mirror of https://github.com/intel/gmmlib.git
1173 lines
48 KiB
C++
1173 lines
48 KiB
C++
/*==============================================================================
|
|
Copyright(c) 2017 Intel Corporation
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files(the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and / or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
============================================================================*/
|
|
|
|
#include "Internal/Common/GmmLibInc.h"
|
|
#include "Internal/Common/Texture/GmmGen10TextureCalc.h"
|
|
#include "Internal/Common/Texture/GmmGen11TextureCalc.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
/// This function calculates the (X,Y) address of each given plane. X is in bytes
|
|
/// and Y is in scanlines.
|
|
///
|
|
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO
|
|
///
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
void GmmLib::GmmGen11TextureCalc::FillPlanarOffsetAddress(GMM_TEXTURE_INFO *pTexInfo)
|
|
{
|
|
GMM_GFX_SIZE_T *pUOffsetX, *pUOffsetY;
|
|
GMM_GFX_SIZE_T *pVOffsetX, *pVOffsetY;
|
|
uint32_t YHeight = 0, VHeight = 0;
|
|
bool UVPacked = false;
|
|
uint32_t Height;
|
|
uint32_t WidthBytesPhysical = GFX_ULONG_CAST(pTexInfo->BaseWidth) * pTexInfo->BitsPerPixel >> 3;
|
|
|
|
#define SWAP_UV() \
|
|
{ \
|
|
GMM_GFX_SIZE_T *pTemp; \
|
|
\
|
|
pTemp = pUOffsetX; \
|
|
pUOffsetX = pVOffsetX; \
|
|
pVOffsetX = pTemp; \
|
|
\
|
|
pTemp = pUOffsetY; \
|
|
pUOffsetY = pVOffsetY; \
|
|
pVOffsetY = pTemp; \
|
|
}
|
|
|
|
__GMM_ASSERTPTR(pTexInfo, VOIDRETURN);
|
|
__GMM_ASSERTPTR(((pTexInfo->TileMode < GMM_TILE_MODES) && (pTexInfo->TileMode >= TILE_NONE)), VOIDRETURN);
|
|
GMM_DPF_ENTER;
|
|
|
|
const GMM_PLATFORM_INFO *pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo, pGmmLibContext);
|
|
|
|
// GMM_PLANE_Y always at (0, 0)...
|
|
pTexInfo->OffsetInfo.Plane.X[GMM_PLANE_Y] = 0;
|
|
pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_Y] = 0;
|
|
|
|
pTexInfo->OffsetInfo.Plane.UnAligned.Height[GMM_PLANE_Y] = 0;
|
|
pTexInfo->OffsetInfo.Plane.UnAligned.Height[GMM_PLANE_Y] = 0;
|
|
|
|
Height = pTexInfo->BaseHeight;
|
|
if(pTexInfo->Flags.Gpu.__NonMsaaTileYCcs)
|
|
{
|
|
Height = __GMM_EXPAND_HEIGHT(this, Height, pTexInfo->Alignment.VAlign, pTexInfo);
|
|
Height = ScaleTextureHeight(pTexInfo, Height);
|
|
if(pTexInfo->Flags.Gpu.UnifiedAuxSurface)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_Y] = 0;
|
|
}
|
|
}
|
|
|
|
// GMM_PLANE_U/V Planes...
|
|
pUOffsetX = &pTexInfo->OffsetInfo.Plane.X[GMM_PLANE_U];
|
|
pUOffsetY = &pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_U];
|
|
pVOffsetX = &pTexInfo->OffsetInfo.Plane.X[GMM_PLANE_V];
|
|
pVOffsetY = &pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_V];
|
|
|
|
switch(pTexInfo->Format)
|
|
{
|
|
case GMM_FORMAT_IMC1:
|
|
SWAP_UV(); // IMC1 = IMC3 with Swapped U/V
|
|
case GMM_FORMAT_IMC3:
|
|
case GMM_FORMAT_MFX_JPEG_YUV420: // Same as IMC3.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUU
|
|
// UUUU
|
|
// VVVV
|
|
// VVVV
|
|
case GMM_FORMAT_MFX_JPEG_YUV422V: // Similar to IMC3 but U/V are full width.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
{
|
|
*pUOffsetX = 0;
|
|
YHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pUOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
*pVOffsetX = 0;
|
|
VHeight = GFX_ALIGN(GFX_CEIL_DIV(pTexInfo->BaseHeight, 2), GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pVOffsetY =
|
|
GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT) +
|
|
GFX_ALIGN(GFX_CEIL_DIV(pTexInfo->BaseHeight, 2), GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
break;
|
|
}
|
|
case GMM_FORMAT_MFX_JPEG_YUV411R_TYPE: //Similar to IMC3 but U/V are quarther height and full width.
