Files
intel-graphics-compiler/IGC/Compiler/CISACodeGen/EstimateFunctionSize.cpp
Stefan Ilic ef5a973738 Enable more aggresive trimming for very large kernels
Enable trimming of small functions, in case kernel far exceedes
threshold even after default trimming is performed, to keep compilation
time in check.
2025-10-27 16:46:06 +01:00

1800 lines
78 KiB
C++

/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/EstimateFunctionSize.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "common/igc_regkeys.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Module.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/SyntheticCountsUtils.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvmWrapper/IR/BasicBlock.h"
#include "llvmWrapper/ADT/Optional.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include <deque>
#include <cfloat>
#include <algorithm>
#include <cmath>
#include <optional>
using namespace llvm;
using namespace IGC;
using Scaled64 = ScaledNumber<uint64_t>;
char EstimateFunctionSize::ID = 0;
IGC_INITIALIZE_PASS_BEGIN(EstimateFunctionSize, "EstimateFunctionSize", "EstimateFunctionSize", false, true)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
IGC_INITIALIZE_PASS_END(EstimateFunctionSize, "EstimateFunctionSize", "EstimateFunctionSize", false, true)
llvm::ModulePass *IGC::createEstimateFunctionSizePass() {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize;
}
llvm::ModulePass *IGC::createEstimateFunctionSizePass(bool EnableStaticProfileGuidedTrimming) {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize(EstimateFunctionSize::AnalysisLevel::AL_Module, EnableStaticProfileGuidedTrimming);
}
llvm::ModulePass *IGC::createEstimateFunctionSizePass(EstimateFunctionSize::AnalysisLevel AL) {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize(AL, false);
}
EstimateFunctionSize::EstimateFunctionSize(AnalysisLevel AL, bool EnableStaticProfileGuidedTrimming)
: ModulePass(ID), M(nullptr), AL(AL), tmpHasImplicitArg(false), HasRecursion(false), EnableSubroutine(false) {
thresholdForTrimming = Scaled64::get(IGC_GET_FLAG_VALUE(ControlInlineTinySizeForSPGT));
threshold_func_freq = Scaled64::getLargest();
// Flags for Kernel trimming
ControlKernelTotalSize = IGC_IS_FLAG_ENABLED(ControlKernelTotalSize);
ControlUnitSize = IGC_IS_FLAG_ENABLED(ControlUnitSize);
ControlInlineTinySize = IGC_GET_FLAG_VALUE(ControlInlineTinySize);
UnitSizeThreshold = IGC_GET_FLAG_VALUE(UnitSizeThreshold);
// Flags for Static Profile-guided trimming
StaticProfileGuidedTrimming = IGC_IS_FLAG_ENABLED(StaticProfileGuidedTrimming);
UseFrequencyInfoForSPGT = IGC_IS_FLAG_ENABLED(UseFrequencyInfoForSPGT);
BlockFrequencySampling = IGC_IS_FLAG_ENABLED(BlockFrequencySampling);
EnableLeafCollapsing = IGC_IS_FLAG_ENABLED(EnableLeafCollapsing);
EnableSizeContributionOptimization = IGC_IS_FLAG_ENABLED(EnableSizeContributionOptimization);
LoopCountAwareTrimming = IGC_IS_FLAG_ENABLED(LoopCountAwareTrimming);
EnableGreedyTrimming = IGC_IS_FLAG_ENABLED(EnableGreedyTrimming);
SizeWeightForSPGT = IGC_GET_FLAG_VALUE(SizeWeightForSPGT);
FrequencyWeightForSPGT = IGC_GET_FLAG_VALUE(FrequencyWeightForSPGT);
MetricForKernelSizeReduction = IGC_GET_FLAG_VALUE(MetricForKernelSizeReduction);
ParameterForColdFuncThreshold = IGC_GET_FLAG_VALUE(ParameterForColdFuncThreshold);
ControlInlineTinySizeForSPGT = IGC_GET_FLAG_VALUE(ControlInlineTinySizeForSPGT);
MaxUnrollCountForFunctionSizeAnalysis = IGC_GET_FLAG_VALUE(MaxUnrollCountForFunctionSizeAnalysis);
SkipTrimmingOneCopyFunction = IGC_GET_FLAG_VALUE(SkipTrimmingOneCopyFunction);
SelectiveTrimming = IGC_GET_REGKEYSTRING(SelectiveTrimming);
// Flags for Partitioning
PartitionUnit = IGC_IS_FLAG_ENABLED(PartitionUnit);
StaticProfileGuidedPartitioning = IGC_IS_FLAG_ENABLED(StaticProfileGuidedPartitioning);
// Flags for implcit arguments and external functions
ForceInlineExternalFunctions = IGC_IS_FLAG_ENABLED(ForceInlineExternalFunctions);
ForceInlineStackCallWithImplArg = IGC_IS_FLAG_ENABLED(ForceInlineStackCallWithImplArg);
ControlInlineImplicitArgs = IGC_IS_FLAG_ENABLED(ControlInlineImplicitArgs);
SubroutineThreshold = IGC_GET_FLAG_VALUE(SubroutineThreshold);
LargeKernelThresholdMultiplier = IGC_GET_FLAG_VALUE(LargeKernelThresholdMultiplier);
KernelTotalSizeThreshold = IGC_GET_FLAG_VALUE(KernelTotalSizeThreshold);
ExpandedUnitSizeThreshold = IGC_GET_FLAG_VALUE(ExpandedUnitSizeThreshold);
if (EnableStaticProfileGuidedTrimming) {
StaticProfileGuidedTrimming = true;
EnableLeafCollapsing = true;
EnableSizeContributionOptimization = true;
LoopCountAwareTrimming = true;
}
}
EstimateFunctionSize::~EstimateFunctionSize() { clear(); }
void EstimateFunctionSize::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
bool EstimateFunctionSize::runOnModule(Module &Mod) {
clear();
M = &Mod;
analyze();
checkSubroutine();
return false;
}
// Given a module, estimate the maximal function size with complete inlining.
/*
A ----> B ----> C ---> D ---> F
\ \ \
\ \ \---> E
\ \
\ \---> C ---> D --> F
\ \
\----> F \---> E
*/
// ExpandedSize(A) = size(A) + size(B) + 2 * size(C) + 2 * size(D)
// + 2 * size(E) + 3 * size(F)
//
// We compute the size as follows:
//
// (1) Initialize the data structure
//
// A --> {size(A), [B, F], [] }
// B --> {size(B), [C, C], [A] }
// C --> {size(C), [D, E], [B] }
// D --> {size(D), [F], [C] }
// E --> {size(E), [], [C] }
// F --> {size(F), [], [A, D] }
//
// where the first list consists of functions to be expanded and the second list
// consists of its caller functions.
//
// (2) Traverse in a reverse topological order and expand each node
namespace {
#define PrintPartitionUnit(hex_val, contents) \
if ((IGC_GET_FLAG_VALUE(PrintPartitionUnit) & hex_val) != 0) { \
dbgs() << "PartitionUnit0x" << hex_val << ": " << contents << "\n"; \
}
#define PrintControlUnitSize(hex_val, contents) \
if ((IGC_GET_FLAG_VALUE(PrintControlUnitSize) & hex_val) != 0) { \
dbgs() << "ControlUnitSize0x" << hex_val << ": " << contents << "\n"; \
}
#define PrintControlKernelTotalSize(hex_val, contents) \
if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & hex_val) != 0) { \
dbgs() << "ControlKernelTotalSize0x" << hex_val << ": " << contents << "\n"; \
}
#define PrintTrimUnit(hex_val, contents) \
if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & hex_val) != 0 || \
(IGC_GET_FLAG_VALUE(PrintControlUnitSize) & hex_val) != 0) { \
dbgs() << "TrimUnit0x" << hex_val << ": " << contents << "\n"; \
}
#define PrintFunctionSizeAnalysis(hex_val, contents) \
if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & hex_val) != 0) { \
dbgs() << "FunctionSizeAnalysis0x" << hex_val << ": " << contents << "\n"; \
}
#define PrintStaticProfileGuidedKernelSizeReduction(hex_val, contents) \
if ((IGC_GET_FLAG_VALUE(PrintStaticProfileGuidedKernelSizeReduction) & hex_val) != 0) { \
dbgs() << "StaticProfileGuidedKernelSizeReduction0x" << hex_val << ": " << contents << "\n"; \
}
static Scaled64 getSPGTWeight(unsigned Size, Scaled64 Freq, unsigned SizeWeightForSPGT,
unsigned FrequencyWeightForSPGT) {
Scaled64 ScaledSize = Scaled64::get(Size);
unsigned SizeWeight = SizeWeightForSPGT;
Scaled64 WeightedSize = Scaled64::getOne();
for (unsigned i = 0; i < SizeWeight; i++)
WeightedSize *= ScaledSize;
if (Freq == 0)
return WeightedSize;
unsigned FreqWeight = FrequencyWeightForSPGT;
Scaled64 WeightedFreq = Scaled64::getOne();
for (unsigned i = 0; i < FreqWeight; i++)
WeightedFreq *= Freq;
return WeightedSize / WeightedFreq;
}
typedef enum {
SP_NO_METRIC = 0, /// \brief A flag to indicate whether no metric is used. We use this especially when we only need
/// static profile infomation without enforcement
SP_NORMAL_DISTRIBUTION = (0x1 << 0x0), /// \brief A flag to indicate whether a normal distribution is used as metric
SP_LONGTAIL_DISTRIBUTION =
(0x1 << 0x1), /// \brief A flag to indicate whether a long tail distribution is used as metric
SP_AVERAGE_PERCENTAGE = (0x1 << 0x2), /// \brief A flag to indicate whether average % is used as metric
} StatiProfile_FLAG_t;
// Function Attribute Flag type
typedef enum {
FA_BEST_EFFORT_INLINE =
0, /// \brief A flag to indicate whether it is to be inlined but it can be trimmed or assigned stackcall
FA_FORCE_INLINE = (0x1 << 0x0), /// \brief A flag to indicate whether it is to be inlined and it cannot be reverted
FA_TRIMMED = (0x1 << 0x1), /// \brief A flag to indicate whetehr it will be trimmed
FA_STACKCALL = (0x1 << 0x2), /// \brief A flag to indicate whether this node should be a stack call header
FA_KERNEL_ENTRY =
(0x1
<< 0x3), /// \brief A flag to indicate whether this node is a kernel entry. It will be affected by any schemes.
