Files
intel-graphics-compiler/visa/BinaryEncodingCNL.cpp
2018-01-30 10:00:45 -08:00

2521 lines
89 KiB
C++

/*===================== begin_copyright_notice ==================================
Copyright (c) 2017 Intel Corporation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
======================= end_copyright_notice ==================================*/
#include "BinaryEncodingCNL.h"
#include "BuildIR.h"
using namespace vISA;
////////////////////////////// DST ////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////// SRC ///////////////
////////////////////////////// SRC ///////////////
uint32_t BinaryEncodingBase::getEUOpcode(G4_opcode g4opc)
{
G9HDL::EU_OPCODE euopcode = G9HDL::EU_OPCODE_ILLEGAL;
switch (g4opc)
{
//3src - complete
case G4_bfe: euopcode = G9HDL::EU_OPCODE_BFE; break;
case G4_bfi2: euopcode = G9HDL::EU_OPCODE_BFI2; break;
case G4_csel: euopcode = G9HDL::EU_OPCODE_CSEL; break;
case G4_lrp: euopcode = G9HDL::EU_OPCODE_LRP; break;
case G4_mad: euopcode = G9HDL::EU_OPCODE_MAD; break;
case G4_madm: euopcode = G9HDL::EU_OPCODE_MADM; break;
//1src - complete
case G4_bfrev: euopcode = G9HDL::EU_OPCODE_BFREV; break;
case G4_cbit: euopcode = G9HDL::EU_OPCODE_CBIT; break;
case G4_fbh: euopcode = G9HDL::EU_OPCODE_FBH; break;
case G4_fbl: euopcode = G9HDL::EU_OPCODE_FBL; break;
case G4_lzd: euopcode = G9HDL::EU_OPCODE_LZD; break;
case G4_mov: euopcode = G9HDL::EU_OPCODE_MOV; break;
case G4_movi: euopcode = G9HDL::EU_OPCODE_MOVI; break;
case G4_not: euopcode = G9HDL::EU_OPCODE_NOT; break;
case G4_rndd: euopcode = G9HDL::EU_OPCODE_RNDD; break;
case G4_rnde: euopcode = G9HDL::EU_OPCODE_RNDE; break;
case G4_rndu: euopcode = G9HDL::EU_OPCODE_RNDU; break;
case G4_rndz: euopcode = G9HDL::EU_OPCODE_RNDZ; break;
case G4_frc: euopcode = G9HDL::EU_OPCODE_FRC; break;
//2src - complete
case G4_add: euopcode = G9HDL::EU_OPCODE_ADD; break;
case G4_addc: euopcode = G9HDL::EU_OPCODE_ADDC; break;
case G4_and: euopcode = G9HDL::EU_OPCODE_AND; break;
case G4_asr: euopcode = G9HDL::EU_OPCODE_ASR; break;
case G4_avg: euopcode = G9HDL::EU_OPCODE_AVG; break;
case G4_bfi1: euopcode = G9HDL::EU_OPCODE_BFI1; break;
case G4_cmp: euopcode = G9HDL::EU_OPCODE_CMP; break;
case G4_cmpn: euopcode = G9HDL::EU_OPCODE_CMPN; break;
case G4_dp2: euopcode = G9HDL::EU_OPCODE_DP2; break;
case G4_dp3: euopcode = G9HDL::EU_OPCODE_DP3; break;
case G4_dp4: euopcode = G9HDL::EU_OPCODE_DP4; break;
case G4_dph: euopcode = G9HDL::EU_OPCODE_DPH; break;
case G4_line: euopcode = G9HDL::EU_OPCODE_LINE; break;
case G4_mac: euopcode = G9HDL::EU_OPCODE_MAC; break;
case G4_mach: euopcode = G9HDL::EU_OPCODE_MACH; break;
case G4_mul: euopcode = G9HDL::EU_OPCODE_MUL; break;
case G4_or: euopcode = G9HDL::EU_OPCODE_OR; break;
case G4_pln: euopcode = G9HDL::EU_OPCODE_PLN; break;
case G4_sad2: euopcode = G9HDL::EU_OPCODE_SAD2; break;
case G4_sada2: euopcode = G9HDL::EU_OPCODE_SADA2; break;
case G4_sel: euopcode = G9HDL::EU_OPCODE_SEL; break;
case G4_shl: euopcode = G9HDL::EU_OPCODE_SHL; break;
case G4_shr: euopcode = G9HDL::EU_OPCODE_SHR; break;
case G4_xor: euopcode = G9HDL::EU_OPCODE_XOR; break;
case G4_subb: euopcode = G9HDL::EU_OPCODE_SUBB; break;
//send type
case G4_send: euopcode = G9HDL::EU_OPCODE_SEND; break;
case G4_sendc: euopcode = G9HDL::EU_OPCODE_SENDC; break;
case G4_sends: euopcode = G9HDL::EU_OPCODE_SENDS; break;
case G4_sendsc: euopcode = G9HDL::EU_OPCODE_SENDSC; break;
//math type
case G4_math: euopcode = G9HDL::EU_OPCODE_MATH; break;
//control flow
case G4_brc: euopcode = G9HDL::EU_OPCODE_BRC; break;
case G4_brd: euopcode = G9HDL::EU_OPCODE_BRD; break;
case G4_break: euopcode = G9HDL::EU_OPCODE_BREAK; break;
case G4_call: euopcode = G9HDL::EU_OPCODE_CALL; break;
//case G4_calla: euopcode = G9HDL::EU_OPCODE_CALLA; break;
case G4_cont: euopcode = G9HDL::EU_OPCODE_CONT; break;
case G4_else: euopcode = G9HDL::EU_OPCODE_ELSE; break;
case G4_endif: euopcode = G9HDL::EU_OPCODE_ENDIF; break;
case G4_goto: euopcode = G9HDL::EU_OPCODE_GOTO; break;
case G4_halt: euopcode = G9HDL::EU_OPCODE_HALT; break;
case G4_if: euopcode = G9HDL::EU_OPCODE_IF; break;
case G4_jmpi: euopcode = G9HDL::EU_OPCODE_JMPI; break;
case G4_join: euopcode = G9HDL::EU_OPCODE_JOIN; break;
case G4_return: euopcode = G9HDL::EU_OPCODE_RET; break;
case G4_wait: euopcode = G9HDL::EU_OPCODE_WAIT; break;
case G4_while: euopcode = G9HDL::EU_OPCODE_WHILE; break;
//misc:
case G4_nop: euopcode = G9HDL::EU_OPCODE_NOP; break;
case G4_illegal: euopcode = G9HDL::EU_OPCODE_ILLEGAL; break;
case G4_smov: euopcode = G9HDL::EU_OPCODE_SMOV; break;
default: break;
assert(false && "Invalid G4 opcode!");
}
return (uint32_t)euopcode;
}
/// \brief Returns the HDL immediate type for a given source operand
///
static inline int GetOperandSrcHDLImmType(G4_Type srcType)
{
int type = G9HDL::SRCIMMTYPE_UD;
if (getGenxPlatform() == GENX_CNL)
{
switch (srcType) {
case Type_UD: type = G9HDL::SRCIMMTYPE_UD; break;
case Type_D: type = G9HDL::SRCIMMTYPE_D; break;
case Type_UW: type = G9HDL::SRCIMMTYPE_UW; break;
case Type_W: type = G9HDL::SRCIMMTYPE_W; break;
case Type_UV: type = G9HDL::SRCIMMTYPE_UV; break;
case Type_VF: type = G9HDL::SRCIMMTYPE_VF; break;
case Type_V: type = G9HDL::SRCIMMTYPE_V; break;
case Type_F: type = G9HDL::SRCIMMTYPE_F; break;
case Type_UQ: type = G9HDL::SRCIMMTYPE_UQ; break;
case Type_Q: type = G9HDL::SRCIMMTYPE_Q; break;
case Type_DF: type = G9HDL::SRCIMMTYPE_DF; break;
case Type_HF: type = G9HDL::SRCIMMTYPE_HF; break;
default: MUST_BE_TRUE(false, "invalid type"); break;
}
}
return type;
}
/// \brief Returns the HDL source type for a given source operand
///
static inline int GetOperandSrcHDLType(G4_Type regType)
{
int type = G9HDL::SRCTYPE_UD;
if (getGenxPlatform() == GENX_CNL)
{
switch (regType)
{
case Type_UD: type = G9HDL::SRCTYPE_UD; break;
case Type_D: type = G9HDL::SRCTYPE_D; break;
case Type_UW: type = G9HDL::SRCTYPE_UW; break;
case Type_W: type = G9HDL::SRCTYPE_W; break;
case Type_UB: type = G9HDL::SRCTYPE_UB; break;
case Type_B: type = G9HDL::SRCTYPE_B; break;
case Type_DF: type = G9HDL::SRCTYPE_DF; break;
case Type_F: type = G9HDL::SRCTYPE_F; break;
case Type_UQ: type = G9HDL::SRCTYPE_UQ; break;
case Type_Q: type = G9HDL::SRCTYPE_Q; break;
case Type_HF: type = G9HDL::SRCTYPE_HF; break;
default: MUST_BE_TRUE(false, "invalid type"); break;
}
}
return type;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////// ENCODERS ///////////////
////////////////////////////// HEADER ///////////////
/// \brief (Header) Field encoder for instruction opcode
///
void BinaryEncodingCNL::EncodeOpCode(G4_INST* inst,
G9HDL::EU_INSTRUCTION_HEADER& header)
{
G4_opcode opcode = inst->opcode();
G9HDL::EU_OPCODE euopcode = getEUOpcode(opcode);
header.SetOpcode(euopcode);
}
G9HDL::EU_OPCODE BinaryEncodingCNL::getEUOpcode(G4_opcode g4opc)
{
return (G9HDL::EU_OPCODE)BinaryEncodingBase::getEUOpcode(g4opc);
}
////////////////////////////// HEADER.CONTROLS ///////////////
/// \brief (Helper) Converts v-isa execution size to HDL exec size enumeration
///
static inline G9HDL::EXECSIZE GetHDLExecSizeFromVISAExecSize( uint32_t execSize )
{
switch(execSize)
{
case ES_1_CHANNEL:
return G9HDL::EXECSIZE_1_CHANNEL_SCALAR_OPERATION;
case ES_2_CHANNELS:
return G9HDL::EXECSIZE_2_CHANNELS;
case ES_4_CHANNELS:
return G9HDL::EXECSIZE_4_CHANNELS;
case ES_8_CHANNELS:
return G9HDL::EXECSIZE_8_CHANNELS;
case ES_16_CHANNELS:
return G9HDL::EXECSIZE_16_CHANNELS;
case ES_32_CHANNELS:
return G9HDL::EXECSIZE_32_CHANNELS;
}
//Default:
return G9HDL::EXECSIZE_1_CHANNEL_SCALAR_OPERATION;
}
//////////////////////////////////////////////////////////////////////////
/// \brief (Header) Field encoder for execution size
///
void BinaryEncodingCNL::EncodeExecSize(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS_A& controls)
{
G9HDL::EXECSIZE exSz;
exSz = GetHDLExecSizeFromVISAExecSize( GetEncodeExecSize( inst ) );
controls.SetExecsize(exSz);
}
//////////////////////////////////////////////////////////////////////////
/// \brief (Header) Field encoder for access mode bit
///
void BinaryEncodingCNL::EncodeAccessMode(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS_A& controls)
{
if( inst->isAligned1Inst() ) {
controls.SetAccessmode( G9HDL::ACCESSMODE_ALIGN1 );
}
