = operationParams.srcPtr;
convertFillColor(fillColor,
iFillColor,
image->getSurfaceFormatInfo().oclImageFormat,
imageRedescribed->getSurfaceFormatInfo().oclImageFormat);
kernelNoSplit3DBuilder.setArg(1, 4 * sizeof(int32_t), iFillColor);
// Set-up dstOffset
{
uint32_t offset[] = {
static_cast<uint32_t>(operationParams.dstOffset.x),
static_cast<uint32_t>(operationParams.dstOffset.y),
static_cast<uint32_t>(operationParams.dstOffset.z),
0};
kernelNoSplit3DBuilder.setArg(2, sizeof(offset), offset);
}
// Set-up work sizes
kernelNoSplit3DBuilder.setDispatchGeometry(operationParams.size, Vec3<size_t>{0, 0, 0}, Vec3<size_t>{0, 0, 0});
kernelNoSplit3DBuilder.bake(multiDispatchInfo);
return true;
}
protected:
MultiDeviceKernel *kernel = nullptr;
};
BuiltinDispatchInfoBuilder &BuiltInDispatchBuilderOp::getBuiltinDispatchInfoBuilder(EBuiltInOps::Type operation, ClDevice &device) {
uint32_t operationId = static_cast<uint32_t>(operation);
auto &builtins = *device.getDevice().getBuiltIns();
auto clExecutionEnvironment = static_cast<ClExecutionEnvironment *>(device.getExecutionEnvironment());
auto &operationBuilder = clExecutionEnvironment->peekBuilders(device.getRootDeviceIndex())[operationId];
switch (operation) {
case EBuiltInOps::copyBufferToBuffer:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferToBuffer>>(builtins, device); });
break;
case EBuiltInOps::copyBufferToBufferStateless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferToBufferStateless>>(builtins, device); });
break;
case EBuiltInOps::copyBufferToBufferStatelessHeapless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferToBufferStatelessHeapless>>(builtins, device); });
break;
case EBuiltInOps::copyBufferRect:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferRect>>(builtins, device); });
break;
case EBuiltInOps::copyBufferRectStateless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferRectStateless>>(builtins, device); });
break;
case EBuiltInOps::copyBufferRectStatelessHeapless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferRectStatelessHeapless>>(builtins, device); });
break;
case EBuiltInOps::fillBuffer:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::fillBuffer>>(builtins, device); });
break;
case EBuiltInOps::fillBufferStateless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::fillBufferStateless>>(builtins, device); });
break;
case EBuiltInOps::fillBufferStatelessHeapless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::fillBufferStatelessHeapless>>(builtins, device); });
break;
case EBuiltInOps::copyBufferToImage3d:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferToImage3d>>(builtins, device); });
break;
case EBuiltInOps::copyBufferToImage3dStateless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyBufferToImage3dStateless>>(builtins, device); });
break;
case EBuiltInOps::copyImage3dToBuffer:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyImage3dToBuffer>>(builtins, device); });
break;
case EBuiltInOps::copyImage3dToBufferStateless:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyImage3dToBufferStateless>>(builtins, device); });
break;
case EBuiltInOps::copyImageToImage3d:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::copyImageToImage3d>>(builtins, device); });
break;
case EBuiltInOps::fillImage3d:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::fillImage3d>>(builtins, device); });
break;
case EBuiltInOps::auxTranslation:
std::call_once(operationBuilder.second, [&] { operationBuilder.first = std::make_unique<BuiltInOp<EBuiltInOps::auxTranslation>>(builtins, device); });
break;
default:
UNRECOVERABLE_IF("getBuiltinDispatchInfoBuilder failed");
}
return *operationBuilder.first;
}
BuiltInOwnershipWrapper::BuiltInOwnershipWrapper(BuiltinDispatchInfoBuilder &inputBuilder, Context *context) {
takeOwnership(inputBuilder, context);
}
BuiltInOwnershipWrapper::~BuiltInOwnershipWrapper() {
if (builder) {
for (auto &kernel : builder->peekUsedKernels()) {
kernel->releaseOwnership();
}
if (!builder->peekUsedKernels().empty()) {
builder->peekUsedKernels()[0]->getProgram()->setContext(nullptr);
builder->peekUsedKernels()[0]->getProgram()->releaseOwnership();
}
}
}
void BuiltInOwnershipWrapper::takeOwnership(BuiltinDispatchInfoBuilder &inputBuilder, Context *context) {
UNRECOVERABLE_IF(builder);
builder = &inputBuilder;
if (!builder->peekUsedKernels().empty()) {
builder->peekUsedKernels()[0]->getProgram()->takeOwnership();
builder->peekUsedKernels()[0]->getProgram()->setContext(context);
}
for (auto &kernel : builder->peekUsedKernels()) {
kernel->takeOwnership();
}
}
std::unique_ptr<Program> BuiltinDispatchInfoBuilder::createProgramFromCode(const BuiltinCode &bc, const ClDeviceVector &deviceVector) {
std::unique_ptr<Program> ret;
const char *data = bc.resource.data();
size_t dataLen = bc.resource.size();
cl_int err = 0;
switch (bc.type) {
default:
break;
case BuiltinCode::ECodeType::source:
case BuiltinCode::ECodeType::intermediate:
ret.reset(Program::createBuiltInFromSource(data, nullptr, deviceVector, &err));
break;
case BuiltinCode::ECodeType::binary:
ret.reset(Program::createBuiltInFromGenBinary(nullptr, deviceVector, data, dataLen, &err));
break;
}
return ret;
}
} // namespace NEO