FA_ADDR_TAKEN = (0x1 << 0x4), /// \brief A flag to indicate whether this node is an address taken function.
} FA_FLAG_t;
/// Associate each function with a partially expanded size and remaining
/// unexpanded function list, etc.
typedef enum {
FT_NOT_APPLICABLE = 0, /// \brief A flag to indicate functions don't need to be considered
FT_NOT_BEST_EFFORT = (0x1 << 0x1), /// \brief A flag to indicate function is not open to trimming or partitioning
FT_MUL_KERNEL =
(0x1 << 0x2), /// \brief A flag to indicate function is in multiple kernels and they are forced to be inlined
FT_BIG_ENOUGH = (0x1 << 0x3), /// \brief A flag to indicate functions are big enough to trim
FT_TOO_TINY = (0x1 << 0x4), /// \brief A flag to indicate function is too tiny to be trimmed
FT_HIGHER_WEIGHT = (0x1 << 0x5), /// \brief a flag to indicate the function has higher weight than threshold
FT_LOWER_WEIGHT = (0x1 << 0x6), /// \brief a flag to indicate the function has lower weight than threshold
} FUNCTION_TRAIT_FLAG_t;
struct FunctionNode {
FunctionNode(Function *F, std::size_t Size)
: F(F), InitialSize(Size), UnitSize(Size), ExpandedSize(Size), SizeAfterCollapsing(Size), Inline_cnt(0),
tmpSize(Size), CallingSubroutine(false), FunctionAttr(0), InMultipleUnit(false), HasImplicitArg(false),
staticFuncFreq(0, 0), EntryFreq(0, 0) {}
Function *F;
/// leaf node.
/// \brief Initial size before partition
uint32_t InitialSize;
// \brief the size of a compilation unit
uint32_t UnitSize;
/// \brief Expanded size when all functions in a unit below the node are expanded
uint32_t ExpandedSize;
/// \brief Expanded size when all functions in a unit below the node are expanded
uint32_t SizeAfterCollapsing;
/// \brief How many times the function is inlined at callsites.
uint32_t Inline_cnt;
/// \brief used to update unit size or expanded unit size in topological sort
uint32_t tmpSize;
/// \brief Function attribute
uint8_t FunctionAttr;
/// \brief An estimated static function frequency
Scaled64 staticFuncFreq;
/// \brief A flag to indicate whether this node has a subroutine call before
/// expanding.
bool CallingSubroutine;
/// \brief A flag to indicate whether it is located in multiple kernels or units
bool InMultipleUnit;
bool HasImplicitArg;
Scaled64 EntryFreq;
std::unordered_map<llvm::BasicBlock *, Scaled64> blockFreqs;
/// \brief All functions directly called in this function.
std::unordered_map<FunctionNode *, uint16_t> CalleeList;
/// \brief All functions that call this function F.
std::unordered_map<FunctionNode *, uint16_t> CallerList;
bool EnableLeafCollapsing;
bool EnableSizeContributionOptimization;
bool StaticProfileGuidedTrimming;
bool UseFrequencyInfoForSPGT;
bool ForceInlineExternalFunctions;
unsigned ControlInlineTinySize;
bool ForceInlineStackCallWithImplArg;
bool ControlInlineImplicitArgs;
unsigned SizeWeightForSPGT;
unsigned FrequencyWeightForSPGT;
void setFlags(bool EnableLC, bool EnableSCO, bool SPGT, bool UseFreqInfo, bool ForceInlineExtFun, unsigned TinySize,
bool InlineStkCallWithImplArg, bool InlineImplArgs, unsigned SizeWeight, unsigned FreqWeight) {
EnableLeafCollapsing = EnableLC;
EnableSizeContributionOptimization = EnableSCO;
StaticProfileGuidedTrimming = SPGT;
UseFrequencyInfoForSPGT = UseFreqInfo;
ForceInlineExternalFunctions = ForceInlineExtFun;
ControlInlineTinySize = TinySize;
ForceInlineStackCallWithImplArg = InlineStkCallWithImplArg;
ControlInlineImplicitArgs = InlineImplArgs;
SizeWeightForSPGT = SizeWeight;
FrequencyWeightForSPGT = FreqWeight;
return;
}
void setStaticFuncFreq(Scaled64 freq) { staticFuncFreq = freq; }
Scaled64 getStaticFuncFreq() { return staticFuncFreq; }
std::string getStaticFuncFreqStr() { return staticFuncFreq.toString(); }
// \brief return the size used for Static Profile Guided Trimming
uint64_t getPotentialBodySize() { return EnableLeafCollapsing ? SizeAfterCollapsing : InitialSize; }
uint64_t getSizeContribution() {
return Inline_cnt == 0 ? getPotentialBodySize() : static_cast<uint64_t>(Inline_cnt) * getPotentialBodySize();
}
uint64_t getSizeForTrimming() {
return EnableSizeContributionOptimization ? getSizeContribution() : getPotentialBodySize();
}
Scaled64 getWeightForTrimming() {
if (StaticProfileGuidedTrimming && UseFrequencyInfoForSPGT) {
return getSPGTWeight(getSizeForTrimming(), staticFuncFreq, SizeWeightForSPGT, FrequencyWeightForSPGT);
}
return Scaled64::get(getSizeForTrimming());
}
/// \brief A node becomes a leaf when all called functions are expanded.
bool isLeaf() const { return CalleeList.empty(); }
/// \brief Add a caller or callee.
// A caller may call the same callee multiple times, e.g. A->{B,B,B}: A->CalleeList(B,B,B), B->CallerList(A,A,A)
void addCallee(FunctionNode *G, unsigned weight) {
IGC_ASSERT(G);
if (CalleeList.find(G) == CalleeList.end()) // First time added, Initialize it
CalleeList[G] = 0;
CalleeList[G] += weight;
CallingSubroutine = true;
}
void addCaller(FunctionNode *G, unsigned weight) {
IGC_ASSERT(G);
if (CallerList.find(G) == CallerList.end()) // First time added, Initialize it
CallerList[G] = 0;
CallerList[G] += weight;
}
void setKernelEntry() {
FunctionAttr = FA_KERNEL_ENTRY;
return;
}
void setAddressTaken() { FunctionAttr = FA_ADDR_TAKEN; }
void setForceInline() {
IGC_ASSERT(FunctionAttr != FA_KERNEL_ENTRY &&
FunctionAttr != FA_ADDR_TAKEN); // Can't force inline a kernel entry or address taken function
FunctionAttr = FA_FORCE_INLINE;
return;
}
void setTrimmed() {
IGC_ASSERT(FunctionAttr == FA_BEST_EFFORT_INLINE); // Only best effort inline function can be trimmed
FunctionAttr = FA_TRIMMED;
return;
}
void unsetTrimmed() {
IGC_ASSERT(FunctionAttr == FA_TRIMMED); // Only best effort inline function can be trimmed
FunctionAttr = FA_BEST_EFFORT_INLINE;
return;
}
void setStackCall() {
// Can't assign stack call to force inlined function, kernel entry,
// address taken functions and functions that already assigned stack call
IGC_ASSERT(FunctionAttr == FA_BEST_EFFORT_INLINE || FunctionAttr == FA_TRIMMED);
FunctionAttr = FA_STACKCALL;
return;
}
void setEntryFrequency(uint64_t digit, uint16_t scale) { EntryFreq = Scaled64(digit, scale); }
Scaled64 getEntryFrequency() { return EntryFreq; }
bool isEntryFunc() { return FunctionAttr == FA_KERNEL_ENTRY; }
bool isAddrTakenFunc() { return FunctionAttr == FA_ADDR_TAKEN; }
bool isTrimmed() { return FunctionAttr == FA_TRIMMED; }
bool isForcedInlined() { return FunctionAttr == FA_FORCE_INLINE; }
bool isBestEffortInline() { return FunctionAttr == FA_BEST_EFFORT_INLINE; }
bool hasNoCaller() { return isAddrTakenFunc() || isEntryFunc(); }
bool willBeInlined() { return isBestEffortInline() || isForcedInlined(); }
bool isStackCallAssigned() { return FunctionAttr == FA_STACKCALL; }
bool canAssignStackCall() {
if (FA_BEST_EFFORT_INLINE == FunctionAttr ||
FA_TRIMMED == FunctionAttr) // The best effort inline or manually trimmed functions can be assigned stack call
return true;
return false;
}
uint16_t getFunctionTrait(Scaled64 thresholdForTrimming) {
if (FunctionAttr != FA_BEST_EFFORT_INLINE) // Only best effort inline can be trimmed
return FT_NOT_BEST_EFFORT;
// to allow trimming functions called from other kernels, set the regkey to false
if (ForceInlineExternalFunctions && InMultipleUnit)
return FT_MUL_KERNEL;
uint64_t tinySize = ControlInlineTinySize;
if (getPotentialBodySize() < tinySize) // It's too small to trim
return FT_TOO_TINY;
if (StaticProfileGuidedTrimming) {
if (getWeightForTrimming() < thresholdForTrimming) {
return FT_LOWER_WEIGHT;
} else {
return FT_HIGHER_WEIGHT;
}
}
return FT_BIG_ENOUGH;
}
std::string getFuncAttrStr() {
switch (FunctionAttr) {
case FA_BEST_EFFORT_INLINE:
return "Best effort innline";
case FA_FORCE_INLINE:
return "Force innline";
case FA_TRIMMED:
return "Trimmed";
case FA_STACKCALL:
return "Stack call";
case FA_KERNEL_ENTRY:
return "Kernel entry";
case FA_ADDR_TAKEN:
return "Address taken";
default:
return "Wrong value";
}
return "";
}
void dumpFuncInfo(uint16_t type, std::string message) {
std::string dumpInfo = message + ", ";
dumpInfo += F->getName().str();
dumpInfo += ", Function Attribute: ";
dumpInfo += getFuncAttrStr();
dumpInfo += ", Function size: ";
dumpInfo += std::to_string(InitialSize);
