compute-runtime/unit_tests/command_queue/read_write_buffer_cpu_copy.cpp

308 lines
14 KiB
C++

/*
* Copyright (c) 2017 - 2018, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "runtime/helpers/basic_math.h"
#include "runtime/gmm_helper/gmm.h"
#include "unit_tests/command_queue/enqueue_read_buffer_fixture.h"
#include "test.h"
using namespace OCLRT;
typedef EnqueueReadBufferTypeTest ReadWriteBufferCpuCopyTest;
HWTEST_F(ReadWriteBufferCpuCopyTest, givenRenderCompressedGmmWhenAskingForCpuOperationThenDisallow) {
cl_int retVal;
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_READ_WRITE, 1, nullptr, retVal));
auto gmm = new Gmm(nullptr, 1, false);
gmm->isRenderCompressed = false;
buffer->getGraphicsAllocation()->gmm = gmm;
auto alignedPtr = alignedMalloc(2, MemoryConstants::cacheLineSize);
auto unalignedPtr = ptrOffset(alignedPtr, 1);
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedPtr, 1));
gmm->isRenderCompressed = true;
EXPECT_FALSE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedPtr, 1));
alignedFree(alignedPtr);
}
HWTEST_F(ReadWriteBufferCpuCopyTest, simpleRead) {
cl_int retVal;
size_t offset = 1;
size_t size = 4;
auto deviceInfo = context->getDevice(0)->getMutableDeviceInfo();
deviceInfo->cpuCopyAllowed = true;
auto alignedReadPtr = alignedMalloc(size + 1, MemoryConstants::cacheLineSize);
memset(alignedReadPtr, 0x00, size + 1);
auto unalignedReadPtr = ptrOffset(alignedReadPtr, 1);
std::unique_ptr<uint8_t[]> bufferPtr(new uint8_t[size]);
for (uint8_t i = 0; i < size; i++) {
bufferPtr[i] = i + 1;
}
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, bufferPtr.get(), retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
bool aligned = (reinterpret_cast<uintptr_t>(unalignedReadPtr) & (MemoryConstants::cacheLineSize - 1)) == 0;
EXPECT_TRUE(!aligned || buffer->isMemObjZeroCopy());
ASSERT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedReadPtr, size));
retVal = EnqueueReadBufferHelper<>::enqueueReadBuffer(pCmdQ,
buffer.get(),
CL_TRUE,
offset,
size - offset,
unalignedReadPtr,
0,
nullptr,
nullptr);
EXPECT_EQ(retVal, CL_SUCCESS);
auto pBufferPtr = ptrOffset(bufferPtr.get(), offset);
EXPECT_EQ(memcmp(unalignedReadPtr, pBufferPtr, size - offset), 0);
alignedFree(alignedReadPtr);
}
HWTEST_F(ReadWriteBufferCpuCopyTest, givenDeviceThatDoesntSupportCpuCopiesWhenReadBufferIsExecutedThenCpuCopyIsNotDone) {
cl_int retVal;
size_t offset = 1;
size_t size = 4;
auto deviceInfo = context->getDevice(0)->getMutableDeviceInfo();
deviceInfo->cpuCopyAllowed = false;
auto alignedReadPtr = alignedMalloc(size + 1, MemoryConstants::cacheLineSize);
memset(alignedReadPtr, 0x00, size + 1);
auto unalignedReadPtr = ptrOffset(alignedReadPtr, 1);
std::unique_ptr<uint8_t[]> bufferPtr(new uint8_t[size]);
for (uint8_t i = 0; i < size; i++) {
bufferPtr[i] = i + 1;
}
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, bufferPtr.get(), retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
bool aligned = (reinterpret_cast<uintptr_t>(unalignedReadPtr) & (MemoryConstants::cacheLineSize - 1)) == 0;
EXPECT_TRUE(!aligned || buffer->isMemObjZeroCopy());
ASSERT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedReadPtr, size));
retVal = EnqueueReadBufferHelper<>::enqueueReadBuffer(pCmdQ,
buffer.get(),
CL_TRUE,
offset,
size - offset,
unalignedReadPtr,
0,
nullptr,
nullptr);
EXPECT_EQ(retVal, CL_SUCCESS);
char *charPtr = (char *)unalignedReadPtr;
for (uint8_t i = 0; i < size; i++) {
EXPECT_EQ(charPtr[i], 0);
