compute-runtime/runtime/program/program.cpp

472 lines
19 KiB
C++

/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "program.h"
#include "core/compiler_interface/compiler_interface.h"
#include "core/compiler_interface/intermediate_representations.h"
#include "core/device_binary_format/device_binary_formats.h"
#include "core/device_binary_format/elf/elf_encoder.h"
#include "core/device_binary_format/elf/ocl_elf.h"
#include "core/helpers/debug_helpers.h"
#include "core/helpers/hw_helper.h"
#include "core/helpers/string.h"
#include "core/memory_manager/memory_manager.h"
#include "core/memory_manager/unified_memory_manager.h"
#include "core/os_interface/os_context.h"
#include "runtime/command_stream/command_stream_receiver.h"
#include "runtime/context/context.h"
#include "runtime/device/cl_device.h"
#include "runtime/platform/platform.h"
#include "runtime/program/block_kernel_manager.h"
#include "runtime/program/kernel_info.h"
#include "compiler_options.h"
#include <sstream>
namespace NEO {
const std::string Program::clOptNameClVer("-cl-std=CL");
Program::Program(ExecutionEnvironment &executionEnvironment) : Program(executionEnvironment, nullptr, false) {
numDevices = 0;
}
Program::Program(ExecutionEnvironment &executionEnvironment, Context *context, bool isBuiltIn) : executionEnvironment(executionEnvironment),
context(context),
isBuiltIn(isBuiltIn) {
if (this->context && !this->isBuiltIn) {
this->context->incRefInternal();
}
blockKernelManager = new BlockKernelManager();
pDevice = context ? context->getDevice(0) : nullptr;
numDevices = 1;
char paramValue[32] = {};
bool force32BitAddressess = false;
if (pDevice) {
pDevice->getDeviceInfo(CL_DEVICE_VERSION, 32, paramValue, nullptr);
if (strstr(paramValue, "2.1")) {
internalOptions = "-ocl-version=210 ";
} else if (strstr(paramValue, "2.0")) {
internalOptions = "-ocl-version=200 ";
} else if (strstr(paramValue, "1.2")) {
internalOptions = "-ocl-version=120 ";
}
force32BitAddressess = pDevice->getDeviceInfo().force32BitAddressess;
if (force32BitAddressess) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::arch32bit);
}
if (pDevice->areSharedSystemAllocationsAllowed() ||
DebugManager.flags.DisableStatelessToStatefulOptimization.get()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::greaterThan4gbBuffersRequired);
}
if (DebugManager.flags.UseBindlessBuffers.get()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::bindlessBuffers);
}
if (DebugManager.flags.UseBindlessImages.get()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::bindlessImages);
}
kernelDebugEnabled = pDevice->isSourceLevelDebuggerActive();
auto enableStatelessToStatefullWithOffset = pDevice->getHardwareCapabilities().isStatelesToStatefullWithOffsetSupported;
if (DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != -1) {
enableStatelessToStatefullWithOffset = DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != 0;
}
if (enableStatelessToStatefullWithOffset) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::hasBufferOffsetArg);
}
auto &hwHelper = HwHelper::get(pDevice->getHardwareInfo().platform.eRenderCoreFamily);
if (hwHelper.isForceEmuInt32DivRemSPWARequired(pDevice->getHardwareInfo())) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::forceEmuInt32DivRemSP);
}
}
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::preserveVec3Type);
}
Program::~Program() {
cleanCurrentKernelInfo();
freeBlockResources();
delete blockKernelManager;
if (constantSurface) {
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(constantSurface->getGpuAddress())))) {
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(constantSurface->getGpuAddress()));
} else {
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(constantSurface);
}
constantSurface = nullptr;
}
if (globalSurface) {
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(globalSurface->getGpuAddress())))) {
