//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file includes code for rendering MCInst instances as AT&T-style // assembly. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2014 */ // this code is only relevant when DIET mode is disable #if defined(CAPSTONE_HAS_X86) && !defined(CAPSTONE_DIET) #include #include #include #include #include #include "../../utils.h" #include "../../MCInst.h" #include "../../SStream.h" #include "../../MCRegisterInfo.h" #include "X86Mapping.h" #define GET_INSTRINFO_ENUM #ifdef CAPSTONE_X86_REDUCE #include "X86GenInstrInfo_reduce.inc" #else #include "X86GenInstrInfo.inc" #endif static void printMemReference(MCInst *MI, unsigned Op, SStream *O); static void printOperand(MCInst *MI, unsigned OpNo, SStream *O); static void set_mem_access(MCInst *MI, bool status) { if (MI->csh->detail != CS_OPT_ON) return; MI->csh->doing_mem = status; } static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O) { printMemReference(MI, OpNo, O); } static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printMemReference(MI, OpNo, O); } static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O) { if (MI->Opcode == X86_BOUNDS16rm) MI->x86opsize = 4; else MI->x86opsize = 2; printMemReference(MI, OpNo, O); } static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O) { if (MI->Opcode == X86_BOUNDS32rm) MI->x86opsize = 8; else MI->x86opsize = 4; printMemReference(MI, OpNo, O); } static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printMemReference(MI, OpNo, O); } static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 16; printMemReference(MI, OpNo, O); } #ifndef CAPSTONE_X86_REDUCE static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 32; printMemReference(MI, OpNo, O); } static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 64; printMemReference(MI, OpNo, O); } static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printMemReference(MI, OpNo, O); } static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printMemReference(MI, OpNo, O); } static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 10; printMemReference(MI, OpNo, O); } static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 16; printMemReference(MI, OpNo, O); } static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 32; printMemReference(MI, OpNo, O); } static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 64; printMemReference(MI, OpNo, O); } static void printSSECC(MCInst *MI, unsigned Op, SStream *OS) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xf; switch (Imm) { default: break; // never reach case 0: SStream_concat0(OS, "eq"); break; case 1: SStream_concat0(OS, "lt"); break; case 2: SStream_concat0(OS, "le"); break; case 3: SStream_concat0(OS, "unord"); break; case 4: SStream_concat0(OS, "neq"); break; case 5: SStream_concat0(OS, "nlt"); break; case 6: SStream_concat0(OS, "nle"); break; case 7: SStream_concat0(OS, "ord"); break; case 8: SStream_concat0(OS, "eq_uq"); break; case 9: SStream_concat0(OS, "nge"); break; case 0xa: SStream_concat0(OS, "ngt"); break; case 0xb: SStream_concat0(OS, "false"); break; case 0xc: SStream_concat0(OS, "neq_oq"); break; case 0xd: SStream_concat0(OS, "ge"); break; case 0xe: SStream_concat0(OS, "gt"); break; case 0xf: SStream_concat0(OS, "true"); break; } } static void printAVXCC(MCInst *MI, unsigned Op, SStream *O) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x1f; switch (Imm) { default: break;//printf("Invalid avxcc argument!\n"); break; case 0: SStream_concat0(O, "eq"); break; case 1: SStream_concat0(O, "lt"); break; case 2: SStream_concat0(O, "le"); break; case 3: SStream_concat0(O, "unord"); break; case 4: SStream_concat0(O, "neq"); break; case 5: SStream_concat0(O, "nlt"); break; case 6: SStream_concat0(O, "nle"); break; case 7: SStream_concat0(O, "ord"); break; case 8: SStream_concat0(O, "eq_uq"); break; case 9: SStream_concat0(O, "nge"); break; case 0xa: SStream_concat0(O, "ngt"); break; case 0xb: SStream_concat0(O, "false"); break; case 0xc: SStream_concat0(O, "neq_oq"); break; case 0xd: SStream_concat0(O, "ge"); break; case 0xe: SStream_concat0(O, "gt"); break; case 0xf: SStream_concat0(O, "true"); break; case 0x10: SStream_concat0(O, "eq_os"); break; case 0x11: SStream_concat0(O, "lt_oq"); break; case 0x12: SStream_concat0(O, "le_oq"); break; case 0x13: SStream_concat0(O, "unord_s"); break; case 0x14: SStream_concat0(O, "neq_us"); break; case 0x15: SStream_concat0(O, "nlt_uq"); break; case 0x16: SStream_concat0(O, "nle_uq"); break; case 0x17: SStream_concat0(O, "ord_s"); break; case 0x18: SStream_concat0(O, "eq_us"); break; case 0x19: SStream_concat0(O, "nge_uq"); break; case 0x1a: SStream_concat0(O, "ngt_uq"); break; case 0x1b: SStream_concat0(O, "false_os"); break; case 0x1c: SStream_concat0(O, "neq_os"); break; case 0x1d: SStream_concat0(O, "ge_oq"); break; case 0x1e: SStream_concat0(O, "gt_oq"); break; case 0x1f: SStream_concat0(O, "true_us"); break; } } static void printRoundingControl(MCInst *MI, unsigned Op, SStream *O) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x3; switch (Imm) { case 0: SStream_concat0(O, "{rn-sae}"); break; case 1: SStream_concat0(O, "{rd-sae}"); break; case 2: SStream_concat0(O, "{ru-sae}"); break; case 3: SStream_concat0(O, "{rz-sae}"); break; default: break; // nev0er reach } } #endif static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O) { MCOperand *SegReg; SegReg = MCInst_getOperand(MI, Op+1); // If this has a segment register, print it. if (MCOperand_getReg(SegReg)) { printOperand(MI, Op+1, O); SStream_concat0(O, ":"); } SStream_concat0(O, "("); set_mem_access(MI, true); printOperand(MI, Op, O); SStream_concat0(O, ")"); set_mem_access(MI, false); } static void printDstIdx(MCInst *MI, unsigned Op, SStream *O) { // DI accesses are always ES-based on non-64bit mode if (MI->csh->mode != CS_MODE_64) SStream_concat0(O, "%es:("); else SStream_concat0(O, "("); set_mem_access(MI, true); printOperand(MI, Op, O); SStream_concat0(O, ")"); set_mem_access(MI, false); } static void printSrcIdx8(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printSrcIdx(MI, OpNo, O); } static void printSrcIdx16(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printSrcIdx(MI, OpNo, O); } static void printSrcIdx32(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printSrcIdx(MI, OpNo, O); } static void printSrcIdx64(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printSrcIdx(MI, OpNo, O); } static void printDstIdx8(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printDstIdx(MI, OpNo, O); } static void printDstIdx16(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printDstIdx(MI, OpNo, O); } static void printDstIdx32(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printDstIdx(MI, OpNo, O); } static void printDstIdx64(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printDstIdx(MI, OpