compute-runtime/unit_tests/helpers/timestamp_packet_tests.cpp

991 lines
45 KiB
C++

/*
* Copyright (C) 2018 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "runtime/command_queue/gpgpu_walker.h"
#include "runtime/command_queue/hardware_interface.h"
#include "runtime/event/user_event.h"
#include "runtime/helpers/options.h"
#include "runtime/helpers/timestamp_packet.h"
#include "runtime/utilities/tag_allocator.h"
#include "unit_tests/helpers/hw_parse.h"
#include "unit_tests/mocks/mock_context.h"
#include "unit_tests/mocks/mock_device.h"
#include "unit_tests/mocks/mock_command_queue.h"
#include "unit_tests/mocks/mock_kernel.h"
#include "unit_tests/mocks/mock_mdi.h"
#include "unit_tests/mocks/mock_memory_manager.h"
#include "gmock/gmock.h"
#include "test.h"
using namespace OCLRT;
struct TimestampPacketSimpleTests : public ::testing::Test {
class MockTimestampPacket : public TimestampPacket {
public:
using TimestampPacket::data;
using TimestampPacket::implicitDependenciesCount;
};
template <typename TagType = TimestampPacket>
class MockTagAllocator : public TagAllocator<TagType> {
public:
using BaseClass = TagAllocator<TagType>;
using BaseClass::freeTags;
using BaseClass::usedTags;
using NodeType = typename BaseClass::NodeType;
MockTagAllocator(MemoryManager *memoryManager, size_t tagCount = 10) : BaseClass(memoryManager, tagCount, 10) {}
void returnTag(NodeType *node) override {
releaseReferenceNodes.push_back(node);
BaseClass::returnTag(node);
}
void returnTagToFreePool(NodeType *node) override {
returnedToFreePoolNodes.push_back(node);
BaseClass::returnTagToFreePool(node);
}
std::vector<NodeType *> releaseReferenceNodes;
std::vector<NodeType *> returnedToFreePoolNodes;
};
class MockTimestampPacketContainer : public TimestampPacketContainer {
public:
using TimestampPacketContainer::timestampPacketNodes;
MockTimestampPacketContainer(MemoryManager *memoryManager, size_t numberOfPreallocatedTags) : TimestampPacketContainer(memoryManager) {
for (size_t i = 0; i < numberOfPreallocatedTags; i++) {
add(memoryManager->obtainTimestampPacketAllocator(3)->getTag());
}
}
TagNode<TimestampPacket> *getNode(size_t position) {
return timestampPacketNodes.at(position);
}
};
void setTagToReadyState(TimestampPacket *tag) {
memset(reinterpret_cast<void *>(tag->pickAddressForDataWrite(TimestampPacket::DataIndex::ContextStart)), 0, timestampDataSize);
auto dependenciesCount = reinterpret_cast<std::atomic<uint32_t> *>(reinterpret_cast<void *>(tag->pickImplicitDependenciesCountWriteAddress()));
dependenciesCount->store(0);
}
const size_t timestampDataSize = sizeof(uint32_t) * static_cast<size_t>(TimestampPacket::DataIndex::Max);
const size_t gws[3] = {1, 1, 1};
};
struct TimestampPacketTests : public TimestampPacketSimpleTests {
void SetUp() override {
executionEnvironment.incRefInternal();
device = std::unique_ptr<MockDevice>(Device::create<MockDevice>(nullptr, &executionEnvironment, 0u));
context = std::make_unique<MockContext>(device.get());
kernel = std::make_unique<MockKernelWithInternals>(*device, context.get());
mockCmdQ = std::make_unique<MockCommandQueue>(context.get(), device.get(), nullptr);
}
template <typename MI_SEMAPHORE_WAIT>
void verifySemaphore(MI_SEMAPHORE_WAIT *semaphoreCmd, TimestampPacket *timestampPacket) {
EXPECT_NE(nullptr, semaphoreCmd);
EXPECT_EQ(semaphoreCmd->getCompareOperation(), MI_SEMAPHORE_WAIT::COMPARE_OPERATION::COMPARE_OPERATION_SAD_NOT_EQUAL_SDD);
EXPECT_EQ(1u, semaphoreCmd->getSemaphoreDataDword());
EXPECT_EQ(timestampPacket->pickAddressForDataWrite(TimestampPacket::DataIndex::ContextEnd),
semaphoreCmd->getSemaphoreGraphicsAddress());
};
template <typename MI_ATOMIC>
void verifyMiAtomic(MI_ATOMIC *miAtomicCmd, TimestampPacket *timestampPacket) {
EXPECT_NE(nullptr, miAtomicCmd);
auto writeAddress = timestampPacket->pickImplicitDependenciesCountWriteAddress();
EXPECT_EQ(MI_ATOMIC::ATOMIC_OPCODES::ATOMIC_4B_DECREMENT, miAtomicCmd->getAtomicOpcode());
EXPECT_EQ(static_cast<uint32_t>(writeAddress & 0x0000FFFFFFFFULL), miAtomicCmd->getMemoryAddress());
EXPECT_EQ(static_cast<uint32_t>(writeAddress >> 32), miAtomicCmd->getMemoryAddressHigh());
};
void verifyDependencyCounterValues(TimestampPacketContainer *timestampPacketContainer, uint32_t expectedValue) {
auto &nodes = timestampPacketContainer->peekNodes();
EXPECT_NE(0u, nodes.size());
for (auto &node : nodes) {
auto dependenciesCount = reinterpret_cast<std::atomic<uint32_t> *>(reinterpret_cast<void *>(node->tag->pickImplicitDependenciesCountWriteAddress()));
EXPECT_EQ(expectedValue, dependenciesCount->load());
}
}
ExecutionEnvironment executionEnvironment;
std::unique_ptr<MockDevice> device;
std::unique_ptr<MockContext> context;
std::unique_ptr<MockKernelWithInternals> kernel;
std::unique_ptr<MockCommandQueue> mockCmdQ;
};
TEST_F(TimestampPacketSimpleTests, whenEndTagIsNotOneThenCanBeReleased) {
MockTimestampPacket timestampPacket;
auto contextEndIndex = static_cast<uint32_t>(TimestampPacket::DataIndex::ContextEnd);
auto globalEndIndex = static_cast<uint32_t>(TimestampPacket::DataIndex::GlobalEnd);