if (EnableLeafCollapsing) {
dumpInfo += ", Size after collapsing: ";
dumpInfo += std::to_string(SizeAfterCollapsing);
}
if (EnableSizeContributionOptimization) {
dumpInfo += ", Size contribution: ";
dumpInfo += std::to_string(getSizeContribution());
}
if (UseFrequencyInfoForSPGT) {
dumpInfo += ", Freq: ";
dumpInfo += getStaticFuncFreqStr();
}
if (StaticProfileGuidedTrimming) {
dumpInfo += ", Weight: ";
dumpInfo += getWeightForTrimming().toString();
}
PrintTrimUnit(type, dumpInfo);
}
// Top down bfs to find the size of a compilation unit
uint32_t updateUnitSize() {
std::unordered_set<FunctionNode *> visit;
std::deque<FunctionNode *> TopDownQueue;
TopDownQueue.push_back(this);
visit.insert(this);
uint32_t total = 0;
PrintFunctionSizeAnalysis(0x4, "Functions in the unit " << F->getName().str()) while (!TopDownQueue.empty()) {
FunctionNode *Node = TopDownQueue.front();
PrintFunctionSizeAnalysis(0x4, Node->F->getName().str() << ": " << Node->InitialSize) TopDownQueue.pop_front();
total += Node->InitialSize;
for (auto &Callee : Node->CalleeList) {
FunctionNode *calleeNode = Callee.first;
if (visit.find(calleeNode) != visit.end() ||
calleeNode->isStackCallAssigned()) // Already processed or head of stack call
continue;
visit.insert(calleeNode);
TopDownQueue.push_back(calleeNode);
}
}
return UnitSize = total;
}
/// \brief A single step to expand F
void expand(FunctionNode *callee) {
// When the collaped callee has implicit arguments
// the node will have implicit arguments too
// In this scenario, when ControlInlineImplicitArgs is set
// the node should be inlined unconditioinally so exempt from a stackcall and trimming target
if (HasImplicitArg == false && callee->HasImplicitArg == true) {
HasImplicitArg = true;
PrintFunctionSizeAnalysis(0x4, "Func " << this->F->getName().str() << " expands to has implicit arg due to "
<< callee->F->getName().str())
if (!hasNoCaller()) // Can't inline kernel entry or address taken functions
{
if (isStackCallAssigned()) { // When stackcall is assigned we need to determine based on the flag
if (ForceInlineStackCallWithImplArg)
setForceInline();
} else if (ControlInlineImplicitArgs) { // Force inline ordinary functions with implicit arguments
setForceInline();
}
}
}
uint32_t sizeIncrease = callee->ExpandedSize * CalleeList[callee];
tmpSize += sizeIncrease;
}
#if defined(_DEBUG)
void print(raw_ostream &os);
void dump() { print(llvm::errs()); }
#endif
};
} // namespace
#if defined(_DEBUG)
void FunctionNode::print(raw_ostream &os) {
os << "Function: " << F->getName() << ", " << InitialSize << "\n";
for (const auto &G : CalleeList)
os << "--->>>" << G.first->F->getName() << "\n";
for (const auto &G : CallerList)
os << "<<<---" << G.first->F->getName() << "\n";
}
#endif
void EstimateFunctionSize::clear() {
M = nullptr;
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I) {
auto Node = (FunctionNode *)I->second;
delete Node;
}
ECG.clear();
kernelEntries.clear();
stackCallFuncs.clear();
addressTakenFuncs.clear();
}
bool EstimateFunctionSize::matchImplicitArg(CallInst &CI) {
bool matched = false;
StringRef funcName = CI.getCalledFunction()->getName();
if (funcName.equals(GET_LOCAL_ID_X) || funcName.equals(GET_LOCAL_ID_Y) || funcName.equals(GET_LOCAL_ID_Z)) {
matched = true;
} else if (funcName.equals(GET_GROUP_ID)) {
matched = true;
} else if (funcName.equals(GET_LOCAL_THREAD_ID)) {
matched = true;
} else if (funcName.equals(GET_GLOBAL_OFFSET)) {
matched = true;
} else if (funcName.equals(GET_GLOBAL_SIZE)) {
matched = true;
} else if (funcName.equals(GET_LOCAL_SIZE)) {
matched = true;
} else if (funcName.equals(GET_WORK_DIM)) {
matched = true;
} else if (funcName.equals(GET_NUM_GROUPS)) {
matched = true;
} else if (funcName.equals(GET_ENQUEUED_LOCAL_SIZE)) {
matched = true;
} else if (funcName.equals(GET_STAGE_IN_GRID_ORIGIN)) {
matched = true;
} else if (funcName.equals(GET_STAGE_IN_GRID_SIZE)) {
matched = true;
} else if (funcName.equals(GET_SYNC_BUFFER)) {
matched = true;
} else if (funcName.equals(GET_ASSERT_BUFFER)) {
matched = true;
}
if (matched && (IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & 0x40) != 0) {
PrintFunctionSizeAnalysis(0x8, "Matched implicit arg " << funcName.str())
}
return matched;
}
// visit Call inst to determine if implicit args are used by the caller
void EstimateFunctionSize::visitCallInst(CallInst &CI) {
if (!CI.getCalledFunction()) {
return;
}
// Check for implicit arg function calls
bool matched = matchImplicitArg(CI);
tmpHasImplicitArg = matched;
}
void EstimateFunctionSize::updateStaticFuncFreq() {
DenseMap<Function *, ScaledNumber<uint64_t>> Counts;
auto MayHaveIndirectCalls = [](Function &F) {
for (auto *U : F.users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
return true;
}
return false;
};
uint64_t InitialSyntheticCount = 10;
uint64_t InlineSyntheticCount = 15;
uint64_t ColdSyntheticCount = 5;
for (Function &F : *M) {
uint64_t InitialCount = InitialSyntheticCount;
if (F.empty() || F.isDeclaration())
continue;
if (F.hasFnAttribute(llvm::Attribute::AlwaysInline) || F.hasFnAttribute(llvm::Attribute::InlineHint)) {
// Use a higher value for inline functions to account for the fact that
// these are usually beneficial to inline.
InitialCount = InlineSyntheticCount;
} else if (F.hasLocalLinkage() && !MayHaveIndirectCalls(F)) {
// Local functions without inline hints get counts only through
// propagation.
InitialCount = 0;
} else if (F.hasFnAttribute(llvm::Attribute::Cold) || F.hasFnAttribute(llvm::Attribute::NoInline)) {
// Use a lower value for noinline and cold functions.
InitialCount = ColdSyntheticCount;
}
Counts[&F] = Scaled64(InitialCount, 0);
}
// Edge includes information about the source. Hence ignore the first
// parameter.
auto GetCallSiteProfCount = [&](const CallGraphNode *, const CallGraphNode::CallRecord &Edge) {
std::optional<Scaled64> Res = std::nullopt;
if (!Edge.first)
return IGCLLVM::makeLLVMOptional(Res);
CallBase &CB = *cast<CallBase>(*Edge.first);
Function *Caller = CB.getCaller();
BasicBlock *CSBB = CB.getParent();
// Now compute the callsite count from relative frequency and
// entry count:
Scaled64 EntryFreq = get<FunctionNode>(Caller)->getEntryFrequency();
Scaled64 BBCount = get<FunctionNode>(Caller)->blockFreqs[CSBB];
IGC_ASSERT(EntryFreq != 0);
BBCount /= EntryFreq;
BBCount *= Counts[Caller];
return IGCLLVM::makeLLVMOptional(std::optional<Scaled64>(BBCount));
};
CallGraph CG(*M);
// Propgate the entry counts on the callgraph.
SyntheticCountsUtils<const CallGraph *>::propagate(&CG, GetCallSiteProfCount,
[&](const CallGraphNode *N, Scaled64 New) {
auto F = N->getFunction();
if (!F || F->isDeclaration())
return;
Counts[F] += New;
});
for (auto &F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode *Node = get<FunctionNode>(&F);
if (Counts.find(&F) != Counts.end())
Node->setStaticFuncFreq(Counts[&F]);
}
return;
}
void EstimateFunctionSize::runStaticAnalysis() {
// Analyze function frequencies from SyntheticCountsPropagation
PrintStaticProfileGuidedKernelSizeReduction(
0x1, "------------------Static analysis start------------------") for (auto &F : M->getFunctionList()) {
if (F.empty())
continue;
auto &BFI = getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
FunctionNode *Node = get<FunctionNode>(&F);
Node->setEntryFrequency(BFI.getEntryFreq(), 0);
for (auto &B : F)
Node->blockFreqs[&B] = Scaled64(BFI.getBlockFreq(&B).getFrequency(), 0);
}
updateStaticFuncFreq();
std::vector<Scaled64> freqLog;
if (BlockFrequencySampling) { // Set basic blocks as the sample space
for (auto &F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode *Node = get<FunctionNode>(&F);
Scaled64 EntryFreq = Node->getEntryFrequency();
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Function frequency of "
<< Node->F->getName().str() << ": "
<< Node->getStaticFuncFreqStr()) for (auto &B : F) {
Scaled64 BBCount = Node->blockFreqs[&B];
BBCount /= EntryFreq;
BBCount *= Node->getStaticFuncFreq();
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Block frequency of " << B.getName().str() << ": "
<< BBCount.toString())
if (BBCount > 0) // Can't represent 0 in log scale so ignore, better idea?