|
|
//YYYYYYYY
|
|
//YYYYYYYY
|
|
//YYYYYYYY
|
|
//YYYYYYYY
|
|
//UUUUUUUU
|
|
//VVVVVVVV
|
|
{
|
|
*pUOffsetX = 0;
|
|
YHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pUOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
*pVOffsetX = 0;
|
|
VHeight = GFX_ALIGN(GFX_CEIL_DIV(pTexInfo->BaseHeight, 4), GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pVOffsetY =
|
|
GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT) +
|
|
GFX_ALIGN(GFX_CEIL_DIV(pTexInfo->BaseHeight, 4), GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
break;
|
|
}
|
|
case GMM_FORMAT_MFX_JPEG_YUV411: // Similar to IMC3 but U/V are quarter width and full height.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UU
|
|
// UU
|
|
// UU
|
|
// UU
|
|
// VV
|
|
// VV
|
|
// VV
|
|
// VV
|
|
case GMM_FORMAT_MFX_JPEG_YUV422H: // Similar to IMC3 but U/V are full height.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUU
|
|
// UUUU
|
|
// UUUU
|
|
// UUUU
|
|
// VVVV
|
|
// VVVV
|
|
// VVVV
|
|
// VVVV
|
|
case GMM_FORMAT_MFX_JPEG_YUV444: // Similar to IMC3 but U/V are full size.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
{
|
|
*pUOffsetX = 0;
|
|
YHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pUOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
*pVOffsetX = 0;
|
|
VHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pVOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT) * 2;
|
|
|
|
break;
|
|
}
|
|
case GMM_FORMAT_BGRP:
|
|
case GMM_FORMAT_RGBP:
|
|
{
|
|
//For RGBP linear Tile keep resource Offset non aligned and for other Tile format to be 16-bit aligned
|
|
if(pTexInfo->Flags.Info.Linear)
|
|
{
|
|
*pUOffsetX = 0;
|
|
YHeight = pTexInfo->BaseHeight;
|
|
*pUOffsetY = pTexInfo->BaseHeight;
|
|
|
|
*pVOffsetX = 0;
|
|
VHeight = pTexInfo->BaseHeight;
|
|
*pVOffsetY = (GMM_GFX_SIZE_T)pTexInfo->BaseHeight * 2;
|
|
}
|
|
else //Tiled
|
|
{
|
|
*pUOffsetX = 0;
|
|
YHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pUOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
*pVOffsetX = 0;
|
|
VHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pVOffsetY = (GMM_GFX_SIZE_T)GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT) * 2;
|
|
}
|
|
break;
|
|
}
|
|
case GMM_FORMAT_IMC2:
|
|
SWAP_UV(); // IMC2 = IMC4 with Swapped U/V
|
|
case GMM_FORMAT_IMC4:
|
|
{
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUUVVVV
|
|
// UUUUVVVV
|
|
|
|
__GMM_ASSERT((pTexInfo->Pitch & 1) == 0);
|
|
|
|
*pUOffsetX = 0;
|
|
YHeight = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
*pUOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
*pVOffsetX = pTexInfo->Pitch / 2;
|
|
VHeight = GFX_CEIL_DIV(YHeight, 2);
|
|
*pVOffsetY = GFX_ALIGN(pTexInfo->BaseHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
// Not technically UV packed but sizing works out the same
|
|
UVPacked = true;
|
|
|
|
break;
|
|
}
|
|
case GMM_FORMAT_I420: // I420 = IYUV
|
|
case GMM_FORMAT_IYUV:
|
|
SWAP_UV(); // I420/IYUV = YV12 with Swapped U/V
|
|
case GMM_FORMAT_YV12:
|
|
case GMM_FORMAT_YVU9:
|
|
{
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// VVVVVV.. <-- V and U planes follow the Y plane, as linear
|
|
// ..UUUUUU arrays--without respect to pitch.
|
|
|
|
uint32_t YSize, YVSizeRShift, VSize, UOffset;
|
|
uint32_t YSizeForUVPurposes, YSizeForUVPurposesDimensionalAlignment;
|
|
|
|
YSize = GFX_ULONG_CAST(pTexInfo->Pitch) * pTexInfo->BaseHeight;
|
|
|
|
// YVU9 has one U/V pixel for each 4x4 Y block.
|
|
// The others have one U/V pixel for each 2x2 Y block.
|
|
|
|
// YVU9 has a Y:V size ratio of 16 (4x4 --> 1).
|
|
// The others have a ratio of 4 (2x2 --> 1).
|
|
YVSizeRShift = (pTexInfo->Format != GMM_FORMAT_YVU9) ? 2 : 4;
|
|
|
|
// If a Y plane isn't fully-aligned to its Y-->U/V block size, the
|
|
// extra/unaligned Y pixels still need corresponding U/V pixels--So
|
|
// for the purpose of computing the UVSize, we must consider a
|
|
// dimensionally "rounded-up" YSize. (E.g. a 13x5 YVU9 Y plane would
|
|
// require 4x2 U/V planes--the same UVSize as a fully-aligned 16x8 Y.)
|
|
YSizeForUVPurposesDimensionalAlignment = (pTexInfo->Format != GMM_FORMAT_YVU9) ? 2 : 4;
|
|
YSizeForUVPurposes =
|
|
GFX_ALIGN(GFX_ULONG_CAST(pTexInfo->Pitch), YSizeForUVPurposesDimensionalAlignment) *
|
|
GFX_ALIGN(pTexInfo->BaseHeight, YSizeForUVPurposesDimensionalAlignment);
|
|
|
|
VSize = (YSizeForUVPurposes >> YVSizeRShift);
|
|
UOffset = YSize + VSize;
|
|
|
|
*pVOffsetX = 0;
|
|
*pVOffsetY = pTexInfo->BaseHeight;
|
|
|
|
*pUOffsetX = UOffset % pTexInfo->Pitch;
|
|
*pUOffsetY = UOffset / pTexInfo->Pitch;
|
|
|
|
YHeight = GFX_CEIL_DIV(YSize + 2 * VSize, WidthBytesPhysical);
|
|
|
|
break;
|
|
}
|
|
case GMM_FORMAT_NV12:
|
|
case GMM_FORMAT_NV21:
|
|
case GMM_FORMAT_NV11:
|
|
case GMM_FORMAT_P010:
|
|
case GMM_FORMAT_P012:
|
|
case GMM_FORMAT_P016:
|
|
case GMM_FORMAT_P208:
|
|
case GMM_FORMAT_P216:
|
|
{
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// [UV-Packing]
|
|
*pUOffsetX = *pVOffsetX = 0;
|
|
YHeight = GFX_ALIGN(Height, __GMM_EVEN_ROW);
|
|
*pUOffsetY = *pVOffsetY = YHeight;
|
|
|
|
if((pTexInfo->Format == GMM_FORMAT_NV12) ||
|
|
(pTexInfo->Format == GMM_FORMAT_NV21) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P010) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P012) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P016))
|
|
{
|
|
VHeight = GFX_CEIL_DIV(Height, 2);
|
|
}
|
|
else
|
|
{
|
|
VHeight = YHeight; // U/V plane is same as Y
|
|
}
|
|
|
|
UVPacked = true;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
GMM_ASSERTDPF(0, "Unknown Video Format U\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
pTexInfo->OffsetInfo.Plane.UnAligned.Height[GMM_PLANE_Y] = YHeight;
|
|
if(pTexInfo->OffsetInfo.Plane.NoOfPlanes == 2)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.UnAligned.Height[GMM_PLANE_U] = VHeight;
|
|
}
|
|
else if(pTexInfo->OffsetInfo.Plane.NoOfPlanes == 3)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.UnAligned.Height[GMM_PLANE_U] =
|
|
pTexInfo->OffsetInfo.Plane.UnAligned.Height[GMM_PLANE_V] = VHeight;
|
|
}
|
|
|
|
if(GMM_IS_TILED(pPlatform->TileInfo[pTexInfo->TileMode]) || pTexInfo->Flags.Gpu.__NonMsaaTileYCcs)
|
|
{
|
|
GMM_GFX_SIZE_T TileHeight = pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileHeight;
|
|
GMM_GFX_SIZE_T TileWidth = pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileWidth;
|
|
GMM_GFX_SIZE_T PhysicalTileHeight = TileHeight;
|
|
if(GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) > IGFX_GEN11LP_CORE)
|
|
{
|
|
if(pTexInfo->Flags.Gpu.CCS && !pGmmLibContext->GetSkuTable().FtrFlatPhysCCS)
|
|
{
|
|
//U/V must be aligned to AuxT granularity, 4x pitchalign enforces 16K-align for 4KB tile,
|
|
//add extra padding for 64K AuxT, 1MB AuxT
|
|
if(GMM_IS_64KB_TILE(pTexInfo->Flags))
|
|
{
|
|
TileHeight *= (!WA64K(pGmmLibContext) && !WA16K(pGmmLibContext)) ? 16 : 1; // For 64Kb Tile mode: Multiply TileHeight by 16 for 1 MB alignment
|
|
}
|
|
else
|
|
{
|
|
PhysicalTileHeight *= (WA16K(pGmmLibContext) ? 1 : WA64K(pGmmLibContext) ? 4 : 1); // for 1 MB AuxT granularity, we do 1 MB alignment only in VA space and not in physical space, so do not multiply PhysicalTileHeight with 64 here
|
|
TileHeight *= (WA16K(pGmmLibContext) ? 1 : WA64K(pGmmLibContext) ? 4 : 64); // For 4k Tile: Multiply TileHeight by 4 and Pitch by 4 for 64kb alignment, multiply TileHeight by 64 and Pitch by 4 for 1 MB alignment
|
|
}
|
|
}
|
|
}
|
|
|
|
*pUOffsetX = GFX_ALIGN(*pUOffsetX, TileWidth);
|
|
*pUOffsetY = GFX_ALIGN(*pUOffsetY, TileHeight);
|
|
*pVOffsetX = GFX_ALIGN(*pVOffsetX, TileWidth);
|
|
*pVOffsetY = UVPacked ?
|
|
GFX_ALIGN(*pVOffsetY, TileHeight) :
|
|
GFX_ALIGN(YHeight, TileHeight) + GFX_ALIGN(VHeight, TileHeight);
|
|
|
|
if(pTexInfo->Flags.Gpu.UnifiedAuxSurface && pTexInfo->Flags.Gpu.__NonMsaaTileYCcs)
|
|
{
|
|
*pUOffsetY += pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_Y];
|
|
*pVOffsetY = *pUOffsetY;
|
|
}
|
|
|
|
// This is needed for FtrDisplayPageTables
|
|
if(pGmmLibContext->GetSkuTable().FtrDisplayPageTables)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.Aligned.Height[GMM_PLANE_Y] = GFX_ALIGN(YHeight, TileHeight);
|
|
if(pTexInfo->OffsetInfo.Plane.NoOfPlanes == 2)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.Aligned.Height[GMM_PLANE_U] = GFX_ALIGN(VHeight, TileHeight);
|
|
}
|
|
else if(pTexInfo->OffsetInfo.Plane.NoOfPlanes == 3)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.Aligned.Height[GMM_PLANE_U] =
|
|
pTexInfo->OffsetInfo.Plane.Aligned.Height[GMM_PLANE_V] = GFX_ALIGN(VHeight, TileHeight);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Special case LKF MMC compressed surfaces
|
|
if(pTexInfo->Flags.Gpu.MMC &&
|
|
pTexInfo->Flags.Gpu.UnifiedAuxSurface &&
|
|
pTexInfo->Flags.Info.TiledY)
|
|
{
|
|
GMM_GFX_SIZE_T TileHeight = pGmmLibContext->GetPlatformInfo().TileInfo[pTexInfo->TileMode].LogicalTileHeight;
|
|
GMM_GFX_SIZE_T TileWidth = pGmmLibContext->GetPlatformInfo().TileInfo[pTexInfo->TileMode].LogicalTileWidth;
|
|
|
|
*pUOffsetX = GFX_ALIGN(*pUOffsetX, TileWidth);
|
|
*pUOffsetY = GFX_ALIGN(*pUOffsetY, TileHeight);
|
|
*pVOffsetX = GFX_ALIGN(*pVOffsetX, TileWidth);
|
|
*pVOffsetY = GFX_ALIGN(*pVOffsetY, TileHeight);
|
|
}
|
|
|
|
GMM_DPF_EXIT;
|
|
|
|
#undef SWAP_UV
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
/// Returns the mip offset of given LOD in Mip Tail
|
|
///
|
|
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO,
|
|
/// MipLevel: mip-map level
|
|
///
|
|
/// @return offset value of LOD in bytes
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
uint32_t GmmLib::GmmGen11TextureCalc::GetMipTailByteOffset(GMM_TEXTURE_INFO *pTexInfo,
|
|
uint32_t MipLevel)
|
|
{
|
|
uint32_t ByteOffset = 0, Slot = 0xff;
|
|
|
|
GMM_DPF_ENTER;
|
|
|
|
// 3D textures follow the Gen10 mip tail format
|
|
if(!pGmmLibContext->GetSkuTable().FtrStandardMipTailFormat)
|
|
{
|
|
return GmmGen9TextureCalc::GetMipTailByteOffset(pTexInfo, MipLevel);
|
|
}
|
|
|
|
if((pTexInfo->Type == RESOURCE_1D) || (pTexInfo->Type == RESOURCE_3D))
|
|
{
|
|
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
|
|
(pTexInfo->Flags.Info.TiledYf ? 4 : 0);
|
|
}
|
|
else if(pTexInfo->Type == RESOURCE_2D || pTexInfo->Type == RESOURCE_CUBE)
|
|
{
|
|
// clang-format off
|
|
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
|
|
// TileYs
|
|
((pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 16) ? 4 :
|
|
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 8) ? 3 :
|
|
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 4) ? 2 :
|
|
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 2) ? 1 :
|
|
(pTexInfo->Flags.Info.TiledYs ) ? 0 :
|
|
// TileYf
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 16) ? 11:
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 8) ? 10:
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 4) ? 8:
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 2) ? 5:
|
|
(pTexInfo->Flags.Info.TiledYf ) ? 4: 0);
|
|
// clang-format on
|
|
}
|
|
|
|
switch(Slot)
|
|
{
|
|
case 0:
|
|
ByteOffset = GMM_KBYTE(32);
|
|
break;
|
|
case 1:
|
|
ByteOffset = GMM_KBYTE(16);
|
|
break;
|
|
case 2:
|
|
ByteOffset = GMM_KBYTE(8);
|
|
break;
|
|
case 3:
|
|
ByteOffset = GMM_KBYTE(4);
|
|
break;
|
|
case 4:
|
|
ByteOffset = GMM_KBYTE(2);
|
|
break;
|
|
case 5:
|
|
ByteOffset = GMM_BYTES(1536);
|
|
break;
|
|
case 6:
|
|
ByteOffset = GMM_BYTES(1280);
|
|
break;
|
|
case 7:
|
|
ByteOffset = GMM_BYTES(1024);
|
|
break;
|
|
case 8:
|
|
ByteOffset = GMM_BYTES(768);
|
|
break;
|
|
case 9:
|
|
ByteOffset = GMM_BYTES(512);
|
|
break;
|
|
case 10:
|
|
ByteOffset = GMM_BYTES(256);
|
|
break;
|
|
case 11:
|
|
ByteOffset = GMM_BYTES(0);
|
|
break;
|
|
case 12:
|
|
ByteOffset = GMM_BYTES(64);
|
|
break;
|
|
case 13:
|
|
ByteOffset = GMM_BYTES(128);
|
|
break;
|
|
case 14:
|
|
ByteOffset = GMM_BYTES(196);
|
|
break;
|
|
default:
|
|
__GMM_ASSERT(0);
|
|
}
|
|
|
|
GMM_DPF_EXIT;
|
|
|
|
return (ByteOffset);
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
/// Returns the mip-map offset in geometric OffsetX, Y, Z for a given LOD in Mip Tail on Gen11.