timestampPacket.data[contextEndIndex] = 1;
timestampPacket.data[globalEndIndex] = 1;
EXPECT_FALSE(timestampPacket.canBeReleased());
timestampPacket.data[contextEndIndex] = 1;
timestampPacket.data[globalEndIndex] = 0;
EXPECT_FALSE(timestampPacket.canBeReleased());
timestampPacket.data[contextEndIndex] = 0;
timestampPacket.data[globalEndIndex] = 1;
EXPECT_FALSE(timestampPacket.canBeReleased());
timestampPacket.data[contextEndIndex] = 0;
timestampPacket.data[globalEndIndex] = 0;
EXPECT_TRUE(timestampPacket.canBeReleased());
}
TEST_F(TimestampPacketSimpleTests, givenImplicitDependencyWhenEndTagIsWrittenThenCantBeReleased) {
MockTimestampPacket timestampPacket;
auto contextEndIndex = static_cast<uint32_t>(TimestampPacket::DataIndex::ContextEnd);
auto globalEndIndex = static_cast<uint32_t>(TimestampPacket::DataIndex::GlobalEnd);
timestampPacket.data[contextEndIndex] = 0;
timestampPacket.data[globalEndIndex] = 0;
timestampPacket.implicitDependenciesCount.store(1);
EXPECT_FALSE(timestampPacket.canBeReleased());
timestampPacket.implicitDependenciesCount.store(0);
EXPECT_TRUE(timestampPacket.canBeReleased());
}
TEST_F(TimestampPacketSimpleTests, whenNewTagIsTakenThenReinitialize) {
MockMemoryManager memoryManager;
MockTagAllocator<MockTimestampPacket> allocator(&memoryManager, 1);
auto firstNode = allocator.getTag();
for (uint32_t i = 0; i < static_cast<uint32_t>(TimestampPacket::DataIndex::Max) * TimestampPacketSizeControl::preferedChunkCount; i++) {
firstNode->tag->data[i] = i;
}
auto dependenciesCount = reinterpret_cast<std::atomic<uint32_t> *>(reinterpret_cast<void *>(firstNode->tag->pickImplicitDependenciesCountWriteAddress()));
setTagToReadyState(firstNode->tag);
allocator.returnTag(firstNode);
(*dependenciesCount)++;
auto secondNode = allocator.getTag();
EXPECT_EQ(secondNode, firstNode);
EXPECT_EQ(0u, dependenciesCount->load());
for (uint32_t i = 0; i < static_cast<uint32_t>(TimestampPacket::DataIndex::Max) * TimestampPacketSizeControl::preferedChunkCount; i++) {
EXPECT_EQ(1u, secondNode->tag->data[i]);
}
}
TEST_F(TimestampPacketSimpleTests, whenObjectIsCreatedThenInitializeAllStamps) {
MockTimestampPacket timestampPacket;
auto entityElements = static_cast<uint32_t>(TimestampPacket::DataIndex::Max);
auto allElements = entityElements * TimestampPacketSizeControl::preferedChunkCount;
EXPECT_EQ(4u, entityElements);
EXPECT_EQ(64u, allElements);
EXPECT_EQ(allElements, timestampPacket.data.size());
for (uint32_t i = 0; i < allElements; i++) {
EXPECT_EQ(1u, timestampPacket.data[i]);
}
}
TEST_F(TimestampPacketSimpleTests, whenAskedForStampAddressThenReturnWithValidOffset) {
MockTimestampPacket timestampPacket;
for (size_t i = 0; i < static_cast<uint32_t>(TimestampPacket::DataIndex::Max); i++) {
auto address = timestampPacket.pickAddressForDataWrite(static_cast<TimestampPacket::DataIndex>(i));
EXPECT_EQ(address, reinterpret_cast<uint64_t>(&timestampPacket.data[i]));
}
}
HWTEST_F(TimestampPacketTests, asd) {
class MyMockMemoryManager : public OsAgnosticMemoryManager {
public:
MyMockMemoryManager(ExecutionEnvironment &executionEnvironment) : OsAgnosticMemoryManager(false, false, executionEnvironment){};
TagAllocator<TimestampPacket> *obtainTimestampPacketAllocator(size_t poolSize) override {
requestedPoolSize = poolSize;
return OsAgnosticMemoryManager::obtainTimestampPacketAllocator(poolSize);
}
size_t requestedPoolSize = 0;
};
auto myMockMemoryManager = new MyMockMemoryManager(executionEnvironment);
device->injectMemoryManager(myMockMemoryManager);
context->setMemoryManager(myMockMemoryManager);
TimestampPacketContainer previousNodes(device->getMemoryManager());
mockCmdQ->timestampPacketContainer = std::make_unique<MockTimestampPacketContainer>(myMockMemoryManager, 0);
mockCmdQ->obtainNewTimestampPacketNodes(1, previousNodes);
EXPECT_EQ(device->getUltCommandStreamReceiver<FamilyType>().getPreferredTagPoolSize(), myMockMemoryManager->requestedPoolSize);
}
HWCMDTEST_F(IGFX_GEN8_CORE, TimestampPacketTests, givenTimestampPacketWriteEnabledWhenEstimatingStreamSizeThenAddPipeControl) {
MockKernelWithInternals kernel2(*device);
MockMultiDispatchInfo multiDispatchInfo(std::vector<Kernel *>({kernel->mockKernel, kernel2.mockKernel}));
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = false;
getCommandStream<FamilyType, CL_COMMAND_NDRANGE_KERNEL>(*mockCmdQ, 0, false, false, multiDispatchInfo);
auto sizeWithDisabled = mockCmdQ->requestedCmdStreamSize;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
getCommandStream<FamilyType, CL_COMMAND_NDRANGE_KERNEL>(*mockCmdQ, 0, false, false, multiDispatchInfo);
auto sizeWithEnabled = mockCmdQ->requestedCmdStreamSize;
auto extendedSize = sizeWithDisabled + sizeof(typename FamilyType::PIPE_CONTROL) +
sizeof(typename FamilyType::MI_SEMAPHORE_WAIT) + sizeof(typename FamilyType::MI_ATOMIC);
EXPECT_EQ(sizeWithEnabled, extendedSize);
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledAndOoqWhenEstimatingStreamSizeDontDontAddAdditionalSize) {
MockMultiDispatchInfo multiDispatchInfo(std::vector<Kernel *>({kernel->mockKernel}));
mockCmdQ->setOoqEnabled();
cl_uint numEventsOnWaitlist = 5;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = false;
getCommandStream<FamilyType, CL_COMMAND_NDRANGE_KERNEL>(*mockCmdQ, numEventsOnWaitlist, false, false, multiDispatchInfo);
auto sizeWithDisabled = mockCmdQ->requestedCmdStreamSize;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
getCommandStream<FamilyType, CL_COMMAND_NDRANGE_KERNEL>(*mockCmdQ, numEventsOnWaitlist, false, false, multiDispatchInfo);
auto sizeWithEnabled = mockCmdQ->requestedCmdStreamSize;
size_t extendedSize = sizeWithDisabled + EnqueueOperation<FamilyType>::getSizeRequiredForTimestampPacketWrite() +
(numEventsOnWaitlist * (sizeof(typename FamilyType::MI_SEMAPHORE_WAIT) + sizeof(typename FamilyType::MI_ATOMIC)));
EXPECT_EQ(sizeWithEnabled, extendedSize);
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledWhenEstimatingStreamSizeWithWaitlistThenAddSizeForSemaphores) {
MockKernelWithInternals kernel2(*device);
MockMultiDispatchInfo multiDispatchInfo(std::vector<Kernel *>({kernel->mockKernel, kernel2.mockKernel}));
cl_uint numEventsOnWaitlist = 5;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = false;
getCommandStream<FamilyType, CL_COMMAND_NDRANGE_KERNEL>(*mockCmdQ, numEventsOnWaitlist, false, false, multiDispatchInfo);
auto sizeWithDisabled = mockCmdQ->requestedCmdStreamSize;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
getCommandStream<FamilyType, CL_COMMAND_NDRANGE_KERNEL>(*mockCmdQ, numEventsOnWaitlist, false, false, multiDispatchInfo);
auto sizeWithEnabled = mockCmdQ->requestedCmdStreamSize;
size_t extendedSize = sizeWithDisabled + EnqueueOperation<FamilyType>::getSizeRequiredForTimestampPacketWrite() +
((numEventsOnWaitlist + 1) * (sizeof(typename FamilyType::MI_SEMAPHORE_WAIT) + sizeof(typename FamilyType::MI_ATOMIC)));
EXPECT_EQ(sizeWithEnabled, extendedSize);
}
HWCMDTEST_F(IGFX_GEN8_CORE, TimestampPacketTests, givenTimestampPacketWhenDispatchingGpuWalkerThenAddTwoPcForLastWalker) {
using GPGPU_WALKER = typename FamilyType::GPGPU_WALKER;
using PIPE_CONTROL = typename FamilyType::PIPE_CONTROL;
MockTimestampPacketContainer timestampPacket(device->getMemoryManager(), 2);
MockKernelWithInternals kernel2(*device);
MockMultiDispatchInfo multiDispatchInfo(std::vector<Kernel *>({kernel->mockKernel, kernel2.mockKernel}));
auto &cmdStream = mockCmdQ->getCS(0);
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
HardwareInterface<FamilyType>::dispatchWalker(
*mockCmdQ,
multiDispatchInfo,
0,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
&timestampPacket,
device->getPreemptionMode(),
false);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(cmdStream, 0);
auto verifyPipeControl = [](PIPE_CONTROL *pipeControl, uint64_t expectedAddress) {
EXPECT_EQ(1u, pipeControl->getCommandStreamerStallEnable());
EXPECT_EQ(PIPE_CONTROL::POST_SYNC_OPERATION_WRITE_IMMEDIATE_DATA, pipeControl->getPostSyncOperation());
EXPECT_EQ(0u, pipeControl->getImmediateData());
EXPECT_EQ(static_cast<uint32_t>(expectedAddress & 0x0000FFFFFFFFULL), pipeControl->getAddress());
EXPECT_EQ(static_cast<uint32_t>(expectedAddress >> 32), pipeControl->getAddressHigh());
};
uint32_t walkersFound = 0;
for (auto it = hwParser.cmdList.begin(); it != hwParser.cmdList.end(); it++) {
if (genCmdCast<GPGPU_WALKER *>(*it)) {
auto pipeControl = genCmdCast<PIPE_CONTROL *>(*++it);
EXPECT_NE(nullptr, pipeControl);
verifyPipeControl(pipeControl, timestampPacket.getNode(walkersFound)->tag->pickAddressForDataWrite(TimestampPacket::DataIndex::ContextEnd));
walkersFound++;
}
}
EXPECT_EQ(2u, walkersFound);
}
HWCMDTEST_F(IGFX_GEN8_CORE, TimestampPacketTests, givenTimestampPacketDisabledWhenDispatchingGpuWalkerThenDontAddPipeControls) {
MockTimestampPacketContainer timestampPacket(device->getMemoryManager(), 1);
MockMultiDispatchInfo multiDispatchInfo(kernel->mockKernel);
auto &cmdStream = mockCmdQ->getCS(0);
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = false;
HardwareInterface<FamilyType>::dispatchWalker(
*mockCmdQ,
multiDispatchInfo,
0,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
&timestampPacket,
device->getPreemptionMode(),
false);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(cmdStream, 0);
auto cmdItor = find<typename FamilyType::PIPE_CONTROL *>(hwParser.cmdList.begin(), hwParser.cmdList.end());
EXPECT_EQ(hwParser.cmdList.end(), cmdItor);
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledWhenEnqueueingThenObtainNewStampAndPassToEvent) {
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
auto mockMemoryManager = new MockMemoryManager(*device->getExecutionEnvironment());
device->injectMemoryManager(mockMemoryManager);
context->setMemoryManager(mockMemoryManager);
auto mockTagAllocator = new MockTagAllocator<>(mockMemoryManager);
mockMemoryManager->timestampPacketAllocator.reset(mockTagAllocator);
auto cmdQ = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
cl_event event1, event2;
// obtain first node for cmdQ and event1
