gmmlib/Source/GmmLib/CachePolicy/GmmXe_LPGCachePolicy.cpp

421 lines
18 KiB
C++

/*==============================================================================
Copyright(c) 2022 Intel Corporation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files(the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and / or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
============================================================================*/
#include "Internal/Common/GmmLibInc.h"
#include "External/Common/GmmCachePolicy.h"
#include "External/Common/CachePolicy/GmmCachePolicyXe_LPG.h"
//=============================================================================
//
// Function: __:GmmXe_LPGInitCachePolicy
//
// Desc: This function initializes the cache policy
//
// Parameters: pCachePolicy -> Ptr to array to be populated with the
// mapping of usages -> cache settings.
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
GMM_STATUS GmmLib::GmmXe_LPGCachePolicy::InitCachePolicy()
{
__GMM_ASSERTPTR(pCachePolicy, GMM_ERROR);
#define DEFINE_CACHE_ELEMENT(usage, l3, l3_scc, go, uclookup, l1cc, l2cc, l4cc, coherency) DEFINE_CP_ELEMENT(usage, 0, 0, l3, 0, 0, 0, 0, l3_scc, 0, 0, 0, 0, 0, 0, go, uclookup, l1cc, l2cc, l4cc, coherency)
#include "GmmXe_LPGCachePolicy.h"
#define L3_UNCACHEABLE (0x1)
#define L3_WB_CACHEABLE (0x3)
#define DISABLE_SKIP_CACHING_CONTROL (0x0)
#define ENABLE_SKIP_CACHING_CONTROL (0x1)
#define ONE_WAY_COHERENT (0x2)
SetUpMOCSTable();
SetupPAT();
// Define index of cache element
uint32_t Usage = 0;
uint32_t ReservedMocsIdx = 10; /* Rsvd MOCS section 10-12 */
#if(_WIN32 && (_DEBUG || _RELEASE_INTERNAL))
void *pKmdGmmContext = NULL;
#if(defined(__GMM_KMD__))
pKmdGmmContext = pGmmLibContext->GetGmmKmdContext();
#endif
OverrideCachePolicy(pKmdGmmContext);
#endif
// Process the cache policy and fill in the look up table
for(; Usage < GMM_RESOURCE_USAGE_MAX; Usage++)
{
bool CachePolicyError = false;
int32_t CPTblIdx = -1, PATIdx = -1, CoherentPATIdx = -1;
uint32_t i, j, k;
GMM_CACHE_POLICY_TBL_ELEMENT UsageEle = {0};
uint32_t StartMocsIdx = 0;
GMM_L4_CACHING_POLICY PATCachePolicy;
GMM_PRIVATE_PAT UsagePATElement = {0};
GMM_PTE_CACHE_CONTROL_BITS PTE = {0};
// MOCS data
{
//L3
UsageEle.L3.Reserved = 0; // Reserved bits zeroe'd, this is so we
// we can compare the unioned L3.UshortValue.
UsageEle.L3.ESC = DISABLE_SKIP_CACHING_CONTROL;
UsageEle.L3.SCC = 0;
UsageEle.L3.Cacheability = pCachePolicy[Usage].L3 ? L3_WB_CACHEABLE : L3_UNCACHEABLE;
if(pCachePolicy[Usage].L3 == 0)
{
UsageEle.L3.GlobalGo = pCachePolicy[Usage].GlbGo;
}
UsageEle.L3.UCLookup = pCachePolicy[Usage].UcLookup;
__GMM_ASSERT((pCachePolicy[Usage].UcLookup) || (pCachePolicy[Usage].L3 == 0 && pCachePolicy[Usage].UcLookup == 0));
// L4 Data
UsageEle.LeCC.Xe_LPG.L4CC = (pCachePolicy[Usage].L4CC - 1) % 4; // coverting indicator values to actual regiser values 0->3(GMM_CP_NON_COHERENT_UC), 2->1(GMM_CP_NON_COHERENT_WT) 1->0(GMM_CP_NON_COHERENT_WB)