|
|
///
|
|
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO,
|
|
/// MipLevel: mip-map level
|
|
/// OffsetX: ptr to Offset in X direction (in bytes)
|
|
/// OffsetY: ptr to Offset in Y direction (in pixels)
|
|
/// OffsetZ: ptr to Offset in Z direction (in pixels)
|
|
///
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
GMM_MIPTAIL_SLOT_OFFSET Gen11MipTailSlotOffset1DSurface[15][5] = GEN11_MIPTAIL_SLOT_OFFSET_1D_SURFACE;
|
|
GMM_MIPTAIL_SLOT_OFFSET Gen11MipTailSlotOffset2DSurface[15][5] = GEN11_MIPTAIL_SLOT_OFFSET_2D_SURFACE;
|
|
GMM_MIPTAIL_SLOT_OFFSET Gen11MipTailSlotOffset3DSurface[15][5] = GEN11_MIPTAIL_SLOT_OFFSET_3D_SURFACE;
|
|
|
|
void GmmLib::GmmGen11TextureCalc::GetMipTailGeometryOffset(GMM_TEXTURE_INFO *pTexInfo,
|
|
uint32_t MipLevel,
|
|
uint32_t * OffsetX,
|
|
uint32_t * OffsetY,
|
|
uint32_t * OffsetZ)
|
|
{
|
|
uint32_t ArrayIndex = 0;
|
|
uint32_t Slot = 0;
|
|
|
|
GMM_DPF_ENTER;
|
|
|
|
switch(pTexInfo->BitsPerPixel)
|
|
{
|
|
case 128:
|
|
ArrayIndex = 0;
|
|
break;
|
|
case 64:
|
|
ArrayIndex = 1;
|
|
break;
|
|
case 32:
|
|
ArrayIndex = 2;
|
|
break;
|
|
case 16:
|
|
ArrayIndex = 3;
|
|
break;
|
|
case 8:
|
|
ArrayIndex = 4;
|
|
break;
|
|
default:
|
|
__GMM_ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
if(pTexInfo->Type == RESOURCE_1D)
|
|
{
|
|
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod;
|
|
|
|
*OffsetX = Gen11MipTailSlotOffset1DSurface[Slot][ArrayIndex].X * pTexInfo->BitsPerPixel / 8;
|
|
*OffsetY = Gen11MipTailSlotOffset1DSurface[Slot][ArrayIndex].Y;
|
|
*OffsetZ = Gen11MipTailSlotOffset1DSurface[Slot][ArrayIndex].Z;
|
|
}
|
|
else if(pTexInfo->Type == RESOURCE_2D || pTexInfo->Type == RESOURCE_CUBE)
|
|
{
|
|
// clang-format off
|
|
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
|
|
// TileYs
|
|
((pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 16) ? 4 :
|
|
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 8) ? 3 :
|
|
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 4) ? 2 :
|
|
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 2) ? 1 :
|
|
(pTexInfo->Flags.Info.TiledYs) ? 0 :
|
|
// TileYf
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 16) ? 11 :
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 8) ? 10 :
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 4) ? 8 :
|
|
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 2) ? 5 :
|
|
(pTexInfo->Flags.Info.TiledYf) ? 4 : 0);
|
|
// clang-format on
|
|
|
|
*OffsetX = Gen11MipTailSlotOffset2DSurface[Slot][ArrayIndex].X * pTexInfo->BitsPerPixel / 8;
|
|
*OffsetY = Gen11MipTailSlotOffset2DSurface[Slot][ArrayIndex].Y;
|
|
*OffsetZ = Gen11MipTailSlotOffset2DSurface[Slot][ArrayIndex].Z;
|
|
}
|
|
else if(pTexInfo->Type == RESOURCE_3D)
|
|
{
|
|
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod;
|
|
|
|
*OffsetX = Gen11MipTailSlotOffset3DSurface[Slot][ArrayIndex].X * pTexInfo->BitsPerPixel / 8;
|
|
*OffsetY = Gen11MipTailSlotOffset3DSurface[Slot][ArrayIndex].Y;
|
|
*OffsetZ = Gen11MipTailSlotOffset3DSurface[Slot][ArrayIndex].Z;
|
|
}
|
|
|
|
GMM_DPF_EXIT;
|
|
return;
|
|
}
|
|
|
|
GMM_STATUS GmmLib::GmmGen11TextureCalc::FillLinearCCS(GMM_TEXTURE_INFO * pTexInfo,
|
|
__GMM_BUFFER_TYPE *pRestrictions)
|
|
{
|
|
GMM_GFX_SIZE_T PaddedSize;
|
|
uint32_t TileHeight;
|
|
GMM_GFX_SIZE_T YCcsSize = 0;
|
|
GMM_GFX_SIZE_T UVCcsSize = 0;
|
|
GMM_GFX_SIZE_T TotalHeight = 0;
|
|
const GMM_PLATFORM_INFO *pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo, pGmmLibContext);
|
|
GMM_DPF_ENTER;
|
|
|
|
|
|
__GMM_ASSERT(pTexInfo->Flags.Gpu.MMC &&
|
|
pTexInfo->Flags.Gpu.UnifiedAuxSurface &&
|
|
pTexInfo->Flags.Gpu.__NonMsaaLinearCCS);
|
|
|
|
__GMM_ASSERT(pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_U] > 0);
|
|
TileHeight = pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileHeight;
|
|
|
|
// Vinante : CCS or Tile status buffer is computed by giving 2bit for every 256bytes of origional pixel data.