cmdQ->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event1);
auto node1 = cmdQ->timestampPacketContainer->peekNodes().at(0);
EXPECT_NE(nullptr, node1);
EXPECT_EQ(node1, cmdQ->timestampPacketContainer->peekNodes().at(0));
// obtain new node for cmdQ and event2
cmdQ->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, &event2);
auto node2 = cmdQ->timestampPacketContainer->peekNodes().at(0);
EXPECT_NE(nullptr, node2);
EXPECT_EQ(node2, cmdQ->timestampPacketContainer->peekNodes().at(0));
EXPECT_EQ(0u, mockTagAllocator->returnedToFreePoolNodes.size()); // nothing returned. event1 owns previous node
EXPECT_EQ(1u, mockTagAllocator->releaseReferenceNodes.size()); // cmdQ released first node
EXPECT_EQ(node1, mockTagAllocator->releaseReferenceNodes.at(0));
EXPECT_NE(node1, node2);
setTagToReadyState(node1->tag);
setTagToReadyState(node2->tag);
clReleaseEvent(event2);
EXPECT_EQ(0u, mockTagAllocator->returnedToFreePoolNodes.size()); // nothing returned. cmdQ owns node2
EXPECT_EQ(2u, mockTagAllocator->releaseReferenceNodes.size()); // event2 released node2
EXPECT_EQ(node2, mockTagAllocator->releaseReferenceNodes.at(1));
clReleaseEvent(event1);
EXPECT_EQ(1u, mockTagAllocator->returnedToFreePoolNodes.size()); // removed last reference on node1
EXPECT_EQ(node1, mockTagAllocator->returnedToFreePoolNodes.at(0));
EXPECT_EQ(3u, mockTagAllocator->releaseReferenceNodes.size()); // event1 released node1
EXPECT_EQ(node1, mockTagAllocator->releaseReferenceNodes.at(2));
cmdQ.reset(nullptr);
EXPECT_EQ(2u, mockTagAllocator->returnedToFreePoolNodes.size()); // removed last reference on node2
EXPECT_EQ(node2, mockTagAllocator->returnedToFreePoolNodes.at(1));
EXPECT_EQ(4u, mockTagAllocator->releaseReferenceNodes.size()); // cmdQ released node2
EXPECT_EQ(node2, mockTagAllocator->releaseReferenceNodes.at(3));
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledWhenEnqueueingThenWriteWalkerStamp) {
using GPGPU_WALKER = typename FamilyType::WALKER_TYPE;
using PIPE_CONTROL = typename FamilyType::PIPE_CONTROL;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
auto cmdQ = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
cmdQ->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(1u, cmdQ->timestampPacketContainer->peekNodes().size());
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(cmdQ->getCS(0), 0);
bool walkerFound = false;
for (auto it = hwParser.cmdList.begin(); it != hwParser.cmdList.end(); it++) {
if (genCmdCast<GPGPU_WALKER *>(*it)) {
walkerFound = true;
auto pipeControl = genCmdCast<PIPE_CONTROL *>(*++it);
ASSERT_NE(nullptr, pipeControl);
EXPECT_EQ(PIPE_CONTROL::POST_SYNC_OPERATION_WRITE_IMMEDIATE_DATA, pipeControl->getPostSyncOperation());
}
}
EXPECT_TRUE(walkerFound);
}
HWTEST_F(TimestampPacketTests, givenEventsRequestWhenEstimatingStreamSizeForCsrThenAddSizeForSemaphores) {
cl_uint numEventsOnWaitlist = 5;
EventsRequest eventsRequest(numEventsOnWaitlist, nullptr, nullptr);
DispatchFlags flags;
auto sizeWithoutEvents = device->getUltCommandStreamReceiver<FamilyType>().getRequiredCmdStreamSize(flags, *device.get());
flags.outOfDeviceDependencies = &eventsRequest;
auto sizeWithEvents = device->getUltCommandStreamReceiver<FamilyType>().getRequiredCmdStreamSize(flags, *device.get());
size_t extendedSize = sizeWithoutEvents + (numEventsOnWaitlist * sizeof(typename FamilyType::MI_SEMAPHORE_WAIT));
EXPECT_EQ(sizeWithEvents, extendedSize);
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledWhenEnqueueingThenProgramSemaphoresOnCsrStream) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
using MI_ATOMIC = typename FamilyType::MI_ATOMIC;
auto device2 = std::unique_ptr<MockDevice>(Device::create<MockDevice>(nullptr, &executionEnvironment, 1u));
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
device2->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
MockContext context2(device2.get());
auto cmdQ1 = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
auto cmdQ2 = std::make_unique<MockCommandQueueHw<FamilyType>>(&context2, device2.get(), nullptr);
const cl_uint eventsOnWaitlist = 6;
MockTimestampPacketContainer timestamp3(device->getMemoryManager(), 1);
MockTimestampPacketContainer timestamp4(device->getMemoryManager(), 1);
MockTimestampPacketContainer timestamp5(device->getMemoryManager(), 1);
MockTimestampPacketContainer timestamp6(device->getMemoryManager(), 2);
UserEvent event1;
event1.setStatus(CL_COMPLETE);
UserEvent event2;
event2.setStatus(CL_COMPLETE);
Event event3(cmdQ1.get(), 0, 0, 0);
event3.addTimestampPacketNodes(timestamp3);
Event event4(cmdQ2.get(), 0, 0, 0);
event4.addTimestampPacketNodes(timestamp4);
Event event5(cmdQ1.get(), 0, 0, 0);
event5.addTimestampPacketNodes(timestamp5);
Event event6(cmdQ2.get(), 0, 0, 0);
event6.addTimestampPacketNodes(timestamp6);
cl_event waitlist[] = {&event1, &event2, &event3, &event4, &event5, &event6};
cmdQ1->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, eventsOnWaitlist, waitlist, nullptr);
auto &cmdStream = device->getUltCommandStreamReceiver<FamilyType>().commandStream;