else if( inst->isAligned16Inst() ) {
controls.SetAccessmode( G9HDL::ACCESSMODE_ALIGN16 );
}
}
//////////////////////////////////////////////////////////////////////////
/// \brief (Header) Field encoder for QTR control fields
///
void BinaryEncodingCNL::EncodeQtrControl(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS_A& controls)
{
G9HDL::QTRCTRL qtrCtrl = G9HDL::QTRCTRL_1Q;
G9HDL::NIBCTRL nibCtrl = G9HDL::NIBCTRL::NIBCTRL_EVEN;
switch (inst->getMaskOffset())
{
case 0:
qtrCtrl = G9HDL::QTRCTRL_1Q;
nibCtrl = G9HDL::NIBCTRL_ODD;
break;
case 4:
qtrCtrl = G9HDL::QTRCTRL_1Q;
nibCtrl = G9HDL::NIBCTRL_EVEN;
break;
case 8:
qtrCtrl = G9HDL::QTRCTRL_2Q;
nibCtrl = G9HDL::NIBCTRL_ODD;
break;
case 12:
qtrCtrl = G9HDL::QTRCTRL_2Q;
nibCtrl = G9HDL::NIBCTRL_EVEN;
break;
case 16:
qtrCtrl = G9HDL::QTRCTRL_3Q;
nibCtrl = G9HDL::NIBCTRL_ODD;
break;
case 20:
qtrCtrl = G9HDL::QTRCTRL_3Q;
nibCtrl = G9HDL::NIBCTRL_EVEN;
break;
case 24:
qtrCtrl = G9HDL::QTRCTRL_4Q;
nibCtrl = G9HDL::NIBCTRL_ODD;
break;
case 28:
qtrCtrl = G9HDL::QTRCTRL_4Q;
nibCtrl = G9HDL::NIBCTRL_EVEN;
break;
}
controls.SetQtrctrl(qtrCtrl);
controls.SetNibctrl(nibCtrl);
}
/// \brief Field encoder for dependency control check fields
inline void BinaryEncodingCNL::EncodeDepControl(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS_A& controlsA)
{
if ( inst->isNoDDChkInst() )
{
if ( inst->isNoDDClrInst() )
{
controlsA.SetDepctrl( G9HDL::DEPCTRL_NODDCLR_NODDCHK );
} else {
controlsA.SetDepctrl( G9HDL::DEPCTRL_NODDCHK );
}
}
else {
if (inst->isNoDDClrInst())
{
controlsA.SetDepctrl( G9HDL::DEPCTRL_NODDCLR );
} else {
controlsA.SetDepctrl( G9HDL::DEPCTRL_NONE );
}
}
}
/// \brief Field encoder for thread control field. Includes some logic that is
// dependant on the platform.
inline void BinaryEncodingCNL::EncodeThreadControl(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS_A& controlsA)
{
if ( inst->opcode() == G4_if ||
inst->opcode() == G4_else ||
inst->opcode() == G4_endif )
{
}
else
{
controlsA.SetThreadControl(
inst->isAtomicInst()? G9HDL::THREADCTRL_ATOMIC :
// CHAI: Add Switch InstOpt support
( inst->isYieldInst() ? G9HDL::THREADCTRL_SWITCH :
( inst->isNoPreemptInst() ? G9HDL::THREADCTRL_NOPREEMPT :
G9HDL::THREADCTRL_NORMAL ) ) );
}
}
/// \brief Field encoder for ACC write control field
void BinaryEncodingCNL::EncodeAccWrCtrl(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS& instructionControls)
{
if (inst->isAccWrCtrlInst() || (inst->isFlowControl() && inst->opcode() != G4_jmpi && inst->asCFInst()->isBackward()))
{
instructionControls.SetControlsB_Accwrctrl( G9HDL::ACCWRCTRL_UPDATE_ACC );
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
void BinaryEncodingCNL::EncodeInstModifier(G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS& instructionControls)
{
if (inst->getSaturate()) {
instructionControls.SetControlsB_Saturate(G9HDL::SATURATE_SAT);
} else {
instructionControls.SetControlsB_Saturate( G9HDL::SATURATE_NO_DESTINATION_MODIFICATION );
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
void BinaryEncodingCNL::EncodeFlagRegPredicate(
G4_INST* inst,
G9HDL::EU_INSTRUCTION_CONTROLS_A& instructionControlsA)
{
G4_Predicate *pred = inst->getPredicate();
if(pred)
{
switch(pred->getState())
{
// plus and undef are normal
case PredState_Plus:
case PredState_undef:
instructionControlsA.SetPredinv(G9HDL::PREDINV_POSITIVE);
//instructionHeader.SetControl_Predinv( G9HDL::PREDINV_POSITIVE );
//flagState = PREDICATE_STATE_NORMAL;
break;
// minus is invert
case PredState_Minus:
instructionControlsA.SetPredinv(G9HDL::PREDINV_NEGATIVE);
//instructionHeader.SetControl_Predinv( G9HDL::PREDINV_NEGATIVE );
//flagState = PREDICATE_STATE_INVERT<<4;
break;
}
G9HDL::PREDCTRL predCtrl = G9HDL::PREDCTRL_SEQUENTIAL_FLAG_CHANNEL_MAPPING;
if (inst->isAligned16Inst())
{
switch( pred->getAlign16PredicateControl() )
{
case PRED_ALIGN16_DEFAULT:
predCtrl = G9HDL::PREDCTRL_SEQUENTIAL_FLAG_CHANNEL_MAPPING;
break;
case PRED_ALIGN16_X:
predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_X;
break;
case PRED_ALIGN16_Y:
predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_Y;
break;
case PRED_ALIGN16_Z:
predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_Z;
break;
case PRED_ALIGN16_W:
predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_W;
break;
case PRED_ALIGN16_ANY4H:
predCtrl = G9HDL::PREDCTRL_ANY4H;
break;
case PRED_ALIGN16_ALL4H:
predCtrl = G9HDL::PREDCTRL_ALL4H;
break;
default:
MUST_BE_TRUE(false, "invalid align16 predicate control");
}
instructionControlsA.SetPredctrl(predCtrl);
//instructionHeader.SetControl_Predctrl( predCtrl );
}
else
{
auto pc = pred->getControl();
if (pc != PRED_DEFAULT)
predCtrl = (G9HDL::PREDCTRL)GetAlign1PredCtrl(pc);
instructionControlsA.SetPredctrl( predCtrl );
}
}
}
static const unsigned CONDITION_MODIIFER[11] =
{
(unsigned)G9HDL::CONDMODIFIER_Z,
(unsigned)G9HDL::CONDMODIFIER_E,
(unsigned)G9HDL::CONDMODIFIER_NZ,
(unsigned)G9HDL::CONDMODIFIER_NE,
(unsigned)G9HDL::CONDMODIFIER_G,
(unsigned)G9HDL::CONDMODIFIER_GE,
(unsigned)G9HDL::CONDMODIFIER_L,
(unsigned)G9HDL::CONDMODIFIER_LE,
(unsigned)G9HDL::CONDMODIFIER_O, // Mod_o
(unsigned)G9HDL::CONDMODIFIER_O, // Mod_r
(unsigned)G9HDL::CONDMODIFIER_U // Mod_u
};
/// \brief Field encoder
///
void BinaryEncodingCNL::EncodeCondModifier(G4_INST* inst, G9HDL::EU_INSTRUCTION_CONTROLS& instructionControls)
{
G4_CondMod *cModifier = inst->getCondMod();
if(cModifier) {
G9HDL::CONDMODIFIER value;
unsigned mod = (unsigned)cModifier->getMod();
MUST_BE_TRUE(mod != (unsigned)Mod_r && mod < (unsigned)Mod_cond_undef,
//case Mod_r:
// value = G9HDL::CONDMODIFIER_O; //7
// break;
"[Verifying]:[ERR]: Invalid conditional modifier:\t");
value = (G9HDL::CONDMODIFIER)CONDITION_MODIIFER[mod];
instructionControls.SetCondmodifier(value);
}
}
/// \brief Encodes instruction header DWORD, common for all types of instructions
inline void BinaryEncodingCNL::EncodeInstHeader(G4_INST *inst,
G9HDL::EU_INSTRUCTION_HEADER& header)
{
G9HDL::EU_INSTRUCTION_CONTROLS& controls = header.GetControl();
G9HDL::EU_INSTRUCTION_CONTROLS_A& controlsA = controls.GetControlsA();
header.Init();
EncodeOpCode(inst, header);
EncodeExecSize(inst, controlsA);
EncodeAccessMode(inst, controlsA);
EncodeQtrControl(inst, controlsA);
EncodeThreadControl(inst, controlsA);
EncodeDepControl(inst, controlsA);
EncodeFlagRegPredicate(inst, controlsA);
EncodeAccWrCtrl(inst,controls);
EncodeInstModifier(inst,controls);
EncodeCondModifier(inst,controls);
controls.SetControlsB_Cmptctrl(
inst->isCompactedInst() ?
G9HDL::CMPTCTRL_COMPACTED :G9HDL::CMPTCTRL_NOCOMPACTION );
if( inst->isBreakPointInst() )
controls.SetControlsB_Debugctrl( G9HDL::DEBUGCTRL_BREAKPOINT );
}
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
//////////////////////////////////////////////////////////////////////////
//// Field encoder
inline void BinaryEncodingCNL::EncodeDstHorzStride(G4_INST *inst, G4_DstRegRegion *dst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
switch(dst->getHorzStride())
{
case 1:
//NOTE: not sure if this is correct?
if ( inst->isAligned16Inst())
{
//NOTE: use align1 union, even if setting align16 field. Masks are equal.
//note: Although Dst.HorzStride is a don't care for Align16, HW needs this to be programmed as '01'.
opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_4_ELEMENTS );
} else {
opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );
}
break;
case 2:
opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_2_ELEMENTS );
break;
case 4:
opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_4_ELEMENTS );
break;
case UNDEFINED_SHORT:
opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );
break;
default: MUST_BE_TRUE(false, "wrong dst horizontal stride"); break;
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
void BinaryEncodingCNL::EncodeDstChanEn(G4_INST* inst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
G4_DstRegRegion* dst = inst->getDst();
if (dst->isAccRegValid())
{
//NOTE: this one is special case for instructions that use special accumulators
opnds.GetDestinationRegisterRegion_Align16().SetDestinationChannelEnable(dst->getAccRegSel());
} else {
G4_DstRegRegion *dstRegion = static_cast<G4_DstRegRegion*>(dst);
opnds.GetDestinationRegisterRegion_Align16().