/* Valid MOCS Index starts from 1 */
for(j = 1; j <= CurrentMaxMocsIndex; j++)
{
GMM_CACHE_POLICY_TBL_ELEMENT *TblEle = &pGmmLibContext->GetCachePolicyTlbElement()[j];
if((TblEle->L3.UshortValue == UsageEle.L3.UshortValue) &&
(TblEle->LeCC.Xe_LPG.L4CC == UsageEle.LeCC.Xe_LPG.L4CC))
{
CPTblIdx = j;
break;
}
}
if(CPTblIdx == -1)
{
#if(_WIN32 && (_DEBUG || _RELEASE_INTERNAL))
// If the Cache Policy setting is overriden through regkey
if((pCachePolicy[Usage].IsOverridenByRegkey) && (ReservedMocsIdx < 13)) /* Reserved MOCS 10-12 */
{
/*Use the Reserved Section to add new MOCS settings,*/
GMM_CACHE_POLICY_TBL_ELEMENT *TblEle = &(pGmmLibContext->GetCachePolicyTlbElement()[ReservedMocsIdx++]);
CPTblIdx = ReservedMocsIdx;
TblEle->L3.UshortValue = UsageEle.L3.UshortValue;
TblEle->LeCC.Xe_LPG.DwordValue = UsageEle.LeCC.Xe_LPG.DwordValue;
GMM_ASSERTDPF(false, "CRITICAL: Cache Policy Usage value for L3/L4 specified by Client is not defined in Fixed MOCS Table and added to reserved MOCS section !!");
}
else
#endif
{
// Log Error using regkey to indicate the above error
#if(_WIN32 && (_DEBUG || _RELEASE_INTERNAL) && __GMM_KMD__)
REGISTRY_OVERRIDE_WRITE(pKmdGmmContext, Usage, UnSupportedMOCSEntryL3Value, UsageEle.L3.UshortValue);
#endif
CachePolicyError = true;
GMM_ASSERTDPF(false, "CRITICAL ERROR: Cache Policy Usage value for L3 specified by Client is not defined in Fixed MOCS Table!");
// Set cache policy index to default MOCS.
CPTblIdx = 0;
}
}
}
// PAT data
{
UsagePATElement.Xe_LPG.Reserved = 0;
UsagePATElement.Xe_LPG.L4CC = (pCachePolicy[Usage].L4CC - 1) % 4; // coverting indicator values to actual regiser values 0->3(GMM_CP_NON_COHERENT_UC), 2->1(GMM_CP_NON_COHERENT_WT) 1->0(GMM_CP_NON_COHERENT_WB)
UsagePATElement.Xe_LPG.Coherency = pCachePolicy[Usage].Coherency ? (pCachePolicy[Usage].Coherency + 1) : GMM_GFX_NON_COHERENT_NO_SNOOP; // pCachePolicy[Usage].Coherency -> UsagePATElement.Xe_LPG.Coherency : 0 -> GMM_GFX_NON_COHERENT_NO_SNOOP, 1 -> GMM_GFX_COHERENT_ONE_WAY_IA_SNOOP(2), 2 -> GMM_GFX_COHERENT_TWO_WAY_IA_GPU_SNOOP(3)
if((UsagePATElement.Xe_LPG.L4CC >= GMM_CP_NON_COHERENT_WT) && (UsagePATElement.Xe_LPG.Coherency >= GMM_GFX_COHERENT_ONE_WAY_IA_SNOOP))
{
// restrictions
// __GMM_ASSERT(FALSE); // disable assert till there is more clarity on Snoop + UC combination support in PAT register
// unsupported combination of coherency and L4cachepolicy
// Promote caching to _WB and support snoop
UsagePATElement.Xe_LPG.L4CC = GMM_CP_COHERENT_WB;
}
// try to find a match in static PAT table
for(i = 0; i <= CurrentMaxPATIndex; i++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(i);
if(UsagePATElement.Xe_LPG.L4CC == PAT.Xe_LPG.L4CC &&
UsagePATElement.Xe_LPG.Coherency == PAT.Xe_LPG.Coherency)
{
PATIdx = i;
break;
}
}
if(PATIdx == -1)
{
// Didn't find the caching settings in one of the already programmed PAT table entries.
// Need to add a new lookup table entry.