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(globalSurface->getGpuAddress()));
} else {
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(globalSurface);
}
globalSurface = nullptr;
}
if (context && !isBuiltIn) {
context->decRefInternal();
}
}
cl_int Program::createProgramFromBinary(
const void *pBinary,
size_t binarySize) {
cl_int retVal = CL_INVALID_BINARY;
this->irBinary.reset();
this->irBinarySize = 0U;
this->isSpirV = false;
this->unpackedDeviceBinary.reset();
this->unpackedDeviceBinarySize = 0U;
this->packedDeviceBinary.reset();
this->packedDeviceBinarySize = 0U;
ArrayRef<const uint8_t> archive(reinterpret_cast<const uint8_t *>(pBinary), binarySize);
bool isSpirV = NEO::isSpirVBitcode(archive);
if (isSpirV || NEO::isLlvmBitcode(archive)) {
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_INTERMEDIATE;
retVal = processSpirBinary(archive.begin(), archive.size(), isSpirV);
} else if (isAnyDeviceBinaryFormat(archive)) {
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_EXECUTABLE;
this->isCreatedFromBinary = true;
auto productAbbreviation = hardwarePrefix[pDevice->getHardwareInfo().platform.eProductFamily];
TargetDevice targetDevice = {};
targetDevice.coreFamily = pDevice->getHardwareInfo().platform.eRenderCoreFamily;
targetDevice.stepping = pDevice->getHardwareInfo().platform.usRevId;
targetDevice.maxPointerSizeInBytes = sizeof(uintptr_t);
std::string decodeErrors;
std::string decodeWarnings;
auto singleDeviceBinary = unpackSingleDeviceBinary(archive, ConstStringRef(productAbbreviation, strlen(productAbbreviation)), targetDevice,
decodeErrors, decodeWarnings);
if (decodeWarnings.empty() == false) {
printDebugString(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeWarnings.c_str());
}
if (singleDeviceBinary.intermediateRepresentation.empty() && singleDeviceBinary.deviceBinary.empty()) {
retVal = CL_INVALID_BINARY;
printDebugString(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeErrors.c_str());
} else {
retVal = CL_SUCCESS;
this->irBinary = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.intermediateRepresentation.begin()), singleDeviceBinary.intermediateRepresentation.size());
this->irBinarySize = singleDeviceBinary.intermediateRepresentation.size();
this->isSpirV = NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize));
this->options = singleDeviceBinary.buildOptions.str();
if ((false == singleDeviceBinary.deviceBinary.empty()) && (false == DebugManager.flags.RebuildPrecompiledKernels.get())) {
this->unpackedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(singleDeviceBinary.deviceBinary.begin()), singleDeviceBinary.deviceBinary.size());
this->unpackedDeviceBinarySize = singleDeviceBinary.deviceBinary.size();
this->packedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(archive.begin()), archive.size());
this->packedDeviceBinarySize = archive.size();
} else {
this->isCreatedFromBinary = false;
}
switch (singleDeviceBinary.format) {
default:
break;
case DeviceBinaryFormat::OclLibrary:
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_LIBRARY;
break;
case DeviceBinaryFormat::OclCompiledObject:
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT;
break;
}
}
}
return retVal;
}
cl_int Program::setProgramSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
if (!isSpirV) {
return CL_INVALID_PROGRAM;
}
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!areSpecializationConstantsInitialized) {
auto pCompilerInterface = this->executionEnvironment.getCompilerInterface();
if (nullptr == pCompilerInterface) {
return CL_OUT_OF_HOST_MEMORY;
}
SpecConstantInfo specConstInfo;
auto retVal = pCompilerInterface->getSpecConstantsInfo(this->getDevice(0).getDevice(), ArrayRef<const char>(sourceCode), specConstInfo);
if (retVal != TranslationOutput::ErrorCode::Success) {
return CL_INVALID_VALUE;
}
areSpecializationConstantsInitialized = true;