SetDestinationChannelEnable(dstRegion->getWriteMask());
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
//NOTE2: Encoding for ARF register type is moved into setting reg destination logic.
void BinaryEncodingCNL::EncodeDstRegFile(G4_INST* inst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
G4_DstRegRegion* dst = inst->getDst();
switch( EncodingHelper::GetDstRegFile(dst) )
{ //Bug Line 846, bitrange: 3-4, should be: 35-36
case REG_FILE_A:
opnds.SetDestinationRegisterFile(G9HDL::REGFILE_ARF); break;
case REG_FILE_R:
opnds.SetDestinationRegisterFile(G9HDL::REGFILE_GRF); break;
case REG_FILE_M:
MUST_BE_TRUE( 0 ," Memory is invalid register file on CNL");
//opnds.SetDestinationRegisterFile(G9HDL::REGFILE_IMM); break;
default:
break;
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
void BinaryEncodingCNL::EncodeDstRegNum(G4_INST* inst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
G4_DstRegRegion* dst = inst->getDst();
if ( EncodingHelper::GetDstRegFile(dst) != REG_FILE_A &&
EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_IMMED )
{
uint32_t byteAddress = dst->getLinearizedStart();
if( inst->isAligned1Inst() )
{
//register number: 256 bit (32 byte) aligned part of an address
//sub-register number: 32 byte address (5 bits encoding) within a GRF
// 98765 43210
// regn |subre
opnds.GetDestinationRegisterRegion_Align1().
SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
if (dst->isAccRegValid() && kernel.fg.builder->encodeAccRegSelAsAlign1())
{
MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for dst with special accumulator");
opnds.GetDestinationRegisterRegion_Align1().
SetDestinationSpecialAcc(dst->getAccRegSel());
}
else
{
opnds.GetDestinationRegisterRegion_Align1().
SetDestinationSubregisterNumber_DestinationSubRegisterNumber(byteAddress & 0x1F);
}
} else { //align 16
//register number: 256 bit (32 byte) aligned part of an address
//sub-register number: first/second 16 byte part of 32 byte address. Encoded with 1 bit.
// 98765 43210
// regn |x0000
//opnds.GetDestinationRegisterRegion_Align1().
// SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
opnds.GetDestinationRegisterRegion_Align16().
SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
//opnds.GetDestinationRegisterRegion_Align1().
// SetDestinationSubregisterNumber_DestinationSubRegisterNumber((byteAddress >> 4) & 0x1);
opnds.GetDestinationRegisterRegion_Align16().
SetDestinationSubregisterNumber((WORD)byteAddress);
}
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
//
// SetDstArchRegNum (53:56) + SetDstArchRegFile (57:60)
// SetDstArchSubRegNumByte (48:52)
// essentially, this encoding is split in three parts:
// setting reg num : arch reg file + arch reg number
// setting sub-reg-num
// Here, we fuse two original methods into one: EncodeDstArchRegNum and EncodeDstRegFile for ARF
void BinaryEncodingCNL::EncodeDstArchRegNum(G4_INST* inst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
G4_DstRegRegion* dst = inst->getDst();
if ( EncodingHelper::GetDstRegFile(dst) == REG_FILE_A &&
EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_IMMED )
{
if ( EncodingHelper::GetDstArchRegType(dst) != ARCH_REG_FILE_NULL )
{
bool valid;
unsigned short RegFile = (unsigned short) EncodingHelper::GetDstArchRegType(dst); //4 bits
unsigned short RegNumValue = dst->ExRegNum(valid);
// 7654|3210
// RegF|RegNumVal
unsigned short EncodedRegNum = RegFile << 4;
EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
//the same as for align16
opnds.GetDestinationRegisterRegion_Align1().SetDestinationRegisterNumber_DestinationRegisterNumber(EncodedRegNum);
{
bool subValid;
unsigned short RegSubNumValue = dst->ExSubRegNum(subValid);
unsigned short ElementSizeValue = EncodingHelper::GetElementSizeValue(dst);
uint32_t regOffset = RegSubNumValue * ElementSizeValue;
if (inst->isAligned1Inst())
{
//sub-register number: 32 byte address (5 bits encoding) within a GRF
opnds.GetDestinationRegisterRegion_Align1().
SetDestinationSubregisterNumber_DestinationSubRegisterNumber((WORD)regOffset);
} else { //align 16
//sub-register number: first/second 16 byte part of 32 byte address. Encoded with 1 bit.
// 9876543210
// regn|x0000
//opnds.GetDestinationRegisterRegion_Align16().SetDestinationSubregisterNumber((regOffset >> 4) & 0x1);
opnds.GetDestinationRegisterRegion_Align16().SetDestinationSubregisterNumber((WORD)regOffset);
}
}
}
}
}
//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
void BinaryEncodingCNL::EncodeDstIndirectRegNum(G4_INST* inst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
G4_DstRegRegion* dst = inst->getDst();
if ( EncodingHelper::GetDstRegFile(dst)==REG_FILE_R ||
EncodingHelper::GetDstRegFile(dst)==REG_FILE_M)
{
if ( EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_INDIR )
{ // Indirect
bool subValid;
unsigned short IndAddrRegSubNumValue = 0;
short IndAddrImmedValue = 0;
IndAddrRegSubNumValue = dst->ExIndSubRegNum(subValid);
IndAddrImmedValue = dst->ExIndImmVal();
//the same is for align16
opnds.GetDestinationRegisterRegion_Align1().
SetDestinationAddressSubregisterNumber_AddressSubregisterNumber(IndAddrRegSubNumValue);
/* Set the indirect address immediate value. */
if (inst->isAligned1Inst())
{
//bits [0-8]
opnds.GetDestinationRegisterRegion_Align1().SetDestinationAddressImmediate(IndAddrImmedValue);
//bit[9:9]
opnds.SetDestinationAddressImmediate99( IndAddrImmedValue >> 9 );
} else { //here we are setting align16
//bits [4-8]
opnds.GetDestinationRegisterRegion_Align16().
SetDestinationAddressImmediate84( (IndAddrImmedValue >> 4) & 0x1F );
//bit[9:9], originally: (IndAddrImmedValue / BYTES_PER_OWORD) >> 5
opnds.SetDestinationAddressImmediate99( IndAddrImmedValue >> 9 );
}
}
}
}
/// \brief Encodes instruction operand (1st DWORD) of instruction
///
/// src0 reg file and type are not encoded here, even though they belong to dword 1
inline void BinaryEncodingCNL::EncodeOperandDst(G4_INST* inst,
G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
G4_DstRegRegion* dst = inst->getDst();
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeFlagReg(inst, opnds);
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeMaskCtrl(inst, opnds);
if ( dst == NULL )
{
return;
}
EncodeDstRegFile(inst,opnds);
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeOperandDstType(inst, opnds);
if (inst->isAligned16Inst())
{
EncodeDstChanEn(inst,opnds);
}
// Note: dst doesn't have the vertical stride and width
EncodeDstRegNum(inst, opnds);
EncodeDstArchRegNum(inst, opnds);
EncodeDstIndirectRegNum(inst, opnds);
EncodeDstHorzStride(inst, dst, opnds);
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeDstAddrMode(inst, opnds);
}
//EU_INSTRUCTION_BASIC_ONE_SRC
// ( EU_INSTRUCTION_SOURCES_REG
// EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
// or
// EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16 )
// or
// ( EU_INSTRUCTION_SOURCES_IMM32
inline void BinaryEncodingCNL::EncodeOneSrcInst(G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC& oneSrc)
{
EncodeInstHeader(inst, oneSrc.Common.Header);
EncodeOperandDst(inst, oneSrc.Common.OperandControls);
G4_Operand *src0 = inst->getSrc(0);
//EncodeSrc0RegFile
oneSrc.GetOperandControls().SetSrc0Regfile( TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(src0) ));
//EncodeSrc0Type
if (src0->isImm())
{
oneSrc.GetOperandControls().SetSrc0Srctype_Imm(GetOperandSrcHDLImmType(src0->getType()));
}
else
{
oneSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(src0->getType()));
}
if ( src0->isImm() )
{
//this should be compiled as dead code in non-debug mode
if ( inst->opcode() != G4_mov &&
G4_Type_Table[src0->getType()].byteSize == 8 )
{
MUST_BE_TRUE(false, "only Mov is allowed for 64bit immediate");
}
if ( G4_Type_Table[src0->getType()].byteSize == 8 ) {
G9HDL::EU_INSTRUCTION_IMM64_SRC* ptr = (G9HDL::EU_INSTRUCTION_IMM64_SRC*) &oneSrc;
EncodeSrcImm64Data(*ptr, src0);
}
else
{
//EncodeSrcImmData( oneSrc.GetImmsource(), src0 );
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_IMM32,0>::EncodeSrcImmData(
oneSrc.GetImmsource(), src0 );
}
}
else
{
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG,0>::EncodeEuInstructionSourcesReg(
inst, src0, oneSrc. GetRegsource() //by reference
);
}
}
inline void BinaryEncodingCNL::EncodeTwoSrcInst(G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC& twoSrc)
{
EncodeInstHeader(inst, twoSrc.Common.Header);
EncodeOperandDst(inst, twoSrc.Common.OperandControls);
G4_Operand *src0 = inst->getSrc(0);
G4_Operand *src1 = inst->getSrc(1);
//EncodeSrc0RegFile
twoSrc.GetOperandControls().SetSrc0Regfile(TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(src0)));
bool src0ImmOk = inst->isMath() && inst->asMathInst()->isOneSrcMath();
MUST_BE_TRUE(src0ImmOk || !src0->isImm(), "src0 is immediate in two src instruction!");
//EncodeSrc0Type
if (src0->isImm())
{
twoSrc.GetOperandControls().SetSrc0Srctype_Imm(GetOperandSrcHDLImmType(src0->getType()));
}
else
{
if (inst->isSend())
{
twoSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(Type_F));
}
else
{
twoSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(src0->getType()));
}
}
if (src0->isImm())
{
MUST_BE_TRUE(G4_Type_Table[src0->getType()].byteSize < 8, "only Mov is allowed for 64bit immediate");
//FIXME: feels like this should be 0 here, but it gives a type mismatch as the headers assume src0
//must be REG
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_IMM, 1>::EncodeSrcImmData(
twoSrc.GetImmsource(), src0);
}
else
{
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 0>::EncodeEuInstructionSourcesReg(
inst, src0, twoSrc.GetRegsource() //by reference
);
}
//no need to encode one src math instruction
if (inst->isMath() && src1->isNullReg() && !src0->isImm())
{
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 1>::EncodeEuInstructionNullSourcesReg(inst, src1, twoSrc.GetRegsource());