#if(_WIN32 && (_DEBUG || _RELEASE_INTERNAL))
// If the Cache Policy setting is overriden through regkey,
if(pCachePolicy[Usage].IsOverridenByRegkey)
{
if(CurrentMaxPATIndex < NumPATRegisters)
{
SetPrivatePATEntry(++CurrentMaxPATIndex, UsagePATElement); // updates private PAT table
PATIdx = CurrentMaxPATIndex;
}
else
{
GMM_ASSERTDPF(
"Cache Policy Init Error: Invalid Cache Programming, too many unique caching combinations"
"(we only support NumPATRegisters = %d)",
NumPATRegisters - 1);
CachePolicyError = true;
// add rterror here <ToDo>
PATIdx = PAT2; //default to uncached PAT index 2: GMM_CP_NON_COHERENT_UC
}
}
#else
{
GMM_ASSERTDPF(
"Cache Policy Init Error: Invalid Cache Programming, too many unique caching combinations"
"(we only support NumPATRegisters = %d)",
CurrentMaxPATIndex);
CachePolicyError = true;
// add rterror here <ToDo>
PATIdx = PAT2; // default to uncached PAT index 2: GMM_CP_NON_COHERENT_UC
// Log Error using regkey to indicate the above error
#if(_WIN32 && (_DEBUG || _RELEASE_INTERNAL) && __GMM_KMD__)
REGISTRY_OVERRIDE_WRITE(pKmdGmmContext, Usage, NewPATCachingPolicy, UsagePATElement.Xe_LPG.L4CC);
REGISTRY_OVERRIDE_WRITE(pKmdGmmContext, Usage, NewPATCoherency, UsagePATElement.Xe_LPG.Coherency);
#endif
}
#endif
}
// Find PATIndex matching coherency value of 2 in static PAT table (1 way coherent)
for(k = 0; k <= CurrentMaxPATIndex; k++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(k);
if(UsagePATElement.Xe_LPG.L4CC == PAT.Xe_LPG.L4CC &&
(ONE_WAY_COHERENT == PAT.Xe_LPG.Coherency))
{
CoherentPATIdx = k;
break;
}
}
if(CoherentPATIdx == -1)
{
// redo PAT idnex mathcing with just coherency value,
// ignore L4 cache setting since MTL is MOCS centric and only the coherency value comes from PAT anyways, caching policy is bound to come from MOCS on MTL
for(k = 0; k <= CurrentMaxPATIndex; k++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(k);
if(ONE_WAY_COHERENT == PAT.Xe_LPG.Coherency)
{
CoherentPATIdx = k;
break;
}
}
}
if(CoherentPATIdx == -1) // no match, switch to PATIndex
{
CachePolicyError = true;
CoherentPATIdx = PATIdx;
}
}
pCachePolicy[Usage].PATIndex = PATIdx;
pCachePolicy[Usage].CoherentPATIndex = CoherentPATIdx;
pCachePolicy[Usage].PTE.DwordValue = GMM_GET_PTE_BITS_FROM_PAT_IDX(PATIdx) & 0xFFFFFFFF;
pCachePolicy[Usage].PTE.HighDwordValue = GMM_GET_PTE_BITS_FROM_PAT_IDX(PATIdx) >> 32;
pCachePolicy[Usage].MemoryObjectOverride.XE_LPG.Index = CPTblIdx;
pCachePolicy[Usage].Override = ALWAYS_OVERRIDE;
if(CachePolicyError)
{
GMM_ASSERTDPF(false, "Cache Policy Init Error: Invalid Cache Programming ");
// add rterror here <ToDo>
}
}
return GMM_SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////////////
/// A simple getter function returning the PAT (cache policy) for a given
/// use Usage of the named resource pResInfo.
/// Typically used to populate PPGTT/GGTT.
///
/// @param[in] pResInfo: Resource info for resource, can be NULL.
/// @param[in] Usage: Current usage for resource.
/// @param[Optional] Not Applicable for MTL
/// @param[in] Applicable for MTL
/// @return PATIndex
/////////////////////////////////////////////////////////////////////////////////////
uint32_t GMM_STDCALL GmmLib::GmmXe_LPGCachePolicy::CachePolicyGetPATIndex(GMM_RESOURCE_INFO *pResInfo, GMM_RESOURCE_USAGE_TYPE Usage, bool *pCompressionEnable, bool IsCpuCacheable)
{
__GMM_ASSERT(pGmmLibContext->GetCachePolicyElement(Usage).Initialized);
GMM_UNREFERENCED_PARAMETER(pCompressionEnable);
// Prevent wrong Usage for XAdapter resources. UMD does not call GetMemoryObject on shader resources but,
// when they add it someone could call it without knowing the restriction.