}
return updateSpecializationConstant(specId, specSize, specValue);
}
cl_int Program::updateSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
for (uint32_t i = 0; i < specConstantsIds->GetSize<cl_uint>(); i++) {
if (specConstantsIds->GetMemory<cl_uint>()[i] == specId) {
if (specConstantsSizes->GetMemory<size_t>()[i] == specSize) {
specConstantsValues->GetMemoryWriteable<const void *>()[i] = specValue;
return CL_SUCCESS;
} else {
return CL_INVALID_VALUE;
}
}
}
return CL_INVALID_SPEC_ID;
}
void Program::setDevice(Device *device) {
this->pDevice = device->getSpecializedDevice<ClDevice>();
}
cl_int Program::getSource(std::string &binary) const {
cl_int retVal = CL_INVALID_PROGRAM;
binary = {};
if (!sourceCode.empty()) {
binary = sourceCode;
retVal = CL_SUCCESS;
}
return retVal;
}
void Program::updateBuildLog(const ClDevice *pDevice, const char *pErrorString,
size_t errorStringSize) {
if ((pErrorString == nullptr) || (errorStringSize == 0) || (pErrorString[0] == '\0')) {
return;
}
if (pErrorString[errorStringSize - 1] == '\0') {
--errorStringSize;
}
auto it = buildLog.find(pDevice);
if (it == buildLog.end()) {
buildLog[pDevice].assign(pErrorString, pErrorString + errorStringSize);
return;
}
buildLog[pDevice].append("\n");
buildLog[pDevice].append(pErrorString, pErrorString + errorStringSize);
}
const char *Program::getBuildLog(const ClDevice *pDevice) const {
const char *entry = nullptr;
auto it = buildLog.find(pDevice);
if (it != buildLog.end()) {
entry = it->second.c_str();
}
return entry;
}
void Program::separateBlockKernels() {
if ((0 == parentKernelInfoArray.size()) && (0 == subgroupKernelInfoArray.size())) {
return;
}
auto allKernelInfos(kernelInfoArray);
kernelInfoArray.clear();
for (auto &i : allKernelInfos) {
auto end = i->name.rfind("_dispatch_");
if (end != std::string::npos) {
bool baseKernelFound = false;
std::string baseKernelName(i->name, 0, end);
for (auto &j : parentKernelInfoArray) {
if (j->name.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
if (!baseKernelFound) {
for (auto &j : subgroupKernelInfoArray) {
if (j->name.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
}
if (baseKernelFound) {
//Parent or subgroup kernel found -> child kernel
blockKernelManager->addBlockKernelInfo(i);
} else {
kernelInfoArray.push_back(i);
}
} else {
//Regular kernel found
kernelInfoArray.push_back(i);
}
}
allKernelInfos.clear();
}
void Program::allocateBlockPrivateSurfaces(uint32_t rootDeviceIndex) {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *info = blockKernelManager->getBlockKernelInfo(i);
if (info->patchInfo.pAllocateStatelessPrivateSurface) {
size_t privateSize = info->patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize;
if (privateSize > 0 && blockKernelManager->getPrivateSurface(i) == nullptr) {
privateSize *= getDevice(0).getDeviceInfo().computeUnitsUsedForScratch * info->getMaxSimdSize();
auto *privateSurface = this->executionEnvironment.memoryManager->allocateGraphicsMemoryWithProperties({rootDeviceIndex, privateSize, GraphicsAllocation::AllocationType::PRIVATE_SURFACE});
blockKernelManager->pushPrivateSurface(privateSurface, i);
}
}
}
}
void Program::freeBlockResources() {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
auto *privateSurface = blockKernelManager->getPrivateSurface(i);
if (privateSurface != nullptr) {
blockKernelManager->pushPrivateSurface(nullptr, i);
this->executionEnvironment.memoryManager->freeGraphicsMemory(privateSurface);
}
auto kernelInfo = blockKernelManager->getBlockKernelInfo(i);
DEBUG_BREAK_IF(!kernelInfo->kernelAllocation);
if (kernelInfo->kernelAllocation) {
this->executionEnvironment.memoryManager->freeGraphicsMemory(kernelInfo->kernelAllocation);
}
}
}
void Program::cleanCurrentKernelInfo() {
for (auto &kernelInfo : kernelInfoArray) {
if (kernelInfo->kernelAllocation) {