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(cmdStream, 0);
auto it = hwParser.cmdList.begin();
verifySemaphore(genCmdCast<MI_SEMAPHORE_WAIT *>(*it++), timestamp4.getNode(0)->tag);
verifyMiAtomic(genCmdCast<MI_ATOMIC *>(*it++), timestamp4.getNode(0)->tag);
verifyDependencyCounterValues(event4.getTimestampPacketNodes(), 1);
verifySemaphore(genCmdCast<MI_SEMAPHORE_WAIT *>(*it++), timestamp6.getNode(0)->tag);
verifyMiAtomic(genCmdCast<MI_ATOMIC *>(*it++), timestamp6.getNode(0)->tag);
verifySemaphore(genCmdCast<MI_SEMAPHORE_WAIT *>(*it++), timestamp6.getNode(1)->tag);
verifyMiAtomic(genCmdCast<MI_ATOMIC *>(*it++), timestamp6.getNode(1)->tag);
verifyDependencyCounterValues(event6.getTimestampPacketNodes(), 1);
while (it != hwParser.cmdList.end()) {
EXPECT_EQ(nullptr, genCmdCast<MI_SEMAPHORE_WAIT *>(*it));
it++;
}
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledWhenEnqueueingBlockedThenProgramSemaphoresOnCsrStreamOnFlush) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
auto device2 = std::unique_ptr<MockDevice>(Device::create<MockDevice>(nullptr, &executionEnvironment, 1u));
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
device2->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
MockContext context2(device2.get());
auto cmdQ1 = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
auto cmdQ2 = std::make_unique<MockCommandQueueHw<FamilyType>>(&context2, device2.get(), nullptr);
MockTimestampPacketContainer timestamp0(device->getMemoryManager(), 1);
MockTimestampPacketContainer timestamp1(device->getMemoryManager(), 1);
UserEvent userEvent;
Event event0(cmdQ1.get(), 0, 0, 0);
event0.addTimestampPacketNodes(timestamp0);
Event event1(cmdQ2.get(), 0, 0, 0);
event1.addTimestampPacketNodes(timestamp1);
cl_event waitlist[] = {&userEvent, &event0, &event1};
cmdQ1->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 3, waitlist, nullptr);
auto &cmdStream = device->getUltCommandStreamReceiver<FamilyType>().commandStream;
EXPECT_EQ(0u, cmdStream.getUsed());
userEvent.setStatus(CL_COMPLETE);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(cmdStream, 0);
auto it = hwParser.cmdList.begin();
verifySemaphore(genCmdCast<MI_SEMAPHORE_WAIT *>(*it++), timestamp1.getNode(0)->tag);
verifyMiAtomic(genCmdCast<typename FamilyType::MI_ATOMIC *>(*it++), timestamp1.getNode(0)->tag);
verifyDependencyCounterValues(event1.getTimestampPacketNodes(), 1);
while (it != hwParser.cmdList.end()) {
EXPECT_EQ(nullptr, genCmdCast<MI_SEMAPHORE_WAIT *>(*it));
it++;
}
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteEnabledWhenDispatchingThenProgramSemaphoresForWaitlist) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
using WALKER = WALKER_TYPE<FamilyType>;
auto device2 = std::unique_ptr<MockDevice>(Device::create<MockDevice>(nullptr, &executionEnvironment, 1u));
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
device2->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
MockContext context2(device2.get());
MockMultiDispatchInfo multiDispatchInfo(std::vector<Kernel *>({kernel->mockKernel}));
MockCommandQueue mockCmdQ2(&context2, device2.get(), nullptr);
auto &cmdStream = mockCmdQ->getCS(0);
const cl_uint eventsOnWaitlist = 6;
MockTimestampPacketContainer timestamp3(device->getMemoryManager(), 1);
MockTimestampPacketContainer timestamp4(device->getMemoryManager(), 1);
MockTimestampPacketContainer timestamp5(device->getMemoryManager(), 2);
MockTimestampPacketContainer timestamp6(device->getMemoryManager(), 1);
UserEvent event1;
UserEvent event2;
Event event3(mockCmdQ.get(), 0, 0, 0);
event3.addTimestampPacketNodes(timestamp3);
Event event4(&mockCmdQ2, 0, 0, 0);
event4.addTimestampPacketNodes(timestamp4);
Event event5(mockCmdQ.get(), 0, 0, 0);
event5.addTimestampPacketNodes(timestamp5);
Event event6(&mockCmdQ2, 0, 0, 0);
event6.addTimestampPacketNodes(timestamp6);
cl_event waitlist[] = {&event1, &event2, &event3, &event4, &event5, &event6};
HardwareInterface<FamilyType>::dispatchWalker(
*mockCmdQ,
multiDispatchInfo,
eventsOnWaitlist,
waitlist,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
device->getPreemptionMode(),
false);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(cmdStream, 0);
uint32_t semaphoresFound = 0;
uint32_t walkersFound = 0;
for (auto it = hwParser.cmdList.begin(); it != hwParser.cmdList.end(); it++) {
auto semaphoreCmd = genCmdCast<MI_SEMAPHORE_WAIT *>(*it);
if (semaphoreCmd) {
semaphoresFound++;
if (semaphoresFound == 1) {
verifySemaphore(semaphoreCmd, timestamp3.getNode(0)->tag);
verifyMiAtomic(genCmdCast<typename FamilyType::MI_ATOMIC *>(*++it), timestamp3.getNode(0)->tag);
verifyDependencyCounterValues(event3.getTimestampPacketNodes(), 1);
} else if (semaphoresFound == 2) {
verifySemaphore(semaphoreCmd, timestamp5.getNode(0)->tag);
verifyMiAtomic(genCmdCast<typename FamilyType::MI_ATOMIC *>(*++it), timestamp5.getNode(0)->tag);
verifyDependencyCounterValues(event5.getTimestampPacketNodes(), 1);
} else if (semaphoresFound == 3) {
verifySemaphore(semaphoreCmd, timestamp5.getNode(1)->tag);