if(pResInfo &&
pResInfo->GetResFlags().Info.XAdapter &&
Usage != GMM_RESOURCE_USAGE_XADAPTER_SHARED_RESOURCE)
{
__GMM_ASSERT(false);
}
if(IsCpuCacheable)
{
return pGmmLibContext->GetCachePolicyElement(Usage).CoherentPATIndex;
}
else
{
return pGmmLibContext->GetCachePolicyElement(Usage).PATIndex;
}
}
//=============================================================================
//
// Function: SetUpMOCSTable
//
// Desc:
//
// Parameters:
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
void GmmLib::GmmXe_LPGCachePolicy::SetUpMOCSTable()
{
GMM_CACHE_POLICY_TBL_ELEMENT *pCachePolicyTlbElement = &(pGmmLibContext->GetCachePolicyTlbElement()[0]);
CurrentMaxL1HdcMocsIndex = 0;
CurrentMaxSpecialMocsIndex = 0;
#define L3_UC (0x1)
#define L3_WB (0x3)
#define L4_WB (0x0)
#define L4_WT (0x1)
#define L4_UC (0x3)
#define GMM_DEFINE_MOCS(Index, L3_LookUp, L3_Go, L3_CC, L4Caching, ignorePAT) \
{ \
pCachePolicyTlbElement[Index].L3.Cacheability = L3_CC; \
pCachePolicyTlbElement[Index].L3.GlobalGo = L3_Go; \
pCachePolicyTlbElement[Index].L3.UCLookup = L3_LookUp; \
pCachePolicyTlbElement[Index].LeCC.Xe_LPG.L4CC = L4Caching; \
pCachePolicyTlbElement[Index].LeCC.Xe_LPG.igPAT = ignorePAT; \
}
// clang-format off
//Default MOCS Table
for(int index = 0; index < GMM_MAX_NUMBER_MOCS_INDEXES; index++)
{ // Index LookUp Go L3CC L4CC ignorePAT
GMM_DEFINE_MOCS( index , 1 , 0 , L3_UC , L4_UC , 0)
}
// Fixed MOCS Table
// Index LookUp Go L3CC L4CC ignorePAT
GMM_DEFINE_MOCS( 0 , 1 , 0 , L3_WB , L4_WB , 1)
GMM_DEFINE_MOCS( 1 , 1 , 0 , L3_WB , L4_WB , 1)
GMM_DEFINE_MOCS( 2 , 1 , 0 , L3_UC , L4_WB , 1)
GMM_DEFINE_MOCS( 3 , 1 , 0 , L3_UC , L4_UC , 1)
GMM_DEFINE_MOCS( 4 , 1 , 1 , L3_UC , L4_WB , 1)
GMM_DEFINE_MOCS( 5 , 1 , 1 , L3_UC , L4_UC , 1)
GMM_DEFINE_MOCS( 6 , 0 , 0 , L3_UC , L4_WB , 1)
GMM_DEFINE_MOCS( 7 , 0 , 0 , L3_UC , L4_UC , 1)
GMM_DEFINE_MOCS( 8 , 0 , 1 , L3_UC , L4_WB , 1)
GMM_DEFINE_MOCS( 9 , 0 , 1 , L3_UC , L4_UC , 1)
//Reserved 10-13
GMM_DEFINE_MOCS( 14 , 1 , 0 , L3_WB , L4_WT , 1) /* Note Update GMM_CC_DISP_MOCS_INDEX*/
GMM_DEFINE_MOCS( 15 , 0 , 1 , L3_UC , L4_WB , 1) /* Note Update GMM_NON_CC_DISP_MOCS_INDEX */
CurrentMaxMocsIndex = 15;
CurrentMaxL1HdcMocsIndex = 0;
CurrentMaxSpecialMocsIndex = 0;
// clang-format on
#undef GMM_DEFINE_MOCS
#undef L4_WB
#undef L4_WT
#undef L4_UC
#undef L3_UC
#undef L3_WB
}
//=============================================================================
//
// Function: SetupPAT
//
// Desc:
//
// Parameters:
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
GMM_STATUS GmmLib::GmmXe_LPGCachePolicy::SetupPAT()
{
GMM_PRIVATE_PAT *pPATTlbElement = &(pGmmLibContext->GetPrivatePATTable()[0]);
#define L4_WB (0x0)
#define L4_WT (0x1)
#define L4_UC (0x3)
#define GMM_DEFINE_PAT_ELEMENT(indx, L4Caching, Coh) \
{ \
pPATTlbElement[indx].Xe_LPG.Coherency = Coh; \
pPATTlbElement[indx].Xe_LPG.L4CC = L4Caching; \
pPATTlbElement[indx].Xe_LPG.Reserved = 0; \
}
// clang-format off
// Default PAT Table
for (uint32_t i = 0; i < NumPATRegisters; i++)
{ // Index CachingPolicy Coherency
GMM_DEFINE_PAT_ELEMENT( i, L4_UC , 0 );
}
// Fixed PAT Table
// Index CachingPolicy Coherency
GMM_DEFINE_PAT_ELEMENT( 0 , L4_WB , 0) // PATRegValue = 0x0
GMM_DEFINE_PAT_ELEMENT( 1 , L4_WT , 0) // PATRegValue = 0x4
GMM_DEFINE_PAT_ELEMENT( 2 , L4_UC , 0) // PATRegValue = 0xC
GMM_DEFINE_PAT_ELEMENT( 3 , L4_WB , 2) // PATRegValue = 0x2
GMM_DEFINE_PAT_ELEMENT( 4 , L4_WB , 3) // PATRegValue = 0x3
CurrentMaxPATIndex = 4;
// clang-format on
#undef GMM_DEFINE_PAT
#undef L4_WB
#undef L4_WT
#undef L4_UC
return GMM_SUCCESS;
}