freqLog.push_back(BBCount);
}
}
} else {
for (auto &F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode *Node = get<FunctionNode>(&F);
PrintStaticProfileGuidedKernelSizeReduction(
0x1, "Function frequency of "
<< Node->F->getName().str() << ": "
<< Node->getStaticFuncFreqStr()) if (Node->getStaticFuncFreq() >
0) // Can't represent 0 in log scale so ignore, better idea?
freqLog.push_back(Node->getStaticFuncFreq());
}
}
if ((MetricForKernelSizeReduction & SP_NORMAL_DISTRIBUTION) != 0 &&
!freqLog.empty()) { // When using a normal distribution. Ignore when there are no frequency data
IGC_ASSERT(ParameterForColdFuncThreshold >= 0 && ParameterForColdFuncThreshold <= 30);
// Find a threshold from a normal distribution
std::sort(freqLog.begin(), freqLog.end()); // Sort frequency data
std::vector<double> freqLogDbl;
std::unordered_map<double, Scaled64> map_log10_to_scaled64;
double log10_2 = std::log10(2);
for (Scaled64 &val : freqLog) // transform into log10 scale
{
double logedVal = std::log10(val.getDigits()) + val.getScale() * log10_2;
map_log10_to_scaled64[logedVal] = val;
freqLogDbl.push_back(logedVal);
}
double sum_val = std::accumulate(freqLogDbl.begin(), freqLogDbl.end(), 0.0);
double mean = sum_val / freqLogDbl.size();
double sq_sum = std::inner_product(
freqLogDbl.begin(), freqLogDbl.end(), freqLogDbl.begin(), 0.0,
[](double const &x, double const &y) { return x + y; },
[mean](double const &x, double const &y) { return (x - mean) * (y - mean); });
double standard_deviation = std::sqrt(sq_sum / freqLogDbl.size());
float C = (float)ParameterForColdFuncThreshold /
10; // Since 1 STD is too wide in the majority case, we need to scale down
double threshold_log10 = mean - C * standard_deviation;
auto it_lower = std::lower_bound(freqLogDbl.begin(), freqLogDbl.end(), threshold_log10);
if (it_lower == freqLogDbl.end())
threshold_func_freq = freqLog.back();
else
threshold_func_freq = map_log10_to_scaled64[*it_lower];
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Metric: Normal distribution");
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Sample count: " << freqLogDbl.size());
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Execution frequency mean (Log10 scale): " << mean);
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Standard deviation (Log10 scale): " << standard_deviation);
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Execution frequency threshold with Constant(C) "
<< C << ": " << threshold_func_freq.toString());
} else if ((MetricForKernelSizeReduction & SP_LONGTAIL_DISTRIBUTION) != 0 &&
!freqLog.empty()) { // When using a long-tail distribution. Ignore when there are no frequency data
IGC_ASSERT(ParameterForColdFuncThreshold > 0 && ParameterForColdFuncThreshold <= 100);
// Find a threshold from a long tail distribution
uint32_t threshold_cold = (uint32_t)ParameterForColdFuncThreshold;
uint32_t C_pos = freqLog.size() * threshold_cold / 100;
std::nth_element(freqLog.begin(), freqLog.begin() + C_pos, freqLog.end(),
[](Scaled64 &x, Scaled64 &y) { return x < y; }); // Low C%
threshold_func_freq = freqLog[C_pos];
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Metric: Long tail distribution");
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Low " << threshold_cold << "% pos: " << C_pos << " out of "
<< freqLog.size());
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Execution frequency threshold: " << threshold_func_freq);
} else if ((MetricForKernelSizeReduction & SP_AVERAGE_PERCENTAGE) != 0 &&
!freqLog.empty()) { // When using a average C%
Scaled64 sum_val = std::accumulate(freqLog.begin(), freqLog.end(), Scaled64::getZero());
Scaled64 mean = sum_val / Scaled64::get(freqLog.size());
Scaled64 C = Scaled64::get(ParameterForColdFuncThreshold) / Scaled64::get(10); // Scale down /10
IGC_ASSERT(C > 0 && C <= 100);
threshold_func_freq = mean * (C / Scaled64::get(100));
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Metric: Average%");
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Average threshold * " << C.toString()
<< "%: " << threshold_func_freq.toString());
}
unsigned sizeThreshold = ControlInlineTinySizeForSPGT;
if (UseFrequencyInfoForSPGT) {
thresholdForTrimming = getSPGTWeight(sizeThreshold, threshold_func_freq, SizeWeightForSPGT, FrequencyWeightForSPGT);
} else {
thresholdForTrimming = Scaled64::get(sizeThreshold); // If we don't want to use freq data,
// just use size only
}
PrintStaticProfileGuidedKernelSizeReduction(0x1, "------------------Static analysis end------------------\n") return;
}
void EstimateFunctionSize::estimateTotalLoopIteration(llvm::Function &F, LoopInfo *LI) {
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>(F).getSE();
for (Loop *L : LI->getLoopsInPreorder()) {
Scaled64 ParentLCnt = Scaled64::getOne();
Loop *ParentL = L->getParentLoop();
if (ParentL) {
IGC_ASSERT(LoopIterCnts.find(ParentL) != LoopIterCnts.end());
ParentLCnt = LoopIterCnts[ParentL];
}
StringRef LoopCntAttr = " Back edge count not available";
if (SE.hasLoopInvariantBackedgeTakenCount(L)) {
unsigned TripCount = 0;
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks)
if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
if (!TripCount || TC < TripCount)
TripCount = TC;
if (TripCount) {
// We assume that loop unrolling will not exceed 16 times
unsigned MaxUnrollCount = MaxUnrollCountForFunctionSizeAnalysis;
TripCount = std::min(TripCount, MaxUnrollCount);
LoopIterCnts[L] = ParentLCnt * Scaled64::get(TripCount);
LoopCntAttr = " Trip count available";
} else {
// TODO: We currently set a loop count to 5
// if we don't know the exact number
LoopIterCnts[L] = ParentLCnt * Scaled64::get(5);
LoopCntAttr = " Upper bound available";
}
} else {
LoopIterCnts[L] = Scaled64::getOne();
}
PrintFunctionSizeAnalysis(0x2, "Loop " << L->getName().str() << ": Loop Count = " << LoopIterCnts[L].toString()
<< ", Parent Loop Count = " << ParentLCnt.toString() << LoopCntAttr)
}
return;
}
void EstimateFunctionSize::analyze() {
auto getSize = [&](llvm::Function &F) {
std::size_t Size = 0;
for (auto &BB : F) {
std::size_t BlkSize = IGCLLVM::sizeWithoutDebug(&BB);
Size += BlkSize;
}
return Size;
};
auto getSizeWithLoopCnt = [&](llvm::Function &F, LoopInfo &LI) {
std::size_t Size = 0;
for (auto &BB : F) {
std::size_t BlkSize = IGCLLVM::sizeWithoutDebug(&BB);
Loop *L = LI.getLoopFor(&BB);
if (L) {
BlkSize = BlkSize * LoopIterCnts[L].toInt<size_t>();
}
Size += BlkSize;
}
return Size;
};
auto MdWrapper = getAnalysisIfAvailable<MetaDataUtilsWrapper>();
auto pMdUtils = MdWrapper->getMetaDataUtils();
// Initialize the data structure. find all noinline and stackcall properties
for (auto &F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode *node = nullptr;
if (LoopCountAwareTrimming) {
auto &LI = getAnalysis<LoopInfoWrapperPass>(F).getLoopInfo();
estimateTotalLoopIteration(F, &LI);
size_t FuncSize = getSize(F);
size_t FuncSizeWithLoopCnt = getSizeWithLoopCnt(F, LI);
node = new FunctionNode(&F, FuncSizeWithLoopCnt);
PrintFunctionSizeAnalysis(0x1, "Function " << F.getName().str() << " Original Size: " << FuncSize
<< " Size with Loop Iter: " << FuncSizeWithLoopCnt);
} else {
node = new FunctionNode(&F, getSize(F));
}
node->setFlags(EnableLeafCollapsing, EnableSizeContributionOptimization, StaticProfileGuidedTrimming,
UseFrequencyInfoForSPGT, ForceInlineExternalFunctions, ControlInlineTinySize,
ForceInlineStackCallWithImplArg, ControlInlineImplicitArgs, SizeWeightForSPGT,
FrequencyWeightForSPGT);
bool isForceTrim = false;
if (!SelectiveTrimming.empty()) {
std::string functionToTrim = SelectiveTrimming;
if (F.getName().str() == functionToTrim) {
isForceTrim = true;
PrintFunctionSizeAnalysis(0x1, "Force trimming (No inline) " << functionToTrim);
}
}
ECG[&F] = node;
if (isEntryFunc(pMdUtils, node->F)) { /// Entry function
node->setKernelEntry();
kernelEntries.push_back(node);
} else if (F.hasFnAttribute("igc-force-stackcall")) {
node->setStackCall();
} else if (F.hasFnAttribute(llvm::Attribute::NoInline) || isForceTrim) {
node->setTrimmed();
} else if (F.hasFnAttribute(llvm::Attribute::AlwaysInline)) {
node->setForceInline();
}
// Otherwise, the function attribute to be assigned is best effort
}
// Visit all call instructions and populate CG.
for (auto &F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode *Node = get<FunctionNode>(&F);
auto &LI = getAnalysis<LoopInfoWrapperPass>(F).getLoopInfo();
for (auto U : F.users()) {
// Other users (like bitcast/store) are ignored.
if (auto *CI = dyn_cast<CallInst>(U)) {
// G calls F, or G --> F
BasicBlock *BB = CI->getParent();
Function *G = BB->getParent();
FunctionNode *GN = get<FunctionNode>(G);
unsigned LoopCnt = 1;
if (LoopCountAwareTrimming) {
Loop *L = LI.getLoopFor(BB);
if (L) {
IGC_ASSERT(LoopIterCnts.find(L) != LoopIterCnts.end());
LoopCnt = LoopIterCnts[L].toInt<size_t>();
}
}
GN->addCallee(Node, LoopCnt);
Node->addCaller(GN, LoopCnt);
}
}
}
// Find all address taken functions
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I) {
FunctionNode *Node = (FunctionNode *)I->second;
// Address taken functions neither have callers nor is an entry function
if (Node->CallerList.empty() && !Node->isEntryFunc())
Node->setAddressTaken();
}
bool needImplAnalysis = ControlInlineImplicitArgs || ForceInlineStackCallWithImplArg;
// check functions and mark those that use implicit args.