}
alignedFree(alignedReadPtr);
}
HWTEST_F(ReadWriteBufferCpuCopyTest, givenDeviceThatDoesntSupportCpuCopiesWhenWriteBufferIsExecutedThenCpuCopyIsNotDone) {
cl_int retVal;
size_t offset = 1;
size_t size = 4;
auto deviceInfo = context->getDevice(0)->getMutableDeviceInfo();
deviceInfo->cpuCopyAllowed = false;
auto alignedWritePtr = alignedMalloc(size + 1, MemoryConstants::cacheLineSize);
memset(alignedWritePtr, 0x00, size + 1);
auto unalignedWritePtr = ptrOffset(alignedWritePtr, 1);
std::unique_ptr<uint8_t[]> bufferPtr(new uint8_t[size]);
for (uint8_t i = 0; i < size; i++) {
bufferPtr[i] = i + 1;
}
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, bufferPtr.get(), retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
bool aligned = (reinterpret_cast<uintptr_t>(unalignedWritePtr) & (MemoryConstants::cacheLineSize - 1)) == 0;
EXPECT_TRUE(!aligned || buffer->isMemObjZeroCopy());
ASSERT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedWritePtr, size));
retVal = EnqueueWriteBufferHelper<>::enqueueWriteBuffer(pCmdQ,
buffer.get(),
CL_TRUE,
offset,
size - offset,
unalignedWritePtr,
0,
nullptr,
nullptr);
EXPECT_EQ(retVal, CL_SUCCESS);
char *charPtr = (char *)buffer->getCpuAddressForMemoryTransfer() + offset;
for (uint8_t i = 0; i < size - offset; i++) {
EXPECT_EQ(charPtr[i], i + 2);
}
alignedFree(alignedWritePtr);
}
HWTEST_F(ReadWriteBufferCpuCopyTest, simpleWrite) {
cl_int retVal;
size_t offset = 1;
size_t size = 4;
auto deviceInfo = context->getDevice(0)->getMutableDeviceInfo();
deviceInfo->cpuCopyAllowed = true;
auto alignedWritePtr = alignedMalloc(size + 1, MemoryConstants::cacheLineSize);
auto unalignedWritePtr = static_cast<uint8_t *>(ptrOffset(alignedWritePtr, 1));
auto bufferPtrBase = new uint8_t[size];
auto bufferPtr = new uint8_t[size];
for (uint8_t i = 0; i < size; i++) {
unalignedWritePtr[i] = i + 5;
bufferPtrBase[i] = i + 1;
bufferPtr[i] = i + 1;
}
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, bufferPtr, retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
bool aligned = (reinterpret_cast<uintptr_t>(unalignedWritePtr) & (MemoryConstants::cacheLineSize - 1)) == 0;
EXPECT_TRUE(!aligned || buffer->isMemObjZeroCopy());
ASSERT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedWritePtr, size));
retVal = EnqueueWriteBufferHelper<>::enqueueWriteBuffer(pCmdQ,
buffer.get(),
CL_TRUE,
offset,
size - offset,
unalignedWritePtr,
0,
nullptr,
nullptr);
EXPECT_EQ(retVal, CL_SUCCESS);
auto pBufferPtr = buffer->getCpuAddress();
EXPECT_EQ(memcmp(pBufferPtr, bufferPtrBase, offset), 0); // untouched
pBufferPtr = ptrOffset(pBufferPtr, offset);
EXPECT_EQ(memcmp(pBufferPtr, unalignedWritePtr, size - offset), 0); // updated
alignedFree(alignedWritePtr);
delete[] bufferPtr;
delete[] bufferPtrBase;
}
HWTEST_F(ReadWriteBufferCpuCopyTest, cpuCopyCriteriaMet) {
cl_int retVal;
size_t size = MemoryConstants::cacheLineSize;
auto alignedBufferPtr = alignedMalloc(MemoryConstants::cacheLineSize + 1, MemoryConstants::cacheLineSize);
auto unalignedBufferPtr = ptrOffset(alignedBufferPtr, 1);
auto alignedHostPtr = alignedMalloc(MemoryConstants::cacheLineSize + 1, MemoryConstants::cacheLineSize);
auto unalignedHostPtr = ptrOffset(alignedHostPtr, 1);
auto smallBufferPtr = alignedMalloc(1 * MB, MemoryConstants::cacheLineSize);
auto largeBufferPtr = alignedMalloc(100 * MB, MemoryConstants::cacheLineSize);
auto mockDevice = std::unique_ptr<MockDevice>(DeviceHelper<>::create());