//register cache flush in all csrs where kernel allocation was used
for (auto &engine : this->executionEnvironment.memoryManager->getRegisteredEngines()) {
auto contextId = engine.osContext->getContextId();
if (kernelInfo->kernelAllocation->isUsedByOsContext(contextId)) {
engine.commandStreamReceiver->registerInstructionCacheFlush();
}
}
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(kernelInfo->kernelAllocation);
}
delete kernelInfo;
}
kernelInfoArray.clear();
}
void Program::updateNonUniformFlag() {
//Look for -cl-std=CL substring and extract value behind which can be 1.2 2.0 2.1 and convert to value
auto pos = options.find(clOptNameClVer);
if (pos == std::string::npos) {
programOptionVersion = 12u; //Default is 1.2
} else {
std::stringstream ss{options.c_str() + pos + clOptNameClVer.size()};
uint32_t majorV = 0u, minorV = 0u;
char dot = 0u;
ss >> majorV;
ss >> dot;
ss >> minorV;
programOptionVersion = majorV * 10u + minorV;
}
if (programOptionVersion >= 20u && (false == CompilerOptions::contains(options, CompilerOptions::uniformWorkgroupSize))) {
allowNonUniform = true;
}
}
void Program::updateNonUniformFlag(const Program **inputPrograms, size_t numInputPrograms) {
bool allowNonUniform = true;
for (cl_uint i = 0; i < numInputPrograms; i++) {
allowNonUniform = allowNonUniform && inputPrograms[i]->getAllowNonUniform();
}
this->allowNonUniform = allowNonUniform;
}
void Program::replaceDeviceBinary(std::unique_ptr<char[]> newBinary, size_t newBinarySize) {
if (isAnyPackedDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(newBinary.get()), newBinarySize))) {
this->packedDeviceBinary = std::move(newBinary);
this->packedDeviceBinarySize = newBinarySize;
this->unpackedDeviceBinary.reset();
this->unpackedDeviceBinarySize = 0U;
} else {
this->packedDeviceBinary.reset();
this->packedDeviceBinarySize = 0U;
this->unpackedDeviceBinary = std::move(newBinary);
this->unpackedDeviceBinarySize = newBinarySize;
}
}
cl_int Program::packDeviceBinary() {
if (nullptr != packedDeviceBinary) {
return CL_SUCCESS;
}
auto gfxCore = pDevice->getHardwareInfo().platform.eRenderCoreFamily;
auto stepping = pDevice->getHardwareInfo().platform.usRevId;
if (nullptr != this->unpackedDeviceBinary.get()) {
SingleDeviceBinary singleDeviceBinary;
singleDeviceBinary.buildOptions = this->options;
singleDeviceBinary.targetDevice.coreFamily = gfxCore;
singleDeviceBinary.targetDevice.stepping = stepping;
singleDeviceBinary.deviceBinary = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->unpackedDeviceBinary.get()), this->unpackedDeviceBinarySize);
singleDeviceBinary.intermediateRepresentation = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize);
std::string packWarnings;
std::string packErrors;
auto packedDeviceBinary = NEO::packDeviceBinary(singleDeviceBinary, packErrors, packWarnings);
if (packedDeviceBinary.empty()) {
DEBUG_BREAK_IF(true);
return CL_OUT_OF_HOST_MEMORY;
}
this->packedDeviceBinary = makeCopy(packedDeviceBinary.data(), packedDeviceBinary.size());
this->packedDeviceBinarySize = packedDeviceBinary.size();
} else if (nullptr != this->irBinary.get()) {
NEO::Elf::ElfEncoder<> elfEncoder(true, true, 1U);
if (this->programBinaryType == CL_PROGRAM_BINARY_TYPE_LIBRARY) {
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_LIBRARY;
} else {
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_OBJECTS;
}
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_SPIRV, NEO::Elf::SectionNamesOpenCl::spirvObject, ArrayRef<const uint8_t>::fromAny(this->irBinary.get(), this->irBinarySize));
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_OPTIONS, NEO::Elf::SectionNamesOpenCl::buildOptions, this->options);
auto elfData = elfEncoder.encode();
this->packedDeviceBinary = makeCopy(elfData.data(), elfData.size());
this->packedDeviceBinarySize = elfData.size();
} else {
return CL_INVALID_PROGRAM;
}
return CL_SUCCESS;
}
} // namespace NEO