return;
}
twoSrc.GetRegsource().SetSrc1Regfile( TranslateVisaToHDLRegFile( EncodingHelper::GetSrcRegFile(src1) ) );
if (src1->isImm())
{
twoSrc.GetImmsource().SetSrc1Srctype(GetOperandSrcHDLImmType(src1->getType()));
}
// adding to fix above no need to encode type if src0 is immediate and src1 is null reg
else if (!(inst->isMath() && src1->isNullReg() && src0->isImm()))
{
twoSrc.GetRegsource().SetSrc1Srctype(GetOperandSrcHDLType(src1->getType()));
}
if ( src1->isImm() )
{
if ( inst->opcode() != G4_mov &&
G4_Type_Table[src1->getType()].byteSize == 8 )
{
MUST_BE_TRUE(false, "only Mov is allowed for 64bit immediate");
}
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_IMM,1>::EncodeSrcImmData(
twoSrc.GetImmsource(), src1 );
}
else
{
if (src0->isImm())
{
// src1 must be null, and don't encode anything so it won't overwrite src0's imm value
MUST_BE_TRUE(src1->isNullReg(), "src1 must be null ARF if src0 is immediate");
}
else
{
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 1>::EncodeEuInstructionSourcesReg(
inst, src1, twoSrc.GetRegsource() //by reference
);
}
}
}
/// \brief Given a two-src mask, apply a patch for send instruction
///
void PatchSend( G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* twoSrc )
{
uint32_t msgDesc = inst->getMsgDesc()->getExtendedDesc();
EncExtMsgDescriptor emd;
emd.ulData = msgDesc;
G9HDL::EU_INSTRUCTION_SEND* sendInstruction = (G9HDL::EU_INSTRUCTION_SEND*) twoSrc;
G9HDL::SFID sfid = (G9HDL::SFID) emd.ExtMsgDescriptor.TargetUnitId;
sendInstruction->SetSharedFunctionIdSfid( sfid );
sendInstruction->SetExdesc1111(msgDesc);
//this is a hack, but:
//fixme: this is missing in auto-header, currently need to override the acc write field
if (inst->isNoSrcDepSet())
{
//equivalent to: mybin->SetBits(bitsNoSrcDepSet_0, bitsNoSrcDepSet_1, 1);
sendInstruction->SetControlsB_Accwrctrl(G9HDL::ACCWRCTRL_UPDATE_ACC); //0x1
}
G9HDL::EOT eot = (G9HDL::EOT) emd.ExtMsgDescriptor.EndOfThread;
sendInstruction->GetMessage().SetEot(eot);
}
/// \brief EncodeMathControl
///
void PatchMath( G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* twoSrc )
{
MUST_BE_TRUE(inst->isMath(), "PatchMath must be called on math instruction.");
unsigned int MathControlValue = inst->asMathInst()->getMathCtrl();
unsigned MathFunction = MathControlValue & 0xf;
G9HDL::EU_INSTRUCTION_MATH* mathInstruction = (G9HDL::EU_INSTRUCTION_MATH*) twoSrc;
G9HDL::FC mathFunctionControl = (G9HDL::FC) MathFunction;
mathInstruction->SetFunctionControlFc(mathFunctionControl);
//fixme: what about partial precision bit?
//if( !mybin->GetIs3Src() ) {
// mybin->SetBits(bitsMathFunction_0, bitsMathFunction_1, MathFunction);
// mybin->SetBits(bitsMathPartPrec_0, bitsMathPartPrec_1, MathPartPrec);
//}
}
inline G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE Get3SrcLimitedType(G4_Type type)
{
switch (type)
{
case Type_F:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_F;
case Type_D:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_D;
case Type_UD:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_UD;
case Type_DF:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_DF;
case Type_HF:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_HF;
default:
break;
}
//default
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_F;
}
inline static G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE Get3SrcLimitedSrcType(G4_Type type)
{
switch (type)
{
case Type_F:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_F;
case Type_D:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_D;
case Type_UD:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_UD;
case Type_DF:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_DF;
case Type_HF:
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_HF;
default:
break;
}
//default
return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_F;
}
/// Gets align1 ternary instruction limited type, given execution type (integer/float)
inline static G9HDL::TERNARYALIGN1DATATYPE Get3SrcAlign1LimitedSrcType(
G4_Type type,
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE isFloatExecutionType)
{
if (isFloatExecutionType == G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE_FLOAT)
{
switch (type)
{
case Type_F:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_F;
case Type_DF:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_DF;
case Type_HF:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_HF;
case Type_NF:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_NF;
default:
MUST_BE_TRUE(0, "wrong type for align1 ternary instruction with float execution type.");
break;
}
//Some reasonable default:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_F;
}
else
{
switch (type)
{
case Type_UD:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UD;
case Type_D:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_D;
case Type_UW:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UW;
case Type_W:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_W;
case Type_UB:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UB;
case Type_B:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_B;
default:
MUST_BE_TRUE(0, "wrong type for align1 ternary instruction with integer execution type.");
break;
}
//Some reasonable default:
return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UD;
}
}
inline void BinaryEncodingCNL::EncodeThreeSrcInst(G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC& threeSrc)
{
G4_Operand *src0 = inst->getSrc(0);
G4_Operand *src1 = inst->getSrc(1);
G4_Operand *src2 = inst->getSrc(2);
G4_Operand *dst = inst->getDst();
EncodeInstHeader(inst, threeSrc.Common.Header);
//threeSrc doesn't have OperandControls field, need to implement its dst encoding separately
DstBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC>::EncodeFlagReg(inst, threeSrc);
DstBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC>::EncodeMaskCtrl(inst, threeSrc);
{
threeSrc.SetDestinationDataType(Get3SrcLimitedType(dst->getType()));
threeSrc.SetSourceDataType(Get3SrcLimitedSrcType(src0->getType()));
if (src1->getType() == Type_HF)
{
threeSrc.SetSource1Type(1);
}
if (src2->getType() == Type_HF)
{
threeSrc.SetSource2Type(1);
}
G4_DstRegRegion* dst = inst->getDst();
//this is for 'special accumulators', encoded with channel enable..
if (dst->isAccRegValid())
{
threeSrc.SetDestinationChannelEnable(dst->getAccRegSel());
//NOTE: this one is special case for instructions that use special accumulators
}
else
{
G4_DstRegRegion *dstRegion = static_cast<G4_DstRegRegion*>(dst);
threeSrc.SetDestinationChannelEnable(dstRegion->getWriteMask());
}
if ( EncodingHelper::GetDstRegFile(dst) != REG_FILE_A &&
EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_IMMED )
{
uint32_t byteAddress = dst->getLinearizedStart();
threeSrc.SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
//must be DWORD aligned
//3 bits for subregnum
threeSrc.SetDestinationSubregisterNumber((byteAddress >> 2) & 0x7);
MUST_BE_TRUE(inst->isAligned16Inst(), "3src only support align16 mode");
}
//src0
{
//EncodeSrc0RepCtrl
G4_SrcRegRegion* src0Region = src0->asSrcRegRegion();
G4_SrcRegRegion* src1Region = src1->asSrcRegRegion();
G4_SrcRegRegion* src2Region = src2->asSrcRegRegion();
//char *swizzle = src0Region->getSwizzle();
//if (swizzle[0] == 'r')
// threeSrc.SetSource0_SourceReplicateControl(G9HDL::REPCTRL_REPLICATE_ACROSS_ALL_CHANNELS);
//else
// threeSrc.SetSource0_SourceReplicateControl(G9HDL::REPCTRL_NO_REPLICATION);
//source modifiers:
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::EncodeSrcModifier( inst, src0, threeSrc );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::EncodeSrcModifier( inst, src1, threeSrc );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::EncodeSrcModifier( inst, src2, threeSrc );
//rep control:
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::Encode3SrcReplicateControl( &threeSrc, src0Region );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::Encode3SrcReplicateControl( &threeSrc, src1Region );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::Encode3SrcReplicateControl( &threeSrc, src2Region );
//chan select:
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::EncodeSrcChanSelect( &threeSrc, inst, src0, src0Region );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::EncodeSrcChanSelect( &threeSrc, inst, src1, src1Region );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::EncodeSrcChanSelect( &threeSrc, inst, src2, src2Region );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::EncodeSrcRegNum3Src( inst, src0, threeSrc );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::EncodeSrcRegNum3Src( inst, src1, threeSrc );
SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::EncodeSrcRegNum3Src( inst, src2, threeSrc );
//register
//sub-register
}
}
}
inline void BinaryEncodingCNL::EncodeThreeSrcInstAlign1(G4_INST* inst, G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC& threeSrc)
{
G4_Operand* src0 = inst->getSrc(0);
G4_Operand* src1 = inst->getSrc(1);
G4_Operand* src2 = inst->getSrc(2);
G4_DstRegRegion* dst = inst->getDst();
//Common instruction fields:
EncodeInstHeader(inst, threeSrc.TheStructure.Common.Header);
DstBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC>::EncodeFlagReg(inst, threeSrc);
DstBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC>::EncodeMaskCtrl(inst, threeSrc);
MUST_BE_TRUE((IS_TYPE_FLOAT_ALL(src0->getType()) &&
IS_TYPE_FLOAT_ALL(src1->getType()) &&
IS_TYPE_FLOAT_ALL(src2->getType()) &&
IS_TYPE_FLOAT_ALL(dst->getType()))
||
(IS_TYPE_INT(src0->getType()) &&
IS_TYPE_INT(src1->getType()) &&
IS_TYPE_INT(src2->getType()) &&
IS_TYPE_INT(dst->getType())), "No mixed mode in align1 ternary encoding.");
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE execType =
IS_TYPE_FLOAT_ALL(dst->getType()) ?