|
|
// For YUV Planar surfaces, UV Plane follow immediately after Y plane. Y and UV surfaces have their own
|
|
// control surfaces. So AuxSurf will be linear buffer with CCS for Y plane followed by CCS for UV plane.
|
|
// Y and UV control surface must be 4kb base aligned and they store the control data for full tiles covering Y and UV
|
|
// planes respectively.
|
|
// GMM will also allocate cacheline aligned 64-byte to hold the LKF's software controlled media compression state.
|
|
// GMM will calculate YAuxOffset, UVAuxOffset and MediaCompression State offset on the fly. Refer GmmResGetAuxSurfaceOffset().
|
|
|
|
YCcsSize = pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_U] * pTexInfo->Pitch / 1024;
|
|
YCcsSize = GFX_ALIGN(YCcsSize, PAGE_SIZE);
|
|
|
|
if(pTexInfo->ArraySize > 1)
|
|
{
|
|
TotalHeight = pTexInfo->OffsetInfo.Plane.ArrayQPitch / pTexInfo->Pitch;
|
|
}
|
|
else
|
|
{
|
|
TotalHeight = pTexInfo->Size / pTexInfo->Pitch;
|
|
}
|
|
|
|
UVCcsSize = (TotalHeight - pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_U]) * pTexInfo->Pitch / 1024;
|
|
UVCcsSize = GFX_ALIGN(UVCcsSize, PAGE_SIZE);
|
|
|
|
pTexInfo->Size = GFX_ALIGN(YCcsSize + UVCcsSize + GMM_MEDIA_COMPRESSION_STATE_SIZE, pRestrictions->MinAllocationSize);
|
|
pTexInfo->Pitch = 0;
|
|
|
|
//Store the dimension of linear surface in OffsetInfo.Plane.X.
|
|
pTexInfo->OffsetInfo.Plane.X[GMM_PLANE_Y] = YCcsSize;
|
|
pTexInfo->OffsetInfo.Plane.X[GMM_PLANE_U] =
|
|
pTexInfo->OffsetInfo.Plane.X[GMM_PLANE_V] = UVCcsSize;
|
|
|
|
pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_Y] =
|
|
pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_U] =
|
|
pTexInfo->OffsetInfo.Plane.Y[GMM_PLANE_V] = 0;
|
|
|
|
// Planar & hybrid 2D arrays supported in DX11.1+ spec but not HW. Memory layout
|
|
// is defined by SW requirements; Y plane must be 4KB aligned.
|
|
if(pTexInfo->ArraySize > 1)
|
|
{
|
|
GMM_GFX_SIZE_T ElementSizeBytes = pTexInfo->Size;
|
|
int64_t LargeSize;
|
|
|
|
// Size should always be page aligned.
|
|
__GMM_ASSERT((pTexInfo->Size % PAGE_SIZE) == 0);
|
|
|
|
if((LargeSize = (int64_t)ElementSizeBytes * pTexInfo->ArraySize) <= pPlatform->SurfaceMaxSize)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.ArrayQPitch = ElementSizeBytes;
|
|
pTexInfo->Size = LargeSize;
|
|
}
|
|
else
|
|
{
|
|
GMM_ASSERTDPF(0, "Surface too large!");
|
|
return GMM_ERROR;
|
|
}
|
|
}
|
|
|
|
return GMM_SUCCESS;
|
|
GMM_DPF_EXIT;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
/// This function will Setup a planar surface allocation.
|
|
///
|
|
/// @param[in] pTexInfo: Reference to ::GMM_TEXTURE_INFO
|
|
/// @param[in] pRestrictions: Reference to surface alignment and size restrictions.
|
|
///
|
|
/// @return ::GMM_STATUS
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
GMM_STATUS GMM_STDCALL GmmLib::GmmGen11TextureCalc::FillTexPlanar(GMM_TEXTURE_INFO * pTexInfo,
|
|
__GMM_BUFFER_TYPE *pRestrictions)
|
|
{
|
|
const GMM_PLATFORM_INFO *pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo, pGmmLibContext);
|
|
|
|
GMM_DPF_ENTER;
|
|
uint32_t WidthBytesPhysical, Height, YHeight, VHeight;
|
|
uint32_t AdjustedVHeight = 0;
|
|
GMM_STATUS Status;
|
|
bool UVPacked = false;
|
|
|
|
GMM_DPF_ENTER;
|
|
|
|
__GMM_ASSERTPTR(pTexInfo, GMM_ERROR);
|
|
__GMM_ASSERTPTR(pRestrictions, GMM_ERROR);
|
|
__GMM_ASSERT(!pTexInfo->Flags.Info.TiledW);
|
|
|
|
pTexInfo->TileMode = TILE_NONE;
|
|
|
|
WidthBytesPhysical = GFX_ULONG_CAST(pTexInfo->BaseWidth) * pTexInfo->BitsPerPixel >> 3;
|
|
Height = VHeight = 0;
|
|
|
|
YHeight = pTexInfo->BaseHeight;
|
|
|
|
//[History]
|
|
// When planar surfaces are tiled, there are HW alignment
|
|
// restrictions about where the U and V planes can be located.
|
|
// Prior to SURFACE_STATE.X/YOffset support, planes needed to start
|
|
// on tile boundaries; with X/YOffset support, the alignment
|
|
// restrictions were reduced (but not eliminated).
|
|
//
|
|
// Horizontal alignment is only an issue for IMC2/4 surfaces, since
|
|
// the planes of all other formats are always on the left-edge.
|
|
//
|
|
// For IMC1/3 surfaces, we must ensure that both the U/V planes are
|
|
// properly aligned--That is, both the YHeight and VHeight must be
|
|
// properly aligned. For all other surfaces (since the U/V data
|
|
// starts at a common vertical location) only YHeight must be
|
|
// properly aligned.