PrintFunctionSizeAnalysis(0x1, "--------------------------Function size analysis start--------------------------");
if (needImplAnalysis)
performImplArgsAnalysis();
// Update expanded and static unit size and propagate implicit argument information which might cancel some stackcalls
for (void *entry : kernelEntries) {
FunctionNode *kernelEntry = (FunctionNode *)entry;
updateExpandedUnitSize(kernelEntry->F, true);
kernelEntry->updateUnitSize();
PrintFunctionSizeAnalysis(0x1, "Unit size (kernel entry) " << kernelEntry->F->getName().str() << ": "
<< kernelEntry->UnitSize);
PrintFunctionSizeAnalysis(0x1, "Expanded unit size (kernel entry) " << kernelEntry->F->getName().str() << ": "
<< kernelEntry->ExpandedSize);
}
// Find all survived stackcalls and address taken functions and update unit sizes
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I) {
FunctionNode *Node = (FunctionNode *)I->second;
if (Node->isStackCallAssigned()) {
stackCallFuncs.push_back(Node);
Node->updateUnitSize();
PrintFunctionSizeAnalysis(0x1, "Unit size (stack call) " << Node->F->getName().str() << ": " << Node->UnitSize);
} else if (Node->isAddrTakenFunc()) {
addressTakenFuncs.push_back(Node);
updateExpandedUnitSize(Node->F, true);
Node->updateUnitSize();
PrintFunctionSizeAnalysis(0x1,
"Unit size (address taken) " << Node->F->getName().str() << ": " << Node->UnitSize);
PrintFunctionSizeAnalysis(0x1, "Expanded unit size (address taken) " << Node->F->getName().str() << ": "
<< Node->ExpandedSize);
}
}
PrintFunctionSizeAnalysis(0x1, "Function count= " << ECG.size());
PrintFunctionSizeAnalysis(0x1, "Kernel count= " << kernelEntries.size());
PrintFunctionSizeAnalysis(0x1, "Manual stack call count= " << stackCallFuncs.size());
PrintFunctionSizeAnalysis(0x1, "Address taken function call count= " << addressTakenFuncs.size());
PrintFunctionSizeAnalysis(0x1, "--------------------------Function size analysis end--------------------------\n");
return;
}
void EstimateFunctionSize::performImplArgsAnalysis() {
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I) {
FunctionNode *Node = (FunctionNode *)I->second;
IGC_ASSERT(Node);
tmpHasImplicitArg = false;
visit(Node->F);
if (!tmpHasImplicitArg) // The function doesn't have an implicit argument: skip
continue;
Node->HasImplicitArg = true;
static int cnt = 0;
const char *Name;
if (Node->isLeaf()) {
Name = "Leaf";
} else {
Name = "nonLeaf";
}
PrintFunctionSizeAnalysis(0x8, Name << " Func " << ++cnt << " " << Node->F->getName().str()
<< " calls implicit args so HasImplicitArg")
if (Node->hasNoCaller()) // Can't inline kernel entry or address taken functions
continue;
if (Node->isStackCallAssigned()) // When stackcall is assigned we need to determine based on the flag
{
if (ForceInlineStackCallWithImplArg)
Node->setForceInline();
continue;
}
// For other cases
if (ControlInlineImplicitArgs) // Force inline ordinary functions with implicit arguments
Node->setForceInline();
}
return;
}
/// \brief Return the estimated maximal function size after complete inlining.
std::size_t EstimateFunctionSize::getMaxExpandedSize() const {
uint32_t MaxSize = 0;
for (auto I : kernelEntries) {
FunctionNode *Node = (FunctionNode *)I;
MaxSize = std::max(MaxSize, Node->ExpandedSize);
}
for (auto I : addressTakenFuncs) {
FunctionNode *Node = (FunctionNode *)I;
MaxSize = std::max(MaxSize, Node->ExpandedSize);
}
return MaxSize;
}
void EstimateFunctionSize::checkSubroutine() {
auto CGW = getAnalysisIfAvailable<CodeGenContextWrapper>();
if (!CGW)
return;
EnableSubroutine = true;
CodeGenContext *pContext = CGW->getCodeGenContext();
if (pContext->type != ShaderType::OPENCL_SHADER && pContext->type != ShaderType::COMPUTE_SHADER &&
pContext->type != ShaderType::RAYTRACING_SHADER)
EnableSubroutine = false;
if (EnableSubroutine) {
uint32_t subroutineThreshold = SubroutineThreshold;
uint32_t expandedMaxSize = getMaxExpandedSize();
if (AL != AL_Module) // at the second call of EstimationFucntionSize, halve the threshold
subroutineThreshold = subroutineThreshold >> 1;
if (expandedMaxSize <= subroutineThreshold) {
PrintTrimUnit(0x1, "No need to reduce the kernel size. (The max expanded kernel size is small) "
<< expandedMaxSize << " < " << subroutineThreshold) if (!HasRecursion) EnableSubroutine =
false;
} else if (AL == AL_Module &&
IGC_IS_FLAG_DISABLED(DisableAddingAlwaysAttribute)) { // kernel trimming and partitioning only kick in at
// the first EstimationFunctionSize
// Analyze Function/Block frequencies
if (StaticProfileGuidedPartitioning ||
StaticProfileGuidedTrimming) // Either a normal or long-tail distribution is enabled
runStaticAnalysis();
// If the max unit size exceeds threshold, do partitioning
if (PartitionUnit) {
PrintPartitionUnit(0x1, "--------------------------Partition unit start--------------------------");
uint32_t unitThreshold = UnitSizeThreshold;
uint32_t maxUnitSize = getMaxUnitSize();
if (maxUnitSize > unitThreshold) {
PrintPartitionUnit(0x1, "Max unit size " << maxUnitSize << " is larger than the threshold (to partition) "
<< unitThreshold) partitionKernel();
} else {
PrintPartitionUnit(0x1, "Max unit size " << maxUnitSize
<< " is smaller than the threshold (No partitioning needed) "
<< unitThreshold)
}
PrintPartitionUnit(0x1, "--------------------------Partition unit end--------------------------\n");
}
PrintTrimUnit(0x1, "Need to reduce the kernel size. (The max expanded kernel size is large) "
<< expandedMaxSize << " > " << subroutineThreshold)
PrintTrimUnit(
0x1,
"-----------------------------Trimming start-----------------------------") if (ControlKernelTotalSize) {
reduceKernelSize();
}
else if (ControlUnitSize) {
reduceCompilationUnitSize();
}
PrintTrimUnit(0x1, "-----------------------------Trimming end-----------------------------\n")
}
}
IGC_ASSERT(!HasRecursion || EnableSubroutine);
return;
}
std::size_t EstimateFunctionSize::getExpandedSize(const Function *F) const {
// IGC_ASSERT(IGC_IS_FLAG_DISABLED(ControlKernelTotalSize));
auto I = ECG.find((Function *)F);
if (I != ECG.end()) {
FunctionNode *Node = (FunctionNode *)I->second;
IGC_ASSERT(F == Node->F);
return Node->ExpandedSize;
}
return std::numeric_limits<std::size_t>::max();
}
bool EstimateFunctionSize::onlyCalledOnce(const Function *F, const Function *CallerF) {
// IGC_ASSERT(IGC_IS_FLAG_DISABLED(ControlKernelTotalSize));
auto I = ECG.find((Function *)F);
if (I != ECG.end()) {
auto *Node = (FunctionNode *)I->second;
IGC_ASSERT(F == Node->F);
// one call-site and not a recursion
if (Node->CallerList.size() == 1 && Node->CallerList.begin()->second == 1 &&
Node->CallerList.begin()->first != Node) {
return true;
}
// OpenCL specific, called once by passed kernel
auto *MdWrapper = getAnalysisIfAvailable<MetaDataUtilsWrapper>();
if (MdWrapper) {
auto *pMdUtils = MdWrapper->getMetaDataUtils();
for (const auto &[Caller, CallCount] : Node->CallerList) {
if (CallCount > 1 && Caller->F == CallerF) {
return false;
}
if (!isEntryFunc(pMdUtils, Caller->F)) {
return false;
}
}
return true;
}
}
return false;
}
void EstimateFunctionSize::reduceKernelSize() {
uint32_t threshold = KernelTotalSizeThreshold;
llvm::SmallVector<void *, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode *)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode *)node);
trimCompilationUnit(unitHeads, threshold, true);
return;
}
bool EstimateFunctionSize::isTrimmedFunction(llvm::Function *F) { return get<FunctionNode>(F)->isTrimmed(); }
bool EstimateFunctionSize::isLargeKernelThresholdExceeded() const {
for (auto *node : kernelEntries) {
auto *kernelNode = (FunctionNode *)node;
if (kernelNode->ExpandedSize > KernelTotalSizeThreshold * LargeKernelThresholdMultiplier) {
return true;
}
}
return false;
}
// Initialize data structures for topological traversal: FunctionsInKernel and BottomUpQueue.