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE_FLOAT :
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE_INTEGER;
threeSrc.SetExecutionDatatype(execType);
//DST REGFILE
switch (EncodingHelper::GetDstRegFile(dst))
{
case REG_FILE_R:
threeSrc.SetDestinationRegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_REGISTER_FILE_GRF);
break;
case REG_FILE_A:
threeSrc.SetDestinationRegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_REGISTER_FILE_ARF);
break;
default:
MUST_BE_TRUE(0, "Invalid dst register file for for align1 ternary instruction (expected grf or arf).");
break;
}
//SRC modifiers:
if (src0->isSrcRegRegion())
{
threeSrc.SetSource0Modifier(BinaryEncodingCNL::GetSrcHLDMod(src0->asSrcRegRegion()));
}
else
{
threeSrc.SetSource0Modifier(G9HDL::SRCMOD_NO_MODIFICATION);
}
if (src1->isSrcRegRegion())
{
threeSrc.SetSource1Modifier(BinaryEncodingCNL::GetSrcHLDMod(src1->asSrcRegRegion()));
}
else
{
threeSrc.SetSource1Modifier(G9HDL::SRCMOD_NO_MODIFICATION);
}
if (src2->isSrcRegRegion())
{
threeSrc.SetSource2Modifier(BinaryEncodingCNL::GetSrcHLDMod(src2->asSrcRegRegion()));
}
else
{
threeSrc.SetSource2Modifier(G9HDL::SRCMOD_NO_MODIFICATION);
}
//SRC0 regfile
switch (EncodingHelper::GetSrcRegFile(src0))
{
case REG_FILE_R:
threeSrc.SetSource0RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_0_REGISTER_FILE_GRF);
break;
case REG_FILE_I:
threeSrc.SetSource0RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_0_REGISTER_FILE_IMM);
break;
case REG_FILE_A:
MUST_BE_TRUE(src0->getType() == Type_NF, "Invalid register file for src0 in align1 ternary instruction (expected grf or imm).");
threeSrc.SetSource0RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_0_REGISTER_FILE_ARF);
break;
default:
break;
}
//SRC1 regfile
switch (EncodingHelper::GetSrcRegFile(src1))
{
case REG_FILE_R:
threeSrc.SetSource1RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_1_REGISTER_FILE_GRF);
break;
case REG_FILE_A:
threeSrc.SetSource1RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_1_REGISTER_FILE_ARF);
break;
default:
MUST_BE_TRUE(0, "Invalid register file for src1 in align1 ternary instruction(expected grf or arf).");
break;
}
//SRC2 regfile
switch (EncodingHelper::GetSrcRegFile(src2))
{
case REG_FILE_R:
threeSrc.SetSource2RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_2_REGISTER_FILE_GRF);
break;
case REG_FILE_I:
threeSrc.SetSource2RegisterFile(
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_2_REGISTER_FILE_IMM);
break;
default:
MUST_BE_TRUE(0, "Invalid register file for src2 in align1 ternary instruction(expected grf or imm).");
break;
}
threeSrc.SetDestinationDatatype(Get3SrcAlign1LimitedSrcType(dst->getType(), execType));
// Dst reg/subreg
switch (EncodingHelper::GetDstRegFile(dst))
{
case REG_FILE_R:
{
uint32_t byteAddress = dst->getLinearizedStart();
if (kernel.fg.builder->encodeAccRegSelAsAlign1() && dst->isAccRegValid())
{
// special accumulator region (acc2-acc9) is encoded as part of subreg
MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for dst with special accumulator");
threeSrc.SetDestinationSpecialAcc(dst->getAccRegSel());
}
else
{
threeSrc.SetDestinationSubregisterNumber(byteAddress & 0x1f);
}
threeSrc.SetDestinationRegisterNumber(byteAddress >> 5);
break;
}
case REG_FILE_A:
{
bool valid;
unsigned short RegFile = (unsigned short)EncodingHelper::GetDstArchRegType(dst); //4 bits
unsigned short RegNumValue = dst->ExRegNum(valid);
// 7654|3210
// RegF|RegNumVal
unsigned short EncodedRegNum = RegFile << 4;
EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
threeSrc.SetDestinationRegisterNumber(EncodedRegNum);
break;
}
default:
MUST_BE_TRUE(0, "Invalid register file for dst in align1 ternary instruction(expected grf or acc).");
break;
}
switch (dst->getHorzStride())
{
case 1:
threeSrc.SetDestinationHorizontalStride(G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_HORIZONTAL_STRIDE_1_ELEMENT);
break;
case 2:
threeSrc.SetDestinationHorizontalStride(G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_HORIZONTAL_STRIDE_2_ELEMENT);
break;
case UNDEFINED_SHORT:
MUST_BE_TRUE(false, "Dst horizontal stride for align1 ternary instruction is undefined.");
threeSrc.SetDestinationHorizontalStride(G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_HORIZONTAL_STRIDE_1_ELEMENT);
break;
default:
MUST_BE_TRUE(false, "Wrong dst horizontal stride for align1 ternary instruction (is neither 1 nor 2).");
break;
}
//SRC0 fields
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
threeSrc.SetSource0Datatype(Get3SrcAlign1LimitedSrcType(src0->getType(), execType));
if (src0->isSrcRegRegion())
{
RegionDesc *regdesc0 = src0->asSrcRegRegion()->getRegion();
MUST_BE_TRUE(regdesc0, "Align1 ternary encoder: src0 region desc for ternary instruction is null!");
//look for <N;N,1> contiguous region
if (regdesc0->vertStride > 8)
{
//TODO: should we care about this case?
MUST_BE_TRUE(0, "Align1 3 src instruction with vertStride>8 not supported yet.");
}
else
{
//src0: vstride
switch (regdesc0->vertStride)
{
case 0:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_0_ELEMENTS);
break;
case 2:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_2_ELEMENTS);
break;
case 4:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_4_ELEMENTS);
break;
case 8:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_8_ELEMENTS);
break;
default:
MUST_BE_TRUE(false, "wrong vertical stride for ternary align1 instruction at src0!");
break;
}
//src0: hstride
SrcBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::EncodeSrcHorzStride(
inst,
&threeSrc,
regdesc0,
src0);
}
MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src0) != REG_FILE_I, "Align1 ternary: src0 register file must not be immediate if src region is present. ");
if (EncodingHelper::GetSrcRegFile(src0) != REG_FILE_A)
{
uint32_t byteAddress = src0->getLinearizedStart();
threeSrc.SetSource0RegisterNumber_SourceRegisterNumber(byteAddress >> 5);
if (kernel.fg.builder->encodeAccRegSelAsAlign1() && src0->isAccRegValid())
{
MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for source with special accumualators");
threeSrc.SetSource0SpecialAcc(src0->getAccRegSel());
}
else
{
threeSrc.SetSource0SubregisterNumber_SourceSubRegisterNumber(byteAddress & 0x1f);
}
}
else
{
MUST_BE_TRUE(src0->getType() == Type_NF, "only NF type src0 can be accumulator");
//encode acc
bool valid;
unsigned short RegFile = (unsigned short)EncodingHelper::GetSrcArchRegType(src0); //4 bits
unsigned short RegNumValue = src0->asSrcRegRegion()->ExRegNum(valid);
// 7654|3210
// RegF|RegNumVal
unsigned short EncodedRegNum = RegFile << 4;
EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
threeSrc.SetSource0RegisterNumber_SourceRegisterNumber(EncodedRegNum);
}
}
else
{
MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src0) == REG_FILE_I,
"Align1 ternary: src0 reg file must be immediate if operand is immediate.");
G4_Imm *isrc = (G4_Imm *)src0->asImm();
threeSrc.SetSource0ImmediateValue((uint32_t)isrc->getImm());
}
//SRC1 fields
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
threeSrc.SetSource1Datatype(Get3SrcAlign1LimitedSrcType(src1->getType(), execType));
MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src1) != REG_FILE_I,
"Align1 ternary:src1 immediate register file not supported by definition.");
if (EncodingHelper::GetSrcRegFile(src1) != REG_FILE_A)
{
uint32_t byteAddress = src1->getLinearizedStart();
threeSrc.SetSource1RegisterNumber_SourceRegisterNumber(byteAddress >> 5);
if (kernel.fg.builder->encodeAccRegSelAsAlign1() && src1->isAccRegValid())
{
MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for source with special accumualators");
threeSrc.SetSource1SpecialAcc(src1->getAccRegSel());
}
else
{
threeSrc.SetSource1SubregisterNumber_SourceSubRegisterNumber(byteAddress & 0x1f);
}
}
else
{
//encode acc
bool valid;
unsigned short RegFile = (unsigned short)EncodingHelper::GetSrcArchRegType(src1); //4 bits
unsigned short RegNumValue = src1->asSrcRegRegion()->ExRegNum(valid);
// 7654|3210
// RegF|RegNumVal
unsigned short EncodedRegNum = RegFile << 4;
EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
threeSrc.SetSource1RegisterNumber_SourceRegisterNumber(EncodedRegNum);
}
RegionDesc *regdesc1 = src1->asSrcRegRegion()->getRegion();
MUST_BE_TRUE(regdesc1,
"Align1 ternary encoder: src1 region desc for ternary instruction is null!");
//look for <N;N,1> contiguous region
if (regdesc1->vertStride > 8)
{
//TODO: should we care about this case?
MUST_BE_TRUE(0, "align1 3 src instruction with vertStride>8 not supported yet.");
}
else
{
SrcBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::EncodeSrcHorzStride(
inst,
&threeSrc,
regdesc1,
src1);
//src1: vstride
switch (regdesc1->vertStride)
{
case 0:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_0_ELEMENTS);
break;
case 2:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_2_ELEMENTS);
break;
case 4:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_4_ELEMENTS);
break;
case 8:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_8_ELEMENTS);
break;
default:
MUST_BE_TRUE(false, "wrong vertical stride for ternary align1 instruction at src0!");
break;
}
}
//SRC2 fields
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
threeSrc.SetSource2Datatype(Get3SrcAlign1LimitedSrcType(src2->getType(), execType));
if (src2->isSrcRegRegion())
{
RegionDesc *regdesc2 = src2->asSrcRegRegion()->getRegion();
MUST_BE_TRUE(regdesc2,
"Align1 ternary instruction: src2 region desc for instruction is null!");
MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src2) != REG_FILE_I,
"Align1 ternary encoder: src2 reg file is immediate even if src region present.");
//src2 reg/subreg
if (EncodingHelper::GetSrcRegFile(src2) != REG_FILE_A)
{
uint32_t byteAddress = src2->getLinearizedStart();
threeSrc.SetSource2RegisterNumber_SourceRegisterNumber(byteAddress >> 5);
if (kernel.fg.builder->encodeAccRegSelAsAlign1() && src2->isAccRegValid())
{
MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for source with special accumualators");
threeSrc.SetSource2SpecialAcc(src2->getAccRegSel());
}
else
{
threeSrc.SetSource2SubregisterNumber_SourceSubRegisterNumber(byteAddress & 0x1f);
}
}
switch (regdesc2->horzStride)
{
case 0:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_0_ELEMENTS);
break;
case 1:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_1_ELEMENTS);
break;
case 2:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_2_ELEMENTS);
break;
case 4:
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_4_ELEMENTS);
break;
default:
MUST_BE_TRUE(false, "Align1 ternary: src2 has non-encodable horizontal stride (accepted: 0,1,2,4).");
break;
}
}
else
{
MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src2) == REG_FILE_I,
"Align1 ternary: src2 reg file must be immediate if operand is immediate.");
G4_Imm *isrc = (G4_Imm *)src2->asImm();
threeSrc.SetSource2ImmediateValue((uint32_t)isrc->getImm());
}
}
/// \brief Get compaction control bit from already encoded binary instruction
///
uint32_t BinaryEncodingCNL::GetCompactCtrl(BinInst *mybin)
{
G9HDL::EU_INSTRUCTION_HEADER* ptr = (G9HDL::EU_INSTRUCTION_HEADER*) &(mybin->DWords);
return (uint32_t) ptr->GetControl().GetControlsB_Cmptctrl();
}
/// \brief Set compaction control bit. TODO: how to write to mybin->DWords. below doesn't work
///
void BinaryEncodingCNL::SetCompactCtrl (BinInst *mybin, uint32_t value)
{
G9HDL::EU_INSTRUCTION_HEADER* ptr = (G9HDL::EU_INSTRUCTION_HEADER*) &(mybin->DWords);
ptr->GetControl().SetControlsB_Cmptctrl(G9HDL::CMPTCTRL_COMPACTED);
}
/// \brief Encode JIP and(or) UIP at their respective places
///
///Comments are left from original binary encoder
///TODO: move as a class method
void BinaryEncodingCNL::SetBranchOffsets(G4_INST* inst,
uint32_t JIP,
uint32_t UIP)
{
BinInst *mybin = inst->getBinInst();
G4_opcode opc = inst->opcode();
{
if( opc == G4_if ||
opc == G4_break ||
opc == G4_cont ||
opc == G4_halt ||
opc == G4_goto ||
opc == G4_else )
{
//cast binary as branch two src
//note: if an instruction has both JIP and UIP, then
//only src0 type and regfile are being set (higher dword is occupied)
G9HDL::EU_INSTRUCTION_BRANCH_TWO_SRC* twoSrc =
(G9HDL::EU_INSTRUCTION_BRANCH_TWO_SRC*) mybin->DWords;
twoSrc->GetOperandControl().SetSrc0Regfile(G9HDL::REGFILE_IMM);
twoSrc->GetOperandControl().SetSrc0Srctype_Imm(GetOperandSrcHDLImmType(Type_D));
twoSrc->SetJip(JIP);
twoSrc->SetUip(UIP);
//SetBranchJIPUIP( mybin, JIP, UIP );
}
else
{
G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
(G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;
oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
oneSrc->SetJip(JIP);
//SetBranchJIP( mybin, JIP );
}
}
}
/// \brief encodes JIP and(or) UIP offsets
///
/// This is done in this separate method, and not during the main
/// encoding phase, since the real jump offsets are visible only
/// now.