|
|
|
|
// [Current] :
|
|
// For Tiled surfaces, even though h/w supports U and V plane alignment
|
|
// at lower granularities GMM will align all the planes at Tiled boundary
|
|
// to unify the implementation across all platforms and GMM will add
|
|
// handling for removing the extra padding when UMDs request for ResCpuBlt
|
|
// operations.
|
|
// For Linear surfaces, GMM will continue to support minimal aligment restrictions
|
|
|
|
switch(pTexInfo->Format)
|
|
{
|
|
case GMM_FORMAT_IMC1: // IMC1 = IMC3 with Swapped U/V
|
|
case GMM_FORMAT_IMC3:
|
|
case GMM_FORMAT_MFX_JPEG_YUV420: // Same as IMC3.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUU
|
|
// UUUU
|
|
// VVVV
|
|
// VVVV
|
|
case GMM_FORMAT_MFX_JPEG_YUV422V: // Similar to IMC3 but U/V are full width.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
{
|
|
VHeight = GFX_ALIGN(GFX_CEIL_DIV(YHeight, 2), GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
Height = YHeight + 2 * VHeight; // One VHeight for V and one for U.
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
|
|
break;
|
|
}
|
|
case GMM_FORMAT_MFX_JPEG_YUV411R_TYPE: //Similar to IMC3 but U/V are quarther height and full width.
|
|
//YYYYYYYY
|
|
//YYYYYYYY
|
|
//YYYYYYYY
|
|
//YYYYYYYY
|
|
//UUUUUUUU
|
|
//VVVVVVVV
|
|
{
|
|
VHeight = GFX_ALIGN(GFX_CEIL_DIV(YHeight, 4), GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
|
|
Height = YHeight + 2 * VHeight;
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
|
|
break;
|
|
}
|
|
case GMM_FORMAT_MFX_JPEG_YUV411: // Similar to IMC3 but U/V are quarter width and full height.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UU
|
|
// UU
|
|
// UU
|
|
// UU
|
|
// VV
|
|
// VV
|
|
// VV
|
|
// VV
|
|
case GMM_FORMAT_MFX_JPEG_YUV422H: // Similar to IMC3 but U/V are full height.
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUU
|
|
// UUUU
|
|
// UUUU
|
|
// UUUU
|
|
// VVVV
|
|
// VVVV
|
|
// VVVV
|
|
// VVVV
|
|
case GMM_FORMAT_MFX_JPEG_YUV444: // Similar to IMC3 but U/V are full size.
|
|
#if _WIN32
|
|
case GMM_FORMAT_WGBOX_YUV444:
|
|
case GMM_FORMAT_WGBOX_PLANAR_YUV444:
|
|
#endif
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// UUUUUUUU
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
// VVVVVVVV
|
|
{
|
|
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
VHeight = YHeight;
|
|
|
|
Height = YHeight + 2 * VHeight;
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
|
|
break;
|
|
}
|
|
case GMM_FORMAT_BGRP:
|
|
case GMM_FORMAT_RGBP:
|
|
{
|
|
//For RGBP linear Tile keep resource Offset non aligned and for other Tile format to be 16-bit aligned
|
|
if(pTexInfo->Flags.Info.Linear)
|
|
{
|
|
VHeight = YHeight;
|
|
|
|
Height = YHeight + 2 * VHeight;
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
|
|
}
|
|
else //Tiled
|
|
{
|
|
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
VHeight = YHeight;
|
|
|
|
Height = YHeight + 2 * VHeight;
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
|
|
}
|
|
break;
|
|
}
|
|
case GMM_FORMAT_IMC2: // IMC2 = IMC4 with Swapped U/V
|
|
case GMM_FORMAT_IMC4:
|
|
{
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// UUUUVVVV
|
|
// UUUUVVVV
|
|
|
|
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
|
|
VHeight = GFX_CEIL_DIV(YHeight, 2);
|
|
|
|
WidthBytesPhysical = GFX_ALIGN(WidthBytesPhysical, 2); // If odd YWidth, pitch bumps-up to fit rounded-up U/V planes.
|
|
|
|
Height = YHeight + VHeight;
|
|
|
|
// With SURFACE_STATE.XOffset support, the U-V interface has
|
|
// much lighter restrictions--which will be naturally met by
|
|
// surface pitch restrictions (i.e. dividing an IMC2/4 pitch
|
|
// by 2--to get the U/V interface--will always produce a safe
|
|
// XOffset value).
|
|
|
|
// Not technically UV packed but sizing works out the same
|
|
// if the resource is std swizzled
|
|
UVPacked = true;
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 2;
|
|
|
|
break;
|
|
}
|
|
case GMM_FORMAT_NV12:
|
|
case GMM_FORMAT_NV21:
|
|
case GMM_FORMAT_NV11:
|
|
case GMM_FORMAT_P010:
|
|
case GMM_FORMAT_P012:
|
|
case GMM_FORMAT_P016:
|
|
case GMM_FORMAT_P208:
|
|
case GMM_FORMAT_P216:
|
|
{
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// [UV-Packing]
|
|
|
|
if((pTexInfo->Format == GMM_FORMAT_NV12) ||
|
|
(pTexInfo->Format == GMM_FORMAT_NV21) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P010) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P012) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P016))
|
|
{
|
|
VHeight = GFX_CEIL_DIV(YHeight, 2); // U/V plane half of Y
|
|
Height = YHeight + VHeight;
|
|
}
|
|
else
|
|
{
|
|
VHeight = YHeight; // U/V plane is same as Y
|
|
Height = YHeight + VHeight;
|
|
}
|
|
|
|
if((pTexInfo->Format == GMM_FORMAT_NV12) ||
|
|
(pTexInfo->Format == GMM_FORMAT_NV21) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P010) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P012) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P016) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P208) ||
|
|
(pTexInfo->Format == GMM_FORMAT_P216))
|
|
{
|
|
WidthBytesPhysical = GFX_ALIGN(WidthBytesPhysical, 2); // If odd YWidth, pitch bumps-up to fit rounded-up U/V planes.