// FunctionsInKernel is a map data structure where the key is FunctionNode and value is the number of edges to callee
// nodes. FunctionsInKernel is primarily used for topological traversal and also used to check whether a function is in
// the currently processed kernel/unit. BottomUpQueue will contain the leaf nodes of a kernel/unit and they are starting
// points of topological traversal.
void EstimateFunctionSize::initializeTopologicalVisit(Function *root,
std::unordered_map<void *, uint32_t> &FunctionsInKernel,
std::deque<void *> &BottomUpQueue, bool ignoreStackCallBoundary) {
std::deque<FunctionNode *> Queue;
FunctionNode *unitHead = get<FunctionNode>(root);
Queue.push_back(unitHead);
FunctionsInKernel[unitHead] = unitHead->CalleeList.size();
// top down traversal to visit functions which will be processed reversely
while (!Queue.empty()) {
FunctionNode *Node = Queue.front();
Queue.pop_front();
Node->tmpSize = Node->InitialSize;
for (auto &Callee : Node->CalleeList) {
FunctionNode *CalleeNode = Callee.first;
if (FunctionsInKernel.find(CalleeNode) != FunctionsInKernel.end())
continue;
if (!ignoreStackCallBoundary &&
CalleeNode
->isStackCallAssigned()) // This callee is a compilation unit head, so not in the current compilation unit
{
FunctionsInKernel[Node] -= 1; // Ignore different compilation unit
continue;
}
FunctionsInKernel[CalleeNode] = CalleeNode->CalleeList.size(); // Update the number of edges to callees
Queue.push_back(CalleeNode);
}
if (FunctionsInKernel[Node] == 0) // This means no children or all children are compilation unit heads: leaf node
BottomUpQueue.push_back(Node);
}
return;
}
llvm::ScaledNumber<uint64_t> EstimateFunctionSize::calculateTotalWeight(Function *root) {
FunctionNode *root_node = get<FunctionNode>(root);
std::deque<void *> TopdownQueue;
TopdownQueue.push_back(root_node);
std::unordered_set<void *> visit;
visit.insert(root_node);
Scaled64 totalSizeContributionSq = Scaled64::getZero();
Scaled64 totalSubroutineFreq = Scaled64::getZero();
while (!TopdownQueue.empty()) {
FunctionNode *node = (FunctionNode *)TopdownQueue.front();
TopdownQueue.pop_front();
totalSizeContributionSq += Scaled64::get(node->getSizeContribution() * node->getSizeContribution());
if (!node->willBeInlined())
totalSubroutineFreq += node->getStaticFuncFreq();
for (auto &callee_info : node->CalleeList) {
FunctionNode *callee = callee_info.first;
if (visit.find(callee) == visit.end()) {
visit.insert(callee);
TopdownQueue.push_back(callee);
}
}
}
return totalSizeContributionSq * totalSizeContributionSq * totalSubroutineFreq;
}
// Update the information about how many time a function will be inlined
void EstimateFunctionSize::updateInlineCnt(Function *root) {
FunctionNode *root_node = get<FunctionNode>(root);
std::unordered_map<void *, uint32_t>
unprocessed_callers; // A data structure to collect the number of callers for a functoin in a kernel boundary
unprocessed_callers[root_node] = 0;
std::deque<void *> TopdownQueue;
TopdownQueue.push_back(root_node);
std::unordered_set<void *> visit;
visit.insert(root_node);
// Top down traversal to initialize the number of callers and inline count in a kernel boundary
// This step is just for initialization for the topological traverse at the second step
while (!TopdownQueue.empty()) {
FunctionNode *node = (FunctionNode *)TopdownQueue.front();
TopdownQueue.pop_front();
node->Inline_cnt = 0;
for (auto &callee_info : node->CalleeList) {
FunctionNode *callee = callee_info.first;
if (unprocessed_callers.find(callee) == unprocessed_callers.end())
unprocessed_callers[callee] = 0; // Initialize callee's caller count
unprocessed_callers[callee] += 1; // Increment by 1 since the callee is called by the node
if (visit.find(callee) == visit.end()) {
visit.insert(callee);
TopdownQueue.push_back(callee);
}
}
}
TopdownQueue.push_back(root_node);
while (!TopdownQueue.empty()) {
FunctionNode *node = (FunctionNode *)TopdownQueue.front();
TopdownQueue.pop_front();
for (auto &callee_info : node->CalleeList) {
FunctionNode *callee = callee_info.first;
uint16_t call_cnt = callee_info.second;
IGC_ASSERT(unprocessed_callers[callee] != 0);
unprocessed_callers[callee] -= 1;
if (callee->willBeInlined())
callee->Inline_cnt += call_cnt * (node->Inline_cnt == 0 ? 1 : node->Inline_cnt);
if (unprocessed_callers[callee] == 0)
TopdownQueue.push_back(callee);
}
}
return;
}
// This function compute the size of each function when must-be-inlined functions are all inlined
// must-be-inlined functions are two kinds: 1) have force-inline attribute, 2) small leaf functions
// Functions with those two kinds should be inlined no matter what the reason is.
// When all small leaf functions are inlined and collapsed, there may be a set of new leaf functions
// So, the algorithm repeat collapsing small leaf functions until only large leaf functions are left
void EstimateFunctionSize::UpdateSizeAfterCollapsing(std::deque<void *> &nodesToProcess,
std::unordered_set<void *> &funcsInKernel) {
for (auto n : funcsInKernel) {
// Initialize the size after inlining
FunctionNode *Node = (FunctionNode *)n;
Node->SizeAfterCollapsing = Node->InitialSize;
}
std::unordered_map<FunctionNode *, uint16_t> remainingCallee;
std::unordered_set<FunctionNode *> hasCalleesAfterInline;
while (!nodesToProcess.empty()) {
FunctionNode *Node = (FunctionNode *)nodesToProcess.front();
nodesToProcess.pop_front();
bool hasCallee = hasCalleesAfterInline.find(Node) != hasCalleesAfterInline.end();
if (Node->willBeInlined() && !hasCallee && Node->SizeAfterCollapsing < ControlInlineTinySizeForSPGT) {
if (!Node->isForcedInlined()) {
PrintTrimUnit(0x8, "Small leaf functions should always be inlined"
<< Node->F->getName().str() << ", Size after Inline: " << Node->SizeAfterCollapsing);
Node->setForceInline(); // If the node is supposed to have no callee in the end and small size, it should be
// inlined
}
}
for (const auto &c : Node->CallerList) {
FunctionNode *caller = c.first;
uint16_t call_cnt = c.second;
if (funcsInKernel.find(caller) ==
funcsInKernel.end()) // This caller must not be in the currently processing kernel
continue;
if (remainingCallee.find(caller) == remainingCallee.end())
remainingCallee[caller] = caller->CalleeList.size();
remainingCallee[caller] -= 1;
if (remainingCallee[caller] == 0)
nodesToProcess.push_back((FunctionNode *)caller);
if (Node->isForcedInlined()) { // Will be inlined in any case
caller->SizeAfterCollapsing += Node->SizeAfterCollapsing * call_cnt;
if (hasCallee) // Fucntion that already has force inline might have callee
hasCalleesAfterInline.insert(caller);
} else { // Otherwise we don't know, so conservatively mark it having callees
hasCalleesAfterInline.insert(caller);
}
}
}
return;
}
// Find the total size of a unit when to-be-inlined functions are expanded
// Topologically traverse from leaf nodes and expand nodes to callers except noinline and stackcall functions
uint32_t EstimateFunctionSize::updateExpandedUnitSize(Function *F, bool ignoreStackCallBoundary) {
FunctionNode *root = get<FunctionNode>(F);
std::deque<void *> BottomUpQueue;
std::unordered_map<void *, uint32_t> FunctionsInUnit;
initializeTopologicalVisit(root->F, FunctionsInUnit, BottomUpQueue, ignoreStackCallBoundary);
uint32_t unitTotalSize = 0;
while (!BottomUpQueue.empty()) // Topologically visit nodes and collape for each compilation unit
{
FunctionNode *node = (FunctionNode *)BottomUpQueue.front();
BottomUpQueue.pop_front();
IGC_ASSERT(FunctionsInUnit[node] == 0);
FunctionsInUnit.erase(node);
node->ExpandedSize = node->tmpSize; // Update the size of an expanded chunk
if (!node->willBeInlined()) {
// dbgs() << "Not be inlined Attr: " << (int)node->FunctionAttr << "\n";
unitTotalSize += node->ExpandedSize;
PrintTrimUnit(0x10, "Expansion stop at " << node->F->getName().str() << ", Attribute: " << node->getFuncAttrStr()
<< ", Chunck size: " << node->ExpandedSize
<< ", Total chunck size: " << unitTotalSize);
}
for (const auto &c : node->CallerList) {
FunctionNode *caller = c.first;
if (FunctionsInUnit.find(caller) == FunctionsInUnit.end()) // Caller is in another compilation unit
{
node->InMultipleUnit = true;
continue;
}
FunctionsInUnit[caller] -= 1;
if (FunctionsInUnit[caller] == 0)
BottomUpQueue.push_back(caller);
if (node->willBeInlined())
caller->expand(node); // collapse and update tmpSize of the caller
}
}
// Has recursion
if (!FunctionsInUnit.empty())
HasRecursion = true;
PrintTrimUnit(0x10, "Final expanded size of " << root->F->getName().str() << ": " << unitTotalSize);
return root->ExpandedSize = unitTotalSize;
}
// Partition kernels using bottom-up heristic.
uint32_t EstimateFunctionSize::bottomUpHeuristic(Function *F, uint32_t &stackCall_cnt) {
uint32_t threshold = UnitSizeThreshold;
std::deque<void *> BottomUpQueue;
std::unordered_map<void *, uint32_t> FunctionsInUnit; // Set of functions in the boundary of a kernel. Record
// unprocessed callee counter for topological sort.