verifyMiAtomic(genCmdCast<typename FamilyType::MI_ATOMIC *>(*++it), timestamp5.getNode(1)->tag);
verifyDependencyCounterValues(event5.getTimestampPacketNodes(), 1);
}
}
if (genCmdCast<WALKER *>(*it)) {
walkersFound++;
EXPECT_EQ(3u, semaphoresFound); // semaphores from events programmed before walker
}
}
EXPECT_EQ(1u, walkersFound);
EXPECT_EQ(3u, semaphoresFound); // total number of semaphores found in cmdList
}
HWTEST_F(TimestampPacketTests, givenAlreadyAssignedNodeWhenEnqueueingNonBlockedThenMakeItResident) {
auto mockMemoryManager = new MockMemoryManager(*device->getExecutionEnvironment());
device->injectMemoryManager(mockMemoryManager);
context->setMemoryManager(mockMemoryManager);
auto mockTagAllocator = new MockTagAllocator<>(mockMemoryManager, 1);
mockMemoryManager->timestampPacketAllocator.reset(mockTagAllocator);
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
auto cmdQ = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
TimestampPacketContainer previousNodes(device->getMemoryManager());
cmdQ->obtainNewTimestampPacketNodes(1, previousNodes);
auto firstNode = cmdQ->timestampPacketContainer->peekNodes().at(0);
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.storeMakeResidentAllocations = true;
csr.timestampPacketWriteEnabled = true;
cmdQ->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto secondNode = cmdQ->timestampPacketContainer->peekNodes().at(0);
EXPECT_NE(firstNode->getGraphicsAllocation(), secondNode->getGraphicsAllocation());
EXPECT_TRUE(csr.isMadeResident(firstNode->getGraphicsAllocation()));
}
HWTEST_F(TimestampPacketTests, givenAlreadyAssignedNodeWhenEnqueueingBlockedThenMakeItResident) {
auto mockMemoryManager = new MockMemoryManager(*device->getExecutionEnvironment());
device->injectMemoryManager(mockMemoryManager);
context->setMemoryManager(mockMemoryManager);
auto mockTagAllocator = new MockTagAllocator<>(mockMemoryManager, 1);
mockMemoryManager->timestampPacketAllocator.reset(mockTagAllocator);
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
auto cmdQ = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
TimestampPacketContainer previousNodes(device->getMemoryManager());
cmdQ->obtainNewTimestampPacketNodes(1, previousNodes);
auto firstNode = cmdQ->timestampPacketContainer->peekNodes().at(0);
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.storeMakeResidentAllocations = true;
csr.timestampPacketWriteEnabled = true;
UserEvent userEvent;
cl_event clEvent = &userEvent;
cmdQ->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 1, &clEvent, nullptr);
auto secondNode = cmdQ->timestampPacketContainer->peekNodes().at(0);
EXPECT_NE(firstNode->getGraphicsAllocation(), secondNode->getGraphicsAllocation());
EXPECT_FALSE(csr.isMadeResident(firstNode->getGraphicsAllocation()));
userEvent.setStatus(CL_COMPLETE);
EXPECT_TRUE(csr.isMadeResident(firstNode->getGraphicsAllocation()));
}
HWTEST_F(TimestampPacketTests, givenAlreadyAssignedNodeWhenEnqueueingThenDontKeepDependencyOnPreviousNodeIfItsReady) {
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
TimestampPacketContainer previousNodes(device->getMemoryManager());
cmdQ.obtainNewTimestampPacketNodes(1, previousNodes);
auto firstNode = cmdQ.timestampPacketContainer->peekNodes().at(0);
setTagToReadyState(firstNode->tag);
cmdQ.enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(*cmdQ.commandStream, 0);
uint32_t semaphoresFound = 0;
uint32_t atomicsFound = 0;
for (auto it = hwParser.cmdList.begin(); it != hwParser.cmdList.end(); it++) {
if (genCmdCast<typename FamilyType::MI_SEMAPHORE_WAIT *>(*it)) {
semaphoresFound++;
}
if (genCmdCast<typename FamilyType::MI_ATOMIC *>(*it)) {
atomicsFound++;
}
}
EXPECT_EQ(0u, semaphoresFound);
EXPECT_EQ(0u, atomicsFound);
}
HWTEST_F(TimestampPacketTests, givenAlreadyAssignedNodeWhenEnqueueingThenKeepDependencyOnPreviousNodeIfItsNotReady) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
using MI_ATOMIC = typename FamilyType::MI_ATOMIC;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
MockTimestampPacketContainer firstNode(device->getMemoryManager(), 0);
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
TimestampPacketContainer previousNodes(device->getMemoryManager());
cmdQ.obtainNewTimestampPacketNodes(2, previousNodes);
firstNode.add(cmdQ.timestampPacketContainer->peekNodes().at(0));
firstNode.add(cmdQ.timestampPacketContainer->peekNodes().at(1));
auto firstTag0 = firstNode.getNode(0);
auto firstTag1 = firstNode.getNode(1);
verifyDependencyCounterValues(&firstNode, 0);
cmdQ.enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
verifyDependencyCounterValues(&firstNode, 1);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(*cmdQ.commandStream, 0);
auto it = hwParser.cmdList.begin();
verifySemaphore(genCmdCast<MI_SEMAPHORE_WAIT *>(*it), firstTag0->tag);
verifyMiAtomic(genCmdCast<MI_ATOMIC *>(*++it), firstTag0->tag);
verifySemaphore(genCmdCast<MI_SEMAPHORE_WAIT *>(*++it), firstTag1->tag);
verifyMiAtomic(genCmdCast<MI_ATOMIC *>(*++it), firstTag1->tag);