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 2;
|
|
}
|
|
else //if(pTexInfo->Format == GMM_FORMAT_NV11)
|
|
{
|
|
// Tiling not supported, since YPitch != UVPitch...
|
|
pTexInfo->Flags.Info.TiledY = 0;
|
|
pTexInfo->Flags.Info.TiledYf = 0;
|
|
pTexInfo->Flags.Info.TiledYs = 0;
|
|
pTexInfo->Flags.Info.TiledX = 0;
|
|
pTexInfo->Flags.Info.Linear = 1;
|
|
}
|
|
|
|
UVPacked = true;
|
|
break;
|
|
}
|
|
case GMM_FORMAT_I420: // IYUV & I420: are identical to YV12 except,
|
|
case GMM_FORMAT_IYUV: // U & V pl.s are reversed.
|
|
case GMM_FORMAT_YV12:
|
|
case GMM_FORMAT_YVU9:
|
|
{
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// YYYYYYYY
|
|
// VVVVVV.. <-- V and U planes follow the Y plane, as linear
|
|
// ..UUUUUU arrays--without respect to pitch.
|
|
|
|
uint32_t YSize, UVSize, YVSizeRShift;
|
|
uint32_t YSizeForUVPurposes, YSizeForUVPurposesDimensionalAlignment;
|
|
|
|
YSize = WidthBytesPhysical * YHeight;
|
|
|
|
// YVU9 has one U/V pixel for each 4x4 Y block.
|
|
// The others have one U/V pixel for each 2x2 Y block.
|
|
|
|
// YVU9 has a Y:V size ratio of 16 (4x4 --> 1).
|
|
// The others have a ratio of 4 (2x2 --> 1).
|
|
YVSizeRShift = (pTexInfo->Format != GMM_FORMAT_YVU9) ? 2 : 4;
|
|
|
|
// If a Y plane isn't fully-aligned to its Y-->U/V block size, the
|
|
// extra/unaligned Y pixels still need corresponding U/V pixels--So
|
|
// for the purpose of computing the UVSize, we must consider a
|
|
// dimensionally "rounded-up" YSize. (E.g. a 13x5 YVU9 Y plane would
|
|
// require 4x2 U/V planes--the same UVSize as a fully-aligned 16x8 Y.)
|
|
YSizeForUVPurposesDimensionalAlignment = (pTexInfo->Format != GMM_FORMAT_YVU9) ? 2 : 4;
|
|
YSizeForUVPurposes =
|
|
GFX_ALIGN(WidthBytesPhysical, YSizeForUVPurposesDimensionalAlignment) *
|
|
GFX_ALIGN(YHeight, YSizeForUVPurposesDimensionalAlignment);
|
|
|
|
UVSize = 2 * // <-- U + V
|
|
(YSizeForUVPurposes >> YVSizeRShift);
|
|
|
|
Height = GFX_CEIL_DIV(YSize + UVSize, WidthBytesPhysical);
|
|
|
|
// Tiling not supported, since YPitch != UVPitch...
|
|
pTexInfo->Flags.Info.TiledY = 0;
|
|
pTexInfo->Flags.Info.TiledYf = 0;
|
|
pTexInfo->Flags.Info.TiledYs = 0;
|
|
pTexInfo->Flags.Info.TiledX = 0;
|
|
pTexInfo->Flags.Info.Linear = 1;
|
|
|
|
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 1;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
GMM_ASSERTDPF(0, "Unexpected format");
|
|
return GMM_ERROR;
|
|
}
|
|
}
|
|
|
|
// Align Height to even row to avoid hang if HW over-fetch
|
|
Height = GFX_ALIGN(Height, __GMM_EVEN_ROW);
|
|
|
|
SetTileMode(pTexInfo);
|
|
|
|
// MMC is not supported for linear formats.
|
|
if(pTexInfo->Flags.Gpu.MMC)
|
|
{
|
|
if(!(pTexInfo->Flags.Info.TiledY || pTexInfo->Flags.Info.TiledYf || pTexInfo->Flags.Info.TiledYs))
|
|
{
|
|
pTexInfo->Flags.Gpu.MMC = 0;
|
|
}
|
|
}
|
|
|
|
// Legacy Planar "Linear Video" Restrictions...
|
|
if(pTexInfo->Flags.Info.Linear && !pTexInfo->Flags.Wa.NoLegacyPlanarLinearVideoRestrictions)
|
|
{
|
|
pRestrictions->LockPitchAlignment = GFX_MAX(pRestrictions->LockPitchAlignment, GMM_BYTES(64));
|
|
pRestrictions->MinPitch = GFX_MAX(pRestrictions->MinPitch, GMM_BYTES(64));
|
|
pRestrictions->PitchAlignment = GFX_MAX(pRestrictions->PitchAlignment, GMM_BYTES(64));
|
|
pRestrictions->RenderPitchAlignment = GFX_MAX(pRestrictions->RenderPitchAlignment, GMM_BYTES(64));
|
|
}
|
|
|
|
// Multiply overall pitch alignment for surfaces whose U/V planes have a
|
|
// pitch down-scaled from that of Y--Since the U/V pitches must meet the
|
|
// original restriction, the Y pitch must meet a scaled-up multiple.
|
|
if((pTexInfo->Format == GMM_FORMAT_I420) ||
|
|
(pTexInfo->Format == GMM_FORMAT_IYUV) ||
|
|
(pTexInfo->Format == GMM_FORMAT_NV11) ||
|
|
(pTexInfo->Format == GMM_FORMAT_YV12) ||
|
|
(pTexInfo->Format == GMM_FORMAT_YVU9))
|
|
{
|
|
uint32_t LShift =
|
|
(pTexInfo->Format != GMM_FORMAT_YVU9) ?
|
|
1 : // UVPitch = 1/2 YPitch
|
|
2; // UVPitch = 1/4 YPitch
|
|
|
|
pRestrictions->LockPitchAlignment <<= LShift;
|
|
pRestrictions->MinPitch <<= LShift;
|
|
pRestrictions->PitchAlignment <<= LShift;
|
|
pRestrictions->RenderPitchAlignment <<= LShift;
|
|
}
|
|
|
|
AdjustedVHeight = VHeight;
|
|
// In case of Planar surfaces, only the last Plane has to be aligned to 64 for LCU access
|
|
if(pGmmLibContext->GetWaTable().WaAlignYUVResourceToLCU && GmmIsYUVFormatLCUAligned(pTexInfo->Format) && VHeight > 0)
|
|
{
|
|
AdjustedVHeight = GFX_ALIGN(VHeight, GMM_SCANLINES(GMM_MAX_LCU_SIZE));
|
|
Height += AdjustedVHeight - VHeight;
|
|
}
|
|
|
|
// For Tiled Planar surfaces, the planes must be tile-boundary aligned.