initializeTopologicalVisit(F, FunctionsInUnit, BottomUpQueue, false);
FunctionNode *unitHeader = get<FunctionNode>(F);
uint32_t max_unit_size = 0;
while (!BottomUpQueue.empty()) {
FunctionNode *Node = (FunctionNode *)BottomUpQueue.front();
BottomUpQueue.pop_front();
IGC_ASSERT(FunctionsInUnit[Node] == 0);
FunctionsInUnit.erase(Node);
Node->UnitSize = Node->tmpSize; // Update the size
if (Node == unitHeader) // The last node to process is the unit header
{
max_unit_size = std::max(max_unit_size, Node->updateUnitSize());
continue;
}
bool beStackCall = Node->canAssignStackCall() && Node->UnitSize > threshold && Node->updateUnitSize() > threshold &&
Node->getStaticFuncFreq() < threshold_func_freq;
if (beStackCall) {
PrintPartitionUnit(0x4, "Stack call marked " << Node->F->getName().str() << " Unit size: " << Node->UnitSize
<< " > Threshold " << threshold
<< " Function frequency: " << Node->getStaticFuncFreqStr() << " < "
<< threshold_func_freq.toString())
stackCallFuncs.push_back(Node); // We have a new unit head
Node->setStackCall();
max_unit_size = std::max(max_unit_size, Node->UnitSize);
stackCall_cnt += 1;
} else {
if (!Node->canAssignStackCall()) {
PrintPartitionUnit(0x4, "Stack call not marked: not best effort or trimmed " << Node->F->getName().str())
} else if (Node->UnitSize <= threshold || Node->updateUnitSize() <= threshold) {
PrintPartitionUnit(0x4, "Stack call not marked: unit size too small " << Node->F->getName().str())
} else {
PrintPartitionUnit(0x4, "Stack call not marked: too many function frequencies "
<< Node->getStaticFuncFreqStr() << " > " << threshold_func_freq.toString() << " "
<< Node->F->getName().str())
}
}
for (const auto &c : Node->CallerList) {
FunctionNode *caller = c.first;
if (FunctionsInUnit.find(caller) == FunctionsInUnit.end()) // The caller is in another kernel, skip
continue;
FunctionsInUnit[caller] -= 1;
if (FunctionsInUnit[caller] == 0) // All callees of the caller are processed: become leaf.
BottomUpQueue.push_back(caller);
if (!beStackCall)
caller->tmpSize += Node->UnitSize;
}
}
return max_unit_size;
}
// For all function F : F->Us = size(F), F->U# = 0 // unit size and unit number
// For each kernel K
// kernelSize = K->UnitSize // O(C)
// IF(kernelSize > T)
// workList = ReverseTopoOrderList(K) // Bottom up traverse
// WHILE(worklist not empty) // O(N)
// remove F from worklist
// //F->Us might be overestimated due to overcounting issue -> recompute F->Us to find the actual size
// IF(F->Us > T || recompute(F->Us) > T) { // recompute(F->Us): O(N) only when F->Us is larger than T
// mark F as stackcall;
// Add F to end of headList;
// continue;
// }
// Foreach F->callers P{ P->Us += F->Us; }
// ENDWHILE
// ENDIF
// ENDFOR
void EstimateFunctionSize::partitionKernel() {
uint32_t threshold = UnitSizeThreshold;
uint32_t max_unit_size = 0;
uint32_t stackCall_cnt = 0;
// Iterate over kernel
llvm::SmallVector<void *, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode *)node);
for (auto node : stackCallFuncs)
unitHeads.push_back((FunctionNode *)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode *)node);
for (auto node : unitHeads) {
FunctionNode *UnitHead = (FunctionNode *)node;
if (UnitHead->UnitSize <= threshold) // Unit size is within threshold, skip
{
max_unit_size = std::max(max_unit_size, UnitHead->UnitSize);
continue;
}
PrintPartitionUnit(0x2, "Partition Kernel " << UnitHead->F->getName().str()
<< " Original Unit Size: " << UnitHead->UnitSize)
uint32_t size_after_partition = bottomUpHeuristic(UnitHead->F, stackCall_cnt);
max_unit_size = std::max(max_unit_size, size_after_partition);
PrintPartitionUnit(0x2, "Unit size after partitioning: " << size_after_partition)
}
float threshold_err = (float)(max_unit_size - threshold) / threshold * 100;
PrintPartitionUnit(0x2, "Max unit size: " << max_unit_size << " Threshold Error Rate: " << threshold_err << "%");
PrintPartitionUnit(0x2, "Stack call cnt: " << stackCall_cnt);
return;
}
// Work same as reduceKernel except for stackcall functions
void EstimateFunctionSize::reduceCompilationUnitSize() {
uint32_t threshold = ExpandedUnitSizeThreshold;
llvm::SmallVector<void *, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode *)node);
for (auto node : stackCallFuncs)
unitHeads.push_back((FunctionNode *)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode *)node);
trimCompilationUnit(unitHeads, threshold, false);
return;
}
// Top down traverse to find and retrieve functions that meet trimming criteria
void EstimateFunctionSize::getFunctionsToTrim(llvm::Function *root, llvm::SmallVector<void *, 64> &trimming_pool,
llvm::SmallVector<void *, 64> &tiny_fn_trimming_pool,
bool ignoreStackCallBoundary, uint32_t &func_cnt) {
FunctionNode *unitHead = get<FunctionNode>(root);
std::unordered_set<void *> visit;
std::deque<FunctionNode *> TopDownQueue;
TopDownQueue.push_back(unitHead);
visit.insert((void *)unitHead);
SmallVector<FunctionNode *, 64> funcsInKernel;
uint64_t tinySizeThreshold = ControlInlineTinySize;
std::deque<void *> bottomUpQueue;
// Profile function information in the kernel boundary
while (!TopDownQueue.empty()) {
FunctionNode *Node = TopDownQueue.front();
TopDownQueue.pop_front();
for (auto &Callee : Node->CalleeList) {
FunctionNode *calleeNode = Callee.first;
if (visit.find((void *)calleeNode) != visit.end() ||
(!ignoreStackCallBoundary && calleeNode->isStackCallAssigned()))
continue;
visit.insert((void *)calleeNode);
TopDownQueue.push_back(calleeNode);
}
funcsInKernel.push_back(Node);
if (Node->CalleeList.empty())
bottomUpQueue.push_back((void *)Node);
}
func_cnt += visit.size();
if (EnableSizeContributionOptimization)
updateInlineCnt(root);
if (EnableLeafCollapsing)
UpdateSizeAfterCollapsing(bottomUpQueue, visit);
if (EnableGreedyTrimming) {
trimming_pool = llvm::SmallVector<void *, 64>(funcsInKernel.size());
// Node with best effort and larger size contribution could be trimmed
llvm::copy_if(funcsInKernel, std::back_inserter(trimming_pool),
[](void *node) { return ((FunctionNode *)node)->isBestEffortInline(); });
return;
}
// Find all functions that meet trimming criteria
for (FunctionNode *Node : funcsInKernel) {
uint16_t func_trait = Node->getFunctionTrait(thresholdForTrimming);
switch (func_trait) {
case FT_NOT_BEST_EFFORT:
Node->dumpFuncInfo(0x4, "Can't trim (not best effort inline)");
break;
case FT_MUL_KERNEL:
Node->dumpFuncInfo(0x4, "Can't trim (in multiple kernels)");
break;
case FT_BIG_ENOUGH: // Functions are big enough to trim
trimming_pool.push_back(Node);
Node->dumpFuncInfo(0x4, "Good to trim (Big enough > " + std::to_string(tinySizeThreshold) + ")");
break;
case FT_TOO_TINY:
// Small functions will be trimmed in special case if kernel still far exceeds threshold
tiny_fn_trimming_pool.push_back(Node);
Node->dumpFuncInfo(0x4, "Can't trim (Too tiny < " + std::to_string(tinySizeThreshold) + ")");
break;
case FT_HIGHER_WEIGHT:
trimming_pool.push_back(Node);
Node->dumpFuncInfo(0x4, "Good to trim (High weight > " + thresholdForTrimming.toString() + ")");
break;
case FT_LOWER_WEIGHT:
Node->dumpFuncInfo(0x4, "Can't trim (Low weight < " + thresholdForTrimming.toString() + ")");
break;
default:
PrintTrimUnit(0x4, "Something goes wrong with the function property");
break;
}
}
return;
}
// Trim kernel/unit by canceling out inline candidate functions one by one until the total size is within threshold
/*
For all F: F->ToBeInlined = True
For each kernel K
kernelTotalSize = updateExpandedUnitSize(K) // O(C) >= O(N*logN)
IF (FullInlinedKernelSize > T)
workList= non-tiny-functions sorted by size from large to small // O(N*logN)
WHILE (worklist not empty) // O(N)
remove F from worklist
F->ToBeInlined = False
kernelTotalSize = updateExpandedUnitSize(K)
IF (kernelTotalSize <= T) break
ENDWHILE
Inline functions with ToBeInlined = True
Inline functions with single caller // done
*/
void EstimateFunctionSize::trimCompilationUnit(llvm::SmallVector<void *, 64> &unitHeads, uint32_t threshold,
bool ignoreStackCallBoundary) {
llvm::SmallVector<FunctionNode *, 64> unitsToTrim;
// Extract kernels / units that are larger than threshold
for (auto node : unitHeads) {
FunctionNode *unitEntry = (FunctionNode *)node;
// Partitioning can add more stackcalls. So need to recompute the expanded unit size.
updateExpandedUnitSize(unitEntry->F, ignoreStackCallBoundary);
if (unitEntry->ExpandedSize > threshold) {
PrintTrimUnit(0x2, "Kernel / Unit " << unitEntry->F->getName().str() << " expSize= " << unitEntry->ExpandedSize
<< " > " << threshold) unitsToTrim.push_back(unitEntry);
} else {
PrintTrimUnit(0x2, "Kernel / Unit " << unitEntry->F->getName().str() << " expSize= " << unitEntry->ExpandedSize
<< " <= " << threshold)
}
}
if (unitsToTrim.empty()) {
PrintTrimUnit(0x2, "Kernels / Units become no longer big enough to be trimmed (affected by partitioning)") return;
}
std::sort(unitsToTrim.begin(), unitsToTrim.end(), [&](const FunctionNode *LHS, const FunctionNode *RHS) {
return LHS->ExpandedSize > RHS->ExpandedSize;
}); // Sort by expanded size
// Iterate over units
for (auto unit : unitsToTrim) {
size_t expandedUnitSize =
updateExpandedUnitSize(unit->F, ignoreStackCallBoundary); // A kernel size can be reduced by a function that is
// trimmed at previous kernels, so recompute it.