bool BinaryEncodingCNL::EncodeConditionalBranches(G4_INST *inst,
uint32_t insOffset)
{
std::string jipLabel;
std::string uipLabel;
int32_t jipOffset = 0;
int32_t uipOffset = 0;
G4_opcode op = inst->opcode();
// while and case only have JIP for all platforms
// break, cont and halt have both JIP and UIP for all platforms
if ( op == G4_if ||
op == G4_else ||
op == G4_endif ||
op == G4_while ||
op == G4_break ||
op == G4_cont ||
op == G4_halt ||
op == G4_goto ||
op == G4_join )
{
G4_Operand *jip = inst->asCFInst()->getJip();
if (jip && jip->isLabel())
{
jipLabel = inst->asCFInst()->getJipLabelStr();
int32_t info = GetLabelInfo(this->LabelMap, jipLabel);
if (info == -1)
{
return false;
}
jipOffset = info - insOffset;
jipOffset *= (int32_t)JUMP_INST_COUNT_SIZE;
}
else if (op == G4_while ||
op == G4_endif ||
op == G4_join)
{
{
BinInst *mybin = inst->getBinInst();
G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
(G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;
oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
}
}
}
// halt has both JIP and UIP on all platforms
// else has JIP for all platforms; else has UIP for BDW only
if (op == G4_break ||
op == G4_cont ||
op == G4_halt ||
op == G4_if ||
op == G4_else ||
op == G4_goto )
{
G4_Operand *uip = inst->asCFInst()->getUip();
if ( uip && uip->isLabel() )
{
uipLabel = inst->asCFInst()->getUipLabelStr();
int32_t info = GetLabelInfo(this->LabelMap, uipLabel);
if (info == -1)
{
return false;
}
uipOffset = info - insOffset;
uipOffset *= (uint32_t)JUMP_INST_COUNT_SIZE;
}
}
if ( op == G4_endif && jipOffset == 0 )
{
jipOffset = INST_SIZE;
}
if ( jipOffset != 0 || uipOffset != 0 )
{
SetBranchOffsets(inst, jipOffset, uipOffset);
}
if ( op == G4_jmpi &&
inst->getSrc(0) &&
inst->getSrc(0)->isLabel() )
{
// find the label's IP count
G4_Operand *opnd = inst->getSrc(0);
std::string jmpLabel = ((G4_Label *) opnd)->getLabel();
BinInst * mybin = inst->getBinInst();
// Calculate the address offset
// Label has the same IP count as the following instruction,
// "break 1" is to the fall through instruction
int32_t info = GetLabelInfo(this->LabelMap, jmpLabel);
if (info == -1)
{
return false;
}
int32_t jmpOffset = info - insOffset;
if ( GetCompactCtrl(mybin) )
jmpOffset -= 1;
else
jmpOffset -= 2;
jmpOffset *= (int32_t)JUMP_INST_COUNT_SIZE;
//FIXME: add compaction support
//if ( GetCompactCtrl(mybin) )
//{
// SetCmpSrc1RegNum(mybin, jmpOffset & 0xff); // 63:56
// SetCmpSrc1Index(mybin, (jmpOffset >> 8)& 0x1f);
//}
//else
{
BinInst *mybin = inst->getBinInst();
G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
(G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;
oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
oneSrc->SetJip((uint32_t)jmpOffset);
}
}
if ( op == G4_call &&
inst->getSrc(0) &&
inst->getSrc(0)->isLabel() )
{
G4_Operand *opnd = inst->getSrc(0);
std::string jmpLabel = ((G4_Label*) opnd)->getLabel();
int32_t info = GetLabelInfo(this->LabelMap, jmpLabel);
if (info == -1)
{
return false;
}
int32_t jmpOffset = info - insOffset;
{
jmpOffset *= (int32_t)JUMP_INST_COUNT_SIZE;
}
BinInst *mybin = inst->getBinInst();
G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
(G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;
oneSrc->SetSource0_SourceVerticalStride(G9HDL::VERTSTRIDE_2_ELEMENTS);
oneSrc->SetSource0_SourceWidth(G9HDL::WIDTH_4_ELEMENTS);
oneSrc->SetSource0_SourceHorizontalStride(G9HDL::HORZSTRIDE_1_ELEMENTS);
oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
oneSrc->SetJip((uint32_t)jmpOffset);
//TODO: do not forget about compacted variant
}
return true;
}
/// \brief initializes auto-header generated structure for split send instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::EncodeSplitSend( G4_INST* inst, G9HDL::EU_INSTRUCTION_SENDS& sends)
{
Status myStatus = SUCCESS;
G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* twoSrcMirror
= (G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC*) &sends;
EncodeInstHeader(inst, twoSrcMirror->Common.Header);
//encode dst part
//trimmed down EncodeOperandDst
{
DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeFlagReg(inst, sends);
DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeMaskCtrl(inst, sends);
DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeOperandDstType(inst, sends);
DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeDstAddrMode(inst, sends);
G4_DstRegRegion* dst = inst->getDst();
//encode dst reg file
//note: for sends, we have only one bit available for dst reg file
{
switch( EncodingHelper::GetDstRegFile(dst) )
{
case REG_FILE_R:
sends.SetDestinationRegisterFile(G9HDL::REGFILE_GRF); break;
case REG_FILE_A:
sends.SetDestinationRegisterFile(G9HDL::REGFILE_ARF); break;
default:
MUST_BE_TRUE( 0 ," Invalid register file for split-send.");
break;
}
}
if (EncodingHelper::GetDstAddrMode(dst)==ADDR_MODE_INDIR)
{
// addr subregister
// addr immediate
bool subValid;
uint16_t IndAddrRegSubNumValue = dst->ExIndSubRegNum(subValid);
int16_t IndAddrImmedValue = dst->ExIndImmVal();
sends.SetDestinationAddressSubregisterNumber(IndAddrRegSubNumValue);
sends.SetDestinationAddressImmediate84((IndAddrImmedValue >> 4) & 0x1F);
sends.SetDestinationAddressImmediateSign9((IndAddrImmedValue >> 9) & 0x1);
}
else
{
if (EncodingHelper::GetDstRegFile(dst) != REG_FILE_A )
{
uint32_t byteAddress = dst->getLinearizedStart();
MUST_BE_TRUE( byteAddress % 16 == 0, "dst for sends/sendsc must be oword-aligned");
sends.SetDestinationRegisterNumber(byteAddress >> 5);
sends.SetDestinationSubregisterNumber4((byteAddress >> 4) & 0x1);
}
}
}
//encode src1
{
G4_Operand *src1 = inst->getSrc(1);
//src1 reg file - 1 bit
switch( EncodingHelper::GetSrcRegFile(src1) )
{
case REG_FILE_R:
sends.SetSrc1Regfile(G9HDL::REGFILE_GRF); break;
case REG_FILE_A:
sends.SetSrc1Regfile(G9HDL::REGFILE_ARF); break;
default:
MUST_BE_TRUE( 0 ," Invalid register file for split-send.");
break;
}
G4_SrcRegRegion* src1Region = src1->asSrcRegRegion();
SrcBuilder<G9HDL::EU_INSTRUCTION_SENDS, 1>::EncodeSrcAddrMode(&sends, inst, src1);
if (EncodingHelper::GetSrcAddrMode(src1)==ADDR_MODE_INDIR)
{
bool subValid;
uint16_t IndAddrRegSubNumValue = src1Region->ExIndSubRegNum(subValid);
int16_t IndAddrImmedValue = src1Region->ExIndImmVal();
sends.SetSource1_SourceAddressImmediate84((IndAddrImmedValue >> 4) & 0x1F);
sends.SetSource1_SourceAddressImmediateSign9((IndAddrImmedValue >> 9) & 0x1);
sends.SetSource1_SourceAddressSubregisterNumber_0(IndAddrRegSubNumValue);
}
else
{
uint32_t byteAddress = src1->getLinearizedStart();
MUST_BE_TRUE( byteAddress % 32 == 0, "src1 for sends/sendsc must be GRF-aligned");
sends.SetSource1_SourceRegisterNumber(byteAddress >> 5);
//mybin->SetBits(bitsSendsSrc1RegNum_0, bitsSendsSrc1RegNum_1, byteAddress >> 5);
}
}
//encode src0
{
G4_SrcRegRegion *src0 = inst->getSrc(0)->asSrcRegRegion();
//note: no regfile for src0
SrcBuilder<G9HDL::EU_INSTRUCTION_SENDS, 0>::EncodeSrcAddrMode(&sends, inst, src0);
if (EncodingHelper::GetSrcAddrMode(src0)==ADDR_MODE_INDIR)
{
bool subValid;
uint16_t IndAddrRegSubNumValue = src0->ExIndSubRegNum(subValid);
int16_t IndAddrImmedValue = src0->ExIndImmVal();
sends.SetSource0_SourceAddressImmediate84((IndAddrImmedValue >> 4) & 0x1F);
sends.SetSource0_SourceAddressImmediateSign9((IndAddrImmedValue >> 9) & 0x1);
sends.SetSource0_SourceAddressSubregisterNumber(IndAddrRegSubNumValue);
}
else
{
uint32_t byteAddress = src0->getLinearizedStart();
MUST_BE_TRUE( byteAddress % 32 == 0, "src1 for sends/sendsc must be GRF-aligned");
sends.SetSource0_SourceRegisterNumber(byteAddress >> 5);
//mybin->SetBits(bitsSendsSrc1RegNum_0, bitsSendsSrc1RegNum_1, byteAddress >> 5);
}
}
//encode src2
{
G4_Operand *src2 = inst->getSrc(2);
if (src2 == NULL)
{
return FAILURE;
}
if (src2->isImm())
{
sends.SetSelreg32desc(0);
sends.GetMessage().GetDWORD(0) = (uint32_t) src2->asImm()->getInt();
}
else if (src2->isSrcRegRegion() && src2->asSrcRegRegion()->isA0() )
{
sends.SetSelreg32desc(1);
}
}
//Patch SFID and EOT
{
uint32_t msgDesc = inst->getMsgDesc()->getExtendedDesc();
EncExtMsgDescriptor emd;
emd.ulData = msgDesc;
G9HDL::SFID sfid = (G9HDL::SFID) emd.ExtMsgDescriptor.TargetUnitId;
sends.SetSharedFunctionIdSfid( sfid );
G9HDL::EOT eot = (G9HDL::EOT) emd.ExtMsgDescriptor.EndOfThread;
sends.GetMessage().SetEot(eot);