auto mockContext = std::unique_ptr<MockContext>(new MockContext(mockDevice.get()));
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, alignedBufferPtr, retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
EXPECT_TRUE(buffer->isMemObjZeroCopy());
// zeroCopy == true && aligned/unaligned hostPtr
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, alignedHostPtr, MemoryConstants::cacheLineSize + 1));
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedHostPtr, MemoryConstants::cacheLineSize));
buffer.reset(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, unalignedBufferPtr, retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
// zeroCopy == false && unaligned hostPtr
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, unalignedHostPtr, MemoryConstants::cacheLineSize));
buffer.reset(Buffer::create(mockContext.get(), CL_MEM_USE_HOST_PTR, 1 * MB, smallBufferPtr, retVal));
// platform LP == true && size <= 10 MB
mockDevice->getDeviceInfoToModify()->platformLP = true;
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, smallBufferPtr, 1 * MB));
// platform LP == false && size <= 10 MB
mockDevice->getDeviceInfoToModify()->platformLP = false;
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, smallBufferPtr, 1 * MB));
buffer.reset(Buffer::create(mockContext.get(), CL_MEM_USE_HOST_PTR, 100 * MB, largeBufferPtr, retVal));
// platform LP == false && size > 10 MB
mockDevice->getDeviceInfoToModify()->platformLP = false;
EXPECT_TRUE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, largeBufferPtr, 100 * MB));
alignedFree(largeBufferPtr);
alignedFree(smallBufferPtr);
alignedFree(alignedHostPtr);
alignedFree(alignedBufferPtr);
}
HWTEST_F(ReadWriteBufferCpuCopyTest, cpuCopyCriteriaNotMet) {
cl_int retVal;
size_t size = MemoryConstants::cacheLineSize;
auto alignedBufferPtr = alignedMalloc(MemoryConstants::cacheLineSize + 1, MemoryConstants::cacheLineSize);
auto unalignedBufferPtr = ptrOffset(alignedBufferPtr, 1);
auto alignedHostPtr = alignedMalloc(MemoryConstants::cacheLineSize + 1, MemoryConstants::cacheLineSize);
auto unalignedHostPtr = ptrOffset(alignedHostPtr, 1);
auto largeBufferPtr = alignedMalloc(100 * MB, MemoryConstants::cacheLineSize);
auto mockDevice = std::unique_ptr<MockDevice>(DeviceHelper<>::create());
auto mockContext = std::unique_ptr<MockContext>(new MockContext(mockDevice.get()));
std::unique_ptr<Buffer> buffer(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, alignedBufferPtr, retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
EXPECT_TRUE(buffer->isMemObjZeroCopy());
// non blocking
EXPECT_FALSE(buffer->isReadWriteOnCpuAllowed(CL_FALSE, 0, unalignedHostPtr, MemoryConstants::cacheLineSize));
// numEventWaitlist > 0
EXPECT_FALSE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 1, unalignedHostPtr, MemoryConstants::cacheLineSize));
buffer.reset(Buffer::create(context, CL_MEM_USE_HOST_PTR, size, unalignedBufferPtr, retVal));
EXPECT_EQ(retVal, CL_SUCCESS);
// zeroCopy == false && aligned hostPtr
EXPECT_FALSE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, alignedHostPtr, MemoryConstants::cacheLineSize + 1));
buffer.reset(Buffer::create(mockContext.get(), CL_MEM_USE_HOST_PTR, 100 * MB, largeBufferPtr, retVal));
// platform LP == true && size > 10 MB
mockDevice->getDeviceInfoToModify()->platformLP = true;
EXPECT_FALSE(buffer->isReadWriteOnCpuAllowed(CL_TRUE, 0, largeBufferPtr, 100 * MB));
alignedFree(largeBufferPtr);
alignedFree(alignedHostPtr);
alignedFree(alignedBufferPtr);
}