PrintTrimUnit(0x2, "Trimming kernel / unit " << unit->F->getName().str() << " expanded size= "
<< expandedUnitSize) if (expandedUnitSize <= threshold) {
PrintTrimUnit(0x2, "Kernel / unit " << unit->F->getName().str() << ": The expanded unit size(" << expandedUnitSize
<< ") is smaller than threshold(" << threshold << ")") continue;
}
PrintTrimUnit(0x2, "Kernel size is bigger than threshold")
SmallVector<void *, 64>
trimming_pool;
SmallVector<void *, 64> tiny_fn_trimming_pool;
uint32_t func_cnt = 0;
getFunctionsToTrim(unit->F, trimming_pool, tiny_fn_trimming_pool, ignoreStackCallBoundary, func_cnt);
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << " has " << trimming_pool.size()
<< " functions for trimming out of " << func_cnt) if (trimming_pool.empty()) {
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << " size " << unit->ExpandedSize
<< " has no sorted list") continue; // all functions are tiny.
}
uint64_t size_before_trimming = unit->ExpandedSize;
if (EnableGreedyTrimming) {
performGreedyTrimming(unit->F, trimming_pool, threshold, ignoreStackCallBoundary);
} else {
performTrimming(unit->F, trimming_pool, threshold, ignoreStackCallBoundary);
if (ignoreStackCallBoundary && unit->ExpandedSize > threshold * LargeKernelThresholdMultiplier) {
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << ": Size: " << unit->ExpandedSize
<< " is much larger than threshold, trimming small functions as well.")
performTrimming(unit->F, tiny_fn_trimming_pool, threshold, ignoreStackCallBoundary);
}
}
if (unit->ExpandedSize < threshold) {
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << ": The size becomes below threshold")
} else {
PrintTrimUnit(0x2, "Kernel / Unit "
<< unit->F->getName().str()
<< ": The size is still above threshold even though all candidates are trimmed")
}
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << " final size " << unit->ExpandedSize
<< " reduced from " << size_before_trimming)
}
}
void EstimateFunctionSize::performGreedyTrimming(Function *head, llvm::SmallVector<void *, 64> &functions_to_trim,
uint32_t threshold, bool ignoreStackCallBoundary) {
llvm::SmallVector<FunctionNode *, 64> candidates;
llvm::SmallVector<FunctionNode *, 64> funcWithNoEffect;
for (auto f : functions_to_trim) {
FunctionNode *func = (FunctionNode *)f;
if (func->getSizeContribution() != func->getPotentialBodySize()) {
candidates.push_back(func);
} else {
funcWithNoEffect.push_back(func);
}
}
uint32_t total_trim_cnt = 0;
while (!candidates.empty()) {
Scaled64 minWeight = calculateTotalWeight(head);
FunctionNode *bestForTrim = NULL;
Scaled64 weightBeforeTrim = minWeight;
PrintTrimUnit(0x8, "Trimming candidate count: " << candidates.size());
for (auto func : candidates) {
func->setTrimmed();
// Update inline count
updateInlineCnt(head);
// calculate weight
Scaled64 weight = calculateTotalWeight(head);
if (weight < minWeight) {
minWeight = weight;
bestForTrim = func;
}
func->unsetTrimmed();
updateInlineCnt(head);
}
PrintTrimUnit(0x8, "Total weight before trim: " << weightBeforeTrim.toString()
<< " Total weight after trim: " << minWeight.toString());
if (bestForTrim == NULL) // Trimming any of functions result in better code
break;
PrintTrimUnit(0x8, "Trim the function " << bestForTrim->F->getName().str()
<< ", Function Attribute: " << bestForTrim->getFuncAttrStr()
<< ", Function size: " << bestForTrim->InitialSize
<< ", Size after inlining: " << bestForTrim->SizeAfterCollapsing
<< ", Size contribution: " << bestForTrim->getSizeContribution()
<< ", Freq: " << bestForTrim->getStaticFuncFreqStr()
<< ", Weight: " << bestForTrim->getWeightForTrimming().toString());
bestForTrim->setTrimmed();
updateInlineCnt(head);
total_trim_cnt += 1;
PrintTrimUnit(0x8,
"The size contribution of the trimmed function changes to " << bestForTrim->getSizeContribution());
llvm::SmallVector<FunctionNode *, 64> new_candidates;
for (auto func : candidates) {
if (func->getSizeContribution() != func->getPotentialBodySize()) {
new_candidates.push_back(func);
} else {
funcWithNoEffect.push_back(func);
}
}
candidates = std::move(new_candidates);
}
updateExpandedUnitSize(head, ignoreStackCallBoundary);
for (FunctionNode *trimNoGain : candidates) // Those remaining candidates will likely degrade performance
{
PrintTrimUnit(0x8, "Dont't trim (Performance penalty is higher than size reduction)"
<< trimNoGain->F->getName().str() << ", Function Attribute: " << trimNoGain->getFuncAttrStr()
<< ", Function size: " << trimNoGain->InitialSize
<< ", Size after inlining: " << trimNoGain->SizeAfterCollapsing << ", Size contribution: "
<< trimNoGain->getSizeContribution() << ", Freq: " << trimNoGain->getStaticFuncFreqStr()
<< ", Weight: " << trimNoGain->getWeightForTrimming().toString());
}
for (FunctionNode *trimNoGain : funcWithNoEffect) // The kernel size will not change when those functions are trimmed
{
PrintTrimUnit(0x8, "Dont't trim (Trimming doesn't give size reduction)"
<< trimNoGain->F->getName().str() << ", Function Attribute: " << trimNoGain->getFuncAttrStr()
<< ", Function size: " << trimNoGain->InitialSize
<< ", Size after inlining: " << trimNoGain->SizeAfterCollapsing << ", Size contribution: "
<< trimNoGain->getSizeContribution() << ", Freq: " << trimNoGain->getStaticFuncFreqStr()
<< ", Weight: " << trimNoGain->getWeightForTrimming().toString());
}
PrintTrimUnit(0x8, "In total, " << total_trim_cnt << " function(s) are trimmed out of " << functions_to_trim.size());
return;
}
void EstimateFunctionSize::performTrimming(Function *head, llvm::SmallVector<void *, 64> &functions_to_trim,
uint32_t threshold, bool ignoreStackCallBoundary) {
FunctionNode *unitHead = get<FunctionNode>(head);
uint32_t total_cand = functions_to_trim.size();
uint32_t total_trim_cnt = 0;
// Sort all to-be trimmed function according to the its actual size
// Repeat trimming functions for cold functions until the unit size is smaller than threshold
while (!functions_to_trim.empty() && unitHead->ExpandedSize >= threshold) {
std::sort(functions_to_trim.begin(), functions_to_trim.end(), [&](const void *LHS, const void *RHS) {
return ((FunctionNode *)LHS)->getWeightForTrimming() < ((FunctionNode *)RHS)->getWeightForTrimming();
});
FunctionNode *functionToTrim = (FunctionNode *)functions_to_trim.back(); // Pick the largest one first to trim
functions_to_trim.pop_back();
uint64_t original_expandedSize = unitHead->ExpandedSize;
if (EnableSizeContributionOptimization) {
uint64_t size_contribution = functionToTrim->getSizeContribution();
uint64_t FuncSize = functionToTrim->getPotentialBodySize();
if (FuncSize == size_contribution && FuncSize < SkipTrimmingOneCopyFunction) {
functionToTrim->dumpFuncInfo(0x8, "Don't trim (Same size contribution and too small)");
continue;
}
functionToTrim->dumpFuncInfo(0x8, "Trim the function");
functionToTrim->setTrimmed();
updateInlineCnt(head);
PrintTrimUnit(0x8, "The size contribution of the trimmed function changes to "
<< functionToTrim->getSizeContribution());
} else {
functionToTrim->dumpFuncInfo(0x8, "Trim the function");
functionToTrim->setTrimmed();
}
total_trim_cnt += 1;
// After trimming, update expanded size
updateExpandedUnitSize(head, ignoreStackCallBoundary);
PrintTrimUnit(0x8, "The kernel size is reduced after trimming from " << original_expandedSize << " to "
<< unitHead->ExpandedSize);
}
PrintTrimUnit(0x8, "In total, " << total_trim_cnt << " function(s) are trimmed out of " << total_cand);
return;
}
bool EstimateFunctionSize::isStackCallAssigned(llvm::Function *F) {
FunctionNode *Node = get<FunctionNode>(F);
return Node->isStackCallAssigned();
}
uint32_t EstimateFunctionSize::getMaxUnitSize() {
uint32_t max_val = 0;
for (auto kernelEntry : kernelEntries) // For all kernel, update unitsize
{
FunctionNode *head = (FunctionNode *)kernelEntry;
max_val = std::max(max_val, head->UnitSize);
}
for (auto stackCallFunc : stackCallFuncs) // For all address taken functions, update unitsize
{
FunctionNode *head = (FunctionNode *)stackCallFunc;
max_val = std::max(max_val, head->UnitSize);
}
for (auto addrTakenFunc : addressTakenFuncs) // For all address taken functions, update unitsize
{
FunctionNode *head = (FunctionNode *)addrTakenFunc;
max_val = std::max(max_val, head->UnitSize);
}
return max_val;
}