// additional extended msg desc to be encoded
sends.SetExdesc96(msgDesc);
sends.SetExdesc3116(msgDesc);
sends.SetExdesc1111(msgDesc);
// encoding for src3 A0 is done in DoAllEncodingSplitSEND later on
}
//this is a hack, but:
//fixme: this is missing in auto-header, currently need to override the acc write field
if (inst->isNoSrcDepSet())
{
//equivalent to: mybin->SetBits(bitsNoSrcDepSet_0, bitsNoSrcDepSet_1, 1);
sends.SetControlsB_Accwrctrl(G9HDL::ACCWRCTRL_UPDATE_ACC); //0x1
}
return myStatus;
}
/// \brief Do customized encoding of WAIT instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingWAIT(G4_INST* inst)
{
Status myStatus = SUCCESS;
G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC oneSrc;
oneSrc.Init();
EncodeInstHeader(inst, oneSrc.Common.Header );
EncodeOperandDst(inst, oneSrc.Common.OperandControls);
G4_Operand *src0 = inst->getSrc(0);
//EncodeSrc0RegFile
oneSrc.GetOperandControls().SetSrc0Regfile( TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(src0) ));
//EncodeSrc0Type
MUST_BE_TRUE( !src0->isImm(), "src0 must not be immediate in WAIT instruction!" );
{
oneSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(src0->getType()));
}
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG,0>::EncodeEuInstructionSourcesReg(
inst, src0, oneSrc. GetRegsource() //by reference
);
//Dst patching:
RegFile regFile = EncodingHelper::GetSrcRegFile(src0);
MUST_BE_TRUE( regFile == REG_FILE_A, "WAIT instruction source has reg file different than ARF!" );
oneSrc.Common.OperandControls.SetDestinationRegisterFile(
TranslateVisaToHDLRegFile(regFile ) );
if (regFile == REG_FILE_A)
{
bool valid;
G4_SrcRegRegion* src0Region = src0->asSrcRegRegion();
unsigned short RegFile = (unsigned short)EncodingHelper::GetSrcArchRegType(src0); //4 bits
unsigned short RegNumValue = src0Region->ExRegNum(valid);
unsigned short EncodedRegNum = PackArchRegTypeAndArchRegFile( RegFile, RegNumValue );
oneSrc.Common.OperandControls.GetDestinationRegisterRegion_Align1().
SetDestinationRegisterNumber_DestinationRegisterNumber(EncodedRegNum);
{
bool subValid;
unsigned short RegSubNumValue = src0Region->ExSubRegNum(subValid);
unsigned short ElementSizeValue = EncodingHelper::GetElementSizeValue(src0);
uint32_t regOffset = RegSubNumValue * ElementSizeValue;
if (inst->isAligned1Inst())
{
//sub-register number: 32 byte address (5 bits encoding) within a GRF
oneSrc.Common.OperandControls.GetDestinationRegisterRegion_Align1().
SetDestinationSubregisterNumber_DestinationSubRegisterNumber((WORD)regOffset);
} else { //align 16
//sub-register number: first/second 16 byte part of 32 byte address. Encoded with 1 bit.
// 9876543210
// regn|x0000
//opnds.GetDestinationRegisterRegion_Align16().SetDestinationSubregisterNumber((regOffset >> 4) & 0x1);
oneSrc.Common.OperandControls.GetDestinationRegisterRegion_Align16().
SetDestinationSubregisterNumber((WORD)regOffset);
}
}
}
oneSrc.Common.OperandControls.
GetDestinationRegisterRegion_Align1().
SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );
oneSrc.Common.OperandControls.SetDestinationAddressingMode(
TranslateVisaToHDLAddrMode(EncodingHelper::GetSrcAddrMode(src0)) );
//if( EncodingHelper::GetSrcRegFile(src0)!=REG_FILE_A &&
// EncodingHelper::GetSrcAddrMode(src0) == ADDR_MODE_IMMED )
//{
// bool repControl = EncodingHelper::GetRepControl(src0);
// uint32_t byteAddress = src0->getLinearizedStart();
// if (inst->isAligned1Inst() || repControl)
// {
// SetDstRegNumByte(mybin, byteAddress);
// } else {
// SetDstRegNumOWord(mybin, byteAddress/BYTES_PER_OWORD);
// }
//}
BinInst *bin = inst->getBinInst();
bin->DWords[0] = oneSrc.GetDWord(0);
bin->DWords[1] = oneSrc.GetDWord(1);
bin->DWords[2] = oneSrc.GetDWord(2);
bin->DWords[3] = oneSrc.GetDWord(3);
return myStatus;
}
/// \brief Do encoding of JMPI instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingJMPI(G4_INST* inst)
{
Status myStatus = SUCCESS;
G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC brOneSrc;
brOneSrc.Init();
EncodeInstHeader(inst, brOneSrc.GetHeader());
//BEGIN: OPND CONTROL WORD:
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeFlagReg(inst, brOneSrc.GetOperandControl());
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeMaskCtrl(inst, brOneSrc.GetOperandControl());
//hardcode:
brOneSrc.GetOperandControl().SetDestinationRegisterFile(G9HDL::REGFILE_ARF);
brOneSrc.GetOperandControl().SetDestinationDataType(G9HDL::DSTTYPE_UD);
brOneSrc.GetOperandControl().SetDestinationAddressingMode(G9HDL::ADDRMODE_DIRECT);
//FIXME: bxml does not have arch reg file enumerations
unsigned short RegFile = ARCH_REG_FILE_IP; //4 bits
unsigned short RegNumValue = 0;
// 7654|3210
// RegF|RegNumVal
unsigned short EncodedRegNum = RegFile << 4;
EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
//the same as for align16
brOneSrc.GetOperandControl().
GetDestinationRegisterRegion_Align1().
SetDestinationRegisterNumber_DestinationRegisterNumber(EncodedRegNum);
brOneSrc.GetOperandControl().
GetDestinationRegisterRegion_Align1().
SetDestinationSubregisterNumber_DestinationSubRegisterNumber(0);
brOneSrc.GetOperandControl().
GetDestinationRegisterRegion_Align1().
SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );
//src0, but belongs to opndCtl dword
brOneSrc.GetOperandControl().SetSrc0Regfile( G9HDL::REGFILE_ARF );
brOneSrc.GetOperandControl().SetSrc0Srctype(GetOperandSrcHDLType(Type_UD));
//END: OPND CONTROL WORD
//BEGIN: src0
if ( inst->getSrc(0) )
{
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC,0>::
SetSourceAddressingMode(&brOneSrc,G9HDL::ADDRMODE_DIRECT);
//FIXME: bxml does not have arch reg file enumerations
unsigned short RegFile = ARCH_REG_FILE_IP; //4 bits
unsigned short RegNumValue = 0;
// 7654|3210
// RegF|RegNumVal
unsigned short EncodedRegNum = RegFile << 4;
EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC,0>::
SetSourceRegisterNumber(&brOneSrc,EncodedRegNum);
SrcOperandEncoder<G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC,0>::
SetSourceSubRegisterNumber(&brOneSrc,0);
brOneSrc.SetSource0_SourceWidth(G9HDL::WIDTH_1_ELEMENTS);
if ( inst->getSrc(0)->isLabel() )
{
brOneSrc.SetSource0_SourceVerticalStride(G9HDL::VERTSTRIDE_0_ELEMENTS);
brOneSrc.SetSource0_SourceHorizontalStride(G9HDL::HORZSTRIDE_0_ELEMENTS);
brOneSrc.SetSource0_SourceModifier(G9HDL::SRCMOD_NO_MODIFICATION);
}
}
if ( inst->getSrc(0) &&
inst->getSrc(0)->isSrcRegRegion() )
{
G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* ptr = (G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC*)&brOneSrc;
SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG,1>::EncodeEuInstructionSourcesReg(
inst, inst->getSrc(0), ptr->GetRegsource() //by reference
);
ptr->GetRegsource().SetSrc1Regfile( TranslateVisaToHDLRegFile( EncodingHelper::GetSrcRegFile(inst->getSrc(0)) ) );
if (!inst->getSrc(0)->isImm())
{
ptr->GetRegsource().SetSrc1Srctype(GetOperandSrcHDLType(inst->getSrc(0)->getType()));
}
}
//END: src0
//BEGIN: src1
// The rest is encoded in EncodeConditionalBranches
//END: src1
BinInst *bin = inst->getBinInst();
bin->DWords[0] = brOneSrc.GetDWORD(0);
bin->DWords[1] = brOneSrc.GetDWORD(1);
bin->DWords[2] = brOneSrc.GetDWORD(2);
bin->DWords[3] = brOneSrc.GetDWORD(3);
return myStatus;
}
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingCALL(G4_INST* inst)
{
Status myStatus = SUCCESS;
BinInst *bin = inst->getBinInst();
G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC oneSrc;
oneSrc.Init();
EncodeInstHeader(inst, oneSrc.GetHeader());
EncodeOperandDst(inst, oneSrc.GetOperandControl());
//Needed for correctness
oneSrc.SetSrc1Regfile(G9HDL::REGFILE_IMM);
oneSrc.SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
bin->DWords[0] = oneSrc.GetDWORD(0);
bin->DWords[1] = oneSrc.GetDWORD(1);
bin->DWords[2] = oneSrc.GetDWORD(2);
bin->DWords[3] = oneSrc.GetDWORD(3);
return myStatus;
}
/// \brief Do encoding of control flow type instructions
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingCF(G4_INST* inst)
{
Status myStatus = SUCCESS;
BinInst *bin = inst->getBinInst();
G9HDL::EU_INSTRUCTION_BRANCH_TWO_SRC brTwoSrc;
brTwoSrc.Init();
//brTwoSrc.Common.OperandControls
EncodeInstHeader(inst, brTwoSrc.GetHeader());
//fixme: not sure why we are setting only this field for dst, but keep the binary encoding the same as original one...