|
|
// Actual alignment is handled in FillPlanarOffsetAddress, but height
|
|
// and width must be adjusted for correct size calculation
|
|
if(GMM_IS_TILED(pPlatform->TileInfo[pTexInfo->TileMode]))
|
|
{
|
|
uint32_t TileHeight = pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileHeight;
|
|
uint32_t TileWidth = pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileWidth;
|
|
|
|
pTexInfo->OffsetInfo.Plane.IsTileAlignedPlanes = true;
|
|
|
|
//for separate U and V planes, use U plane unaligned and V plane aligned
|
|
Height = GFX_ALIGN(YHeight, TileHeight) + (UVPacked ? GFX_ALIGN(AdjustedVHeight, TileHeight) :
|
|
(GFX_ALIGN(VHeight, TileHeight) + GFX_ALIGN(AdjustedVHeight, TileHeight)));
|
|
|
|
if(pTexInfo->Format == GMM_FORMAT_IMC2 || // IMC2, IMC4 needs even tile columns
|
|
pTexInfo->Format == GMM_FORMAT_IMC4)
|
|
{
|
|
// If the U & V planes are side-by-side then the surface pitch must be
|
|
// padded out so that U and V planes will being on a tile boundary.
|
|
// This means that an odd Y plane width must be padded out
|
|
// with an additional tile. Even widths do not need padding
|
|
uint32_t TileCols = GFX_CEIL_DIV(WidthBytesPhysical, TileWidth);
|
|
if(TileCols % 2)
|
|
{
|
|
WidthBytesPhysical = (TileCols + 1) * TileWidth;
|
|
}
|
|
}
|
|
|
|
if(pTexInfo->Flags.Info.TiledYs || pTexInfo->Flags.Info.TiledYf)
|
|
{
|
|
pTexInfo->Flags.Info.RedecribedPlanes = 1;
|
|
}
|
|
}
|
|
|
|
// Vary wide planar tiled planar formats do not support MMC pre gen11. All formats do not support
|
|
//Special case LKF MMC compressed surfaces
|
|
if(pTexInfo->Flags.Gpu.MMC &&
|
|
pTexInfo->Flags.Gpu.UnifiedAuxSurface &&
|
|
pTexInfo->Flags.Info.TiledY)
|
|
{
|
|
uint32_t TileHeight = pGmmLibContext->GetPlatformInfo().TileInfo[pTexInfo->TileMode].LogicalTileHeight;
|
|
|
|
Height = GFX_ALIGN(YHeight, TileHeight) + GFX_ALIGN(AdjustedVHeight, TileHeight);
|
|
}
|
|
|
|
// Vary wide planar tiled planar formats do not support MMC pre gen11. All formats do not support
|
|
// Very wide planar tiled planar formats do not support MMC pre gen11. All formats do not support
|
|
// MMC above 16k bytes wide, while Yf NV12 does not support above 8k - 128 bytes.
|
|
if((GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) <= IGFX_GEN10_CORE) &&
|
|
(pTexInfo->Flags.Info.TiledY || pTexInfo->Flags.Info.TiledYf || pTexInfo->Flags.Info.TiledYs))
|
|
{
|
|
if(((pTexInfo->BaseWidth * pTexInfo->BitsPerPixel / 8) >= GMM_KBYTE(16)) ||
|
|
(pTexInfo->Format == GMM_FORMAT_NV12 && pTexInfo->Flags.Info.TiledYf &&
|
|
(pTexInfo->BaseWidth * pTexInfo->BitsPerPixel / 8) >= (GMM_KBYTE(8) - 128)))
|
|
{
|
|
pTexInfo->Flags.Gpu.MMC = 0;
|
|
}
|
|
}
|
|
|
|
if(pTexInfo->Flags.Info.RedecribedPlanes)
|
|
{
|
|
if(false == RedescribeTexturePlanes(pTexInfo, &WidthBytesPhysical))
|
|
{
|
|
__GMM_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
if((Status = // <-- Note assignment.
|
|
FillTexPitchAndSize(
|
|
pTexInfo, WidthBytesPhysical, Height, pRestrictions)) == GMM_SUCCESS)
|
|
{
|
|
FillPlanarOffsetAddress(pTexInfo);
|
|
}
|
|
|
|
// Planar & hybrid 2D arrays supported in DX11.1+ spec but not HW. Memory layout
|
|
// is defined by SW requirements; Y plane must be 4KB aligned.
|
|
if(pTexInfo->ArraySize > 1)
|
|
{
|
|
GMM_GFX_SIZE_T ElementSizeBytes = pTexInfo->Size;
|
|
int64_t LargeSize;
|
|
|
|
// Size should always be page aligned.
|
|
__GMM_ASSERT((pTexInfo->Size % PAGE_SIZE) == 0);
|
|
|
|
if((LargeSize = (int64_t)ElementSizeBytes * pTexInfo->ArraySize) <= pPlatform->SurfaceMaxSize)
|
|
{
|
|
pTexInfo->OffsetInfo.Plane.ArrayQPitch = ElementSizeBytes;
|
|
pTexInfo->Size = LargeSize;
|
|
}
|
|
else
|
|
{
|
|
GMM_ASSERTDPF(0, "Surface too large!");
|
|
Status = GMM_ERROR;
|
|
}
|
|
}
|
|
|
|
//LKF specific Restrictions
|
|
if(GFX_GET_CURRENT_PRODUCT(pPlatform->Platform) == IGFX_LAKEFIELD)
|
|
{
|
|
// If GMM fall backs TileY to Linear then reset the UnifiedAuxSurface flag.
|
|
if(!pTexInfo->Flags.Gpu.MMC &&
|
|
pTexInfo->Flags.Gpu.UnifiedAuxSurface &&
|
|
!pTexInfo->Flags.Gpu.__NonMsaaLinearCCS)
|
|
{
|
|
GMM_ASSERTDPF(0, "MMC TileY is fallback to Linear surface!");
|
|
pTexInfo->Flags.Gpu.UnifiedAuxSurface = 0;
|
|
}
|
|
|
|
if(pTexInfo->Flags.Gpu.MMC &&
|
|
pTexInfo->Flags.Gpu.UnifiedAuxSurface &&
|
|
pTexInfo->Flags.Gpu.__NonMsaaLinearCCS)
|
|
{
|
|
FillLinearCCS(pTexInfo, pRestrictions);
|
|
}
|
|
}
|
|
|
|
GMM_DPF_EXIT;
|
|
|
|
return GMM_SUCCESS;
|
|
}
|