while (it != hwParser.cmdList.end()) {
EXPECT_EQ(nullptr, genCmdCast<MI_SEMAPHORE_WAIT *>(*it));
it++;
}
}
HWTEST_F(TimestampPacketTests, givenAlreadyAssignedNodeWhenEnqueueingToOoqThenDontKeepDependencyOnPreviousNodeIfItsNotReady) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
cl_queue_properties properties[] = {CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, 0};
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), properties);
TimestampPacketContainer previousNodes(device->getMemoryManager());
cmdQ.obtainNewTimestampPacketNodes(1, previousNodes);
cmdQ.enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(*cmdQ.commandStream, 0);
uint32_t semaphoresFound = 0;
uint32_t atomicsFound = 0;
for (auto it = hwParser.cmdList.begin(); it != hwParser.cmdList.end(); it++) {
if (genCmdCast<typename FamilyType::MI_SEMAPHORE_WAIT *>(*it)) {
semaphoresFound++;
}
if (genCmdCast<typename FamilyType::MI_ATOMIC *>(*it)) {
atomicsFound++;
}
}
EXPECT_EQ(0u, semaphoresFound);
EXPECT_EQ(0u, atomicsFound);
}
HWTEST_F(TimestampPacketTests, givenEventsWaitlistFromDifferentDevicesWhenEnqueueingThenMakeAllTimestampsResident) {
TagAllocator<TimestampPacket> tagAllocator(executionEnvironment.memoryManager.get(), 1, 1);
auto device2 = std::unique_ptr<MockDevice>(Device::create<MockDevice>(nullptr, &executionEnvironment, 1u));
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
device2->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
auto &ultCsr = device->getUltCommandStreamReceiver<FamilyType>();
ultCsr.timestampPacketWriteEnabled = true;
ultCsr.storeMakeResidentAllocations = true;
MockContext context2(device2.get());
auto cmdQ1 = std::make_unique<MockCommandQueueHw<FamilyType>>(context.get(), device.get(), nullptr);
auto cmdQ2 = std::make_unique<MockCommandQueueHw<FamilyType>>(&context2, device2.get(), nullptr);
MockTimestampPacketContainer node1(device->getMemoryManager(), 0);
MockTimestampPacketContainer node2(device->getMemoryManager(), 0);
auto tagNode1 = tagAllocator.getTag();
node1.add(tagNode1);
auto tagNode2 = tagAllocator.getTag();
node2.add(tagNode2);
Event event0(cmdQ1.get(), 0, 0, 0);
event0.addTimestampPacketNodes(node1);
Event event1(cmdQ2.get(), 0, 0, 0);
event1.addTimestampPacketNodes(node2);
cl_event waitlist[] = {&event0, &event1};
cmdQ1->enqueueKernel(kernel->mockKernel, 1, nullptr, gws, nullptr, 2, waitlist, nullptr);
EXPECT_NE(tagNode1->getGraphicsAllocation(), tagNode2->getGraphicsAllocation());
EXPECT_TRUE(ultCsr.isMadeResident(tagNode1->getGraphicsAllocation()));
EXPECT_TRUE(ultCsr.isMadeResident(tagNode2->getGraphicsAllocation()));
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWhenEnqueueingNonBlockedThenMakeItResident) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.timestampPacketWriteEnabled = true;
csr.storeMakeResidentAllocations = true;
MockKernelWithInternals mockKernel(*device, context.get());
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
auto timestampPacketNode = cmdQ.timestampPacketContainer->peekNodes().at(0);
EXPECT_TRUE(csr.isMadeResident(timestampPacketNode->getGraphicsAllocation()));
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWhenEnqueueingBlockedThenMakeItResidentOnSubmit) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.timestampPacketWriteEnabled = true;
MockKernelWithInternals mockKernel(*device, context.get());
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
csr.storeMakeResidentAllocations = true;
UserEvent userEvent;
cl_event clEvent = &userEvent;
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 1, &clEvent, nullptr);
auto timestampPacketNode = cmdQ.timestampPacketContainer->peekNodes().at(0);
EXPECT_FALSE(csr.isMadeResident(timestampPacketNode->getGraphicsAllocation()));
userEvent.setStatus(CL_COMPLETE);
EXPECT_TRUE(csr.isMadeResident(timestampPacketNode->getGraphicsAllocation()));
}
TEST_F(TimestampPacketTests, givenDispatchSizeWhenAskingForNewTimestampsThenObtainEnoughTags) {
size_t dispatchSize = 3;
mockCmdQ->timestampPacketContainer = std::make_unique<MockTimestampPacketContainer>(device->getMemoryManager(), 0);
EXPECT_EQ(0u, mockCmdQ->timestampPacketContainer->peekNodes().size());
TimestampPacketContainer previousNodes(device->getMemoryManager());
mockCmdQ->obtainNewTimestampPacketNodes(dispatchSize, previousNodes);
EXPECT_EQ(dispatchSize, mockCmdQ->timestampPacketContainer->peekNodes().size());
}
HWTEST_F(TimestampPacketTests, givenWaitlistAndOutputEventWhenEnqueueingWithoutKernelThenInheritTimestampPacketsWithoutSubmitting) {
device->getUltCommandStreamReceiver<FamilyType>().timestampPacketWriteEnabled = true;
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
MockKernelWithInternals mockKernel(*device, context.get());
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr); // obtain first TimestampPacket
TimestampPacketContainer cmdQNodes(device->getMemoryManager());
cmdQNodes.assignAndIncrementNodesRefCounts(*cmdQ.timestampPacketContainer);
MockTimestampPacketContainer node1(device->getMemoryManager(), 1);