brTwoSrc.GetOperandControl().GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride(G9HDL::HORZSTRIDE_1_ELEMENTS);
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeFlagReg(inst, brTwoSrc.GetOperandControl());
DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeMaskCtrl(inst, brTwoSrc.GetOperandControl());
bin->DWords[0] = brTwoSrc.GetDWord(0);
bin->DWords[1] = brTwoSrc.GetDWord(1);
bin->DWords[2] = brTwoSrc.GetDWord(2);
bin->DWords[3] = brTwoSrc.GetDWord(3);
return myStatus;
}
/// \brief Do encoding of split send instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingSplitSEND(G4_INST* inst)
{
Status myStatus = SUCCESS;
BinInst *bin = inst->getBinInst();
G9HDL::EU_INSTRUCTION_SENDS sends;
sends.Init();
EncodeSplitSend( inst, sends );
bin->DWords[0] = sends.GetDWORD(0);
bin->DWords[1] = sends.GetDWORD(1);
bin->DWords[2] = sends.GetDWORD(2);
bin->DWords[3] = sends.GetDWORD(3);
//This is a workaround for BXML defect
G4_Operand *src3 = inst->getSrc(3);
// additional extended msg desc to be encoded
// FIXME: does it apply to regular SKL+ sends too?
if ( src3 && src3->isSrcRegRegion() && src3->asSrcRegRegion()->isA0() )
{
bin->SetBits(bitsSendsSelReg32ExDesc_0, bitsSendsSelReg32ExDesc_1, 1);
bin->SetBits(bitsSendsExDescRegNum_0, bitsSendsExDescRegNum_1,
src3->asSrcRegRegion()->getBase()->asRegVar()->getPhyRegOff());
}
return myStatus;
}
/// \brief Do encoding of all 'regular' one, two or three-src instructions
/// Treats send and math instructions as two-src and patches them accordingly.
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingRegular(G4_INST* inst)
{
Status myStatus = SUCCESS;
MUST_BE_TRUE( !inst->isSplitSend(), "Improper instruction type called with DoAllEncodingRegular: sends or sendsc");
BinInst *bin = inst->getBinInst();
int i=inst->getNumSrc();
switch (i)
{
case 0:
{
// for nop, we have to encode the opcode, borrow the oneSrc format
G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC oneSrc;
oneSrc.Init();
EncodeOpCode(inst, oneSrc.Common.Header);
bin->DWords[0] = oneSrc.GetDWord(0);
bin->DWords[1] = oneSrc.GetDWord(1);
bin->DWords[2] = oneSrc.GetDWord(2);
bin->DWords[3] = oneSrc.GetDWord(3);
break;
}
case 1:
G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC oneSrc;
oneSrc.Init();
EncodeOneSrcInst(inst, oneSrc);
bin->DWords[0] = oneSrc.GetDWord(0);
bin->DWords[1] = oneSrc.GetDWord(1);
bin->DWords[2] = oneSrc.GetDWord(2);
bin->DWords[3] = oneSrc.GetDWord(3);
break;
case 2:
G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC twoSrc;
twoSrc.Init();
EncodeTwoSrcInst(inst, twoSrc);
if (inst->isSend())
{
PatchSend( inst, &twoSrc );
}
else if(inst->isMath())
{
//fixme: math is only for two-src encoding?
PatchMath( inst, &twoSrc );
}
bin->DWords[0] = twoSrc.GetDWord(0);
bin->DWords[1] = twoSrc.GetDWord(1);
bin->DWords[2] = twoSrc.GetDWord(2);
bin->DWords[3] = twoSrc.GetDWord(3);
break;
case 3:
{
if(inst->isAligned1Inst())
{
G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC threeSrcAlign1;
threeSrcAlign1.Init();
EncodeThreeSrcInstAlign1(inst, threeSrcAlign1);
bin->DWords[0] = threeSrcAlign1.GetRawData(0);
bin->DWords[1] = threeSrcAlign1.GetRawData(1);
bin->DWords[2] = threeSrcAlign1.GetRawData(2);
bin->DWords[3] = threeSrcAlign1.GetRawData(3);
}
else
{
G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC threeSrc;
threeSrc.Init();
EncodeThreeSrcInst(inst, threeSrc);
bin->DWords[0] = threeSrc.GetDWORD(0);
bin->DWords[1] = threeSrc.GetDWORD(1);
bin->DWords[2] = threeSrc.GetDWORD(2);
bin->DWords[3] = threeSrc.GetDWORD(3);
}
}
break;
default:
break;
}
return myStatus;
}
/// \brief Do all encoding for an instruction.
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncoding(G4_INST* inst)
{
Status myStatus = SUCCESS;
bool isFCCall = false, isFCRet = false;
if(inst->opcode() == G4_label) return myStatus;
if(inst->opcode() == G4_illegal)
return FAILURE;
EncodingHelper::mark3Src(inst);
{
//Prolog:
if(inst->opcode() == G4_pseudo_fc_call)
{
inst->setOpcode(G4_call);
isFCCall = true;
}
if(inst->opcode() == G4_pseudo_fc_ret)
{
inst->setOpcode(G4_return);
isFCRet = true;
}
if( inst->opcode() == G4_jmpi )
{
DoAllEncodingJMPI( inst );
}
else if( inst->opcode() == G4_wait )
{
DoAllEncodingWAIT( inst );
}
else if( inst->opcode() == G4_if ||
inst->opcode() == G4_endif ||
inst->opcode() == G4_else ||
inst->opcode() == G4_while ||
inst->opcode() == G4_break ||
inst->opcode() == G4_cont ||
inst->opcode() == G4_halt ||
inst->opcode() == G4_goto ||
inst->opcode() == G4_join )
{
DoAllEncodingCF( inst );
}
else if ( inst->opcode() == G4_call )
{
DoAllEncodingCALL( inst );
}
else if(inst->isSplitSend()) {
DoAllEncodingSplitSEND( inst );
}
else if ( !EncodingHelper::hasLabelString(inst) ) {
DoAllEncodingRegular( inst );
}
//Epilog:
if(isFCCall == true)
{
inst->setOpcode(G4_pseudo_fc_call);
}
if(isFCRet == true)
{
inst->setOpcode(G4_pseudo_fc_ret);
}
}
return myStatus;
}
/// \brief Entry point.
///
/// This is counterpart of ProduceBinaryInstructions from 'old' encoder
void BinaryEncodingCNL::DoAll()
{
std::vector<ForwardJmpOffset> offsetVector;
FixInst();
BinaryEncodingBase::InitPlatform();
// BDW/CHV/SKL/BXT/CNL use the same compaction tables except from 3src.
for ( uint8_t i=0; i<(int)COMPACT_TABLE_SIZE; i++ )
{
BDWCompactControlTable.AddIndex(IVBCompactControlTable[i], i);
BDWCompactSourceTable.AddIndex(IVBCompactSourceTable[i], i);
BDWCompactSubRegTable.AddIndex(IVBCompactSubRegTable[i], i);
BDWCompactSubRegTable.AddIndex1(IVBCompactSubRegTable[i] & 0x1F, i);
BDWCompactSubRegTable.AddIndex2(IVBCompactSubRegTable[i] & 0x3FF, i);
if (getGenxPlatform() > GENX_CNL)
{
}
else
{
BDWCompactDataTypeTableStr.AddIndex(BDWCompactDataTypeTable[i], i);
}
}
int globalInstNum = 0;
int globalHalfInstNum = 0;
int numCompactedInst = 0;
int numCompacted3SrcInst = 0;
BB_LIST_ITER ib, bend(kernel.fg.BBs.end());
for(ib = kernel.fg.BBs.begin(); ib != bend; ++ib)
{
G4_BB *bb = *ib;
int localInstNum = 0;
int localHalfInstNum = 0;
/**
* Traverse the instruction lists
*/
INST_LIST_ITER ii, iend(bb->instList.end());
for (ii = bb->instList.begin(); ii != iend; ++ii)
{
/* do detailed encoding here */
G4_INST *inst = *ii;
G4_opcode opcode = inst->opcode();
if (opcode == G4_label)
{
inst->setBinInst(NULL);
} else {
// reuse "BinInst" from BinaryEncoding.h which can be simplified
BinInst *bin = new (mem) BinInst();
inst->setBinInst(bin);
bin->DWords[0] = 0;
bin->DWords[1] = 0;
bin->DWords[2] = 0;
bin->DWords[3] = 0;
DoAllEncoding( inst );
if(inst->opcode() == G4_pseudo_fc_call ||
inst->opcode() == G4_pseudo_fc_ret)
{
inst->getBinInst()->SetDontCompactFlag(true);
}
if (doCompaction())
{
inst->getBinInst()->SetMustCompactFlag(false);
/**
* handling switch/case for gen6: jump table should not be compacted
*/
startTimer(TIMER_ENCODE_COMPACTION);
bool compacted = BinaryEncodingBase::compactOneInstruction(inst);
stopTimer(TIMER_ENCODE_COMPACTION);
if (compacted)
{
if (kernel.getOption(vISA_OptReport))
{
numCompactedInst++;
if ( inst->getBinInst()->GetIs3Src() )
numCompacted3SrcInst++;
}
inst->setCompacted();
}
}
binInstList.push_back(inst->getBinInst());
if (inst->opcode() >= G4_jmpi && inst->opcode() <= G4_join)
{
if (!EncodeConditionalBranches(inst, globalHalfInstNum))
{
offsetVector.push_back(ForwardJmpOffset(inst, globalHalfInstNum));
}
}
} //else
BuildLabelMap(inst, localHalfInstNum, localInstNum,
globalHalfInstNum, globalInstNum);
} // for inst
} // for bb
kernel.setAsmCount(globalInstNum);
SetInstCounts((uint32_t)globalHalfInstNum);
EncodingHelper::dumpOptReport(globalInstNum, numCompactedInst, numCompacted3SrcInst, kernel);
for (auto x = offsetVector.begin(); x != offsetVector.end(); x++)
{
if (!EncodeConditionalBranches(x->inst, x->offset))
{
MUST_BE_TRUE(false, "invalid label!");
}
}
}