MockTimestampPacketContainer node2(device->getMemoryManager(), 1);
Event event0(&cmdQ, 0, 0, 0);
event0.addTimestampPacketNodes(node1);
Event event1(&cmdQ, 0, 0, 0);
event1.addTimestampPacketNodes(node2);
UserEvent userEvent;
cl_event waitlist[] = {&event0, &event1, &userEvent};
cl_event clOutEvent;
cmdQ.enqueueMarkerWithWaitList(3, waitlist, &clOutEvent);
auto outEvent = castToObject<Event>(clOutEvent);
EXPECT_EQ(cmdQ.timestampPacketContainer->peekNodes().at(0), cmdQNodes.peekNodes().at(0)); // no new nodes obtained
EXPECT_EQ(1u, cmdQ.timestampPacketContainer->peekNodes().size());
auto &eventsNodes = outEvent->getTimestampPacketNodes()->peekNodes();
EXPECT_EQ(3u, eventsNodes.size());
EXPECT_EQ(cmdQNodes.peekNodes().at(0), eventsNodes.at(0));
EXPECT_EQ(event0.getTimestampPacketNodes()->peekNodes().at(0), eventsNodes.at(1));
EXPECT_EQ(event1.getTimestampPacketNodes()->peekNodes().at(0), eventsNodes.at(2));
clReleaseEvent(clOutEvent);
}
HWTEST_F(TimestampPacketTests, givenEmptyWaitlistAndNoOutputEventWhenEnqueueingMarkerThenDoNothing) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.timestampPacketWriteEnabled = true;
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
cmdQ.enqueueMarkerWithWaitList(0, nullptr, nullptr);
EXPECT_EQ(0u, cmdQ.timestampPacketContainer->peekNodes().size());
EXPECT_FALSE(csr.stallingPipeControlOnNextFlushRequired);
}
HWTEST_F(TimestampPacketTests, whenEnqueueingBarrierThenRequestPipeControlOnCsrFlush) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.timestampPacketWriteEnabled = true;
EXPECT_FALSE(csr.stallingPipeControlOnNextFlushRequired);
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
MockKernelWithInternals mockKernel(*device, context.get());
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr); // obtain first TimestampPacket
TimestampPacketContainer cmdQNodes(device->getMemoryManager());
cmdQNodes.assignAndIncrementNodesRefCounts(*cmdQ.timestampPacketContainer);
cmdQ.enqueueBarrierWithWaitList(0, nullptr, nullptr);
EXPECT_EQ(cmdQ.timestampPacketContainer->peekNodes().at(0), cmdQNodes.peekNodes().at(0)); // dont obtain new node
EXPECT_EQ(1u, cmdQ.timestampPacketContainer->peekNodes().size());
EXPECT_TRUE(csr.stallingPipeControlOnNextFlushRequired);
}
HWTEST_F(TimestampPacketTests, givenTimestampPacketWriteDisabledWhenEnqueueingBarrierThenDontRequestPipeControlOnCsrFlush) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.timestampPacketWriteEnabled = false;
EXPECT_FALSE(csr.stallingPipeControlOnNextFlushRequired);
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
cmdQ.enqueueBarrierWithWaitList(0, nullptr, nullptr);
EXPECT_FALSE(csr.stallingPipeControlOnNextFlushRequired);
}
HWTEST_F(TimestampPacketTests, givenBlockedQueueWhenEnqueueingBarrierThenRequestPipeControlOnCsrFlush) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.timestampPacketWriteEnabled = true;
EXPECT_FALSE(csr.stallingPipeControlOnNextFlushRequired);
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
UserEvent userEvent;
cl_event waitlist[] = {&userEvent};
cmdQ.enqueueBarrierWithWaitList(1, waitlist, nullptr);
EXPECT_TRUE(csr.stallingPipeControlOnNextFlushRequired);
}
HWTEST_F(TimestampPacketTests, givenPipeControlRequestWhenEstimatingCsrStreamSizeThenAddSizeForPipeControl) {
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
DispatchFlags flags;
csr.stallingPipeControlOnNextFlushRequired = false;
auto sizeWithoutPcRequest = device->getUltCommandStreamReceiver<FamilyType>().getRequiredCmdStreamSize(flags, *device.get());
csr.stallingPipeControlOnNextFlushRequired = true;
auto sizeWithPcRequest = device->getUltCommandStreamReceiver<FamilyType>().getRequiredCmdStreamSize(flags, *device.get());
size_t extendedSize = sizeWithoutPcRequest + sizeof(typename FamilyType::PIPE_CONTROL);
EXPECT_EQ(sizeWithPcRequest, extendedSize);
}
HWTEST_F(TimestampPacketTests, givenPipeControlRequestWhenFlushingThenProgramPipeControlAndResetRequestFlag) {
using PIPE_CONTROL = typename FamilyType::PIPE_CONTROL;
auto &csr = device->getUltCommandStreamReceiver<FamilyType>();
csr.stallingPipeControlOnNextFlushRequired = true;
csr.timestampPacketWriteEnabled = true;
MockCommandQueueHw<FamilyType> cmdQ(context.get(), device.get(), nullptr);
MockKernelWithInternals mockKernel(*device, context.get());
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_FALSE(csr.stallingPipeControlOnNextFlushRequired);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(csr.commandStream, 0);
auto secondEnqueueOffset = csr.commandStream.getUsed();
auto pipeControl = genCmdCast<typename FamilyType::PIPE_CONTROL *>(*hwParser.cmdList.begin());
EXPECT_NE(nullptr, pipeControl);
EXPECT_EQ(PIPE_CONTROL::POST_SYNC_OPERATION::POST_SYNC_OPERATION_NO_WRITE, pipeControl->getPostSyncOperation());
EXPECT_TRUE(pipeControl->getCommandStreamerStallEnable());
cmdQ.enqueueKernel(mockKernel.mockKernel, 1, nullptr, gws, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(secondEnqueueOffset, csr.commandStream.getUsed()); // nothing programmed when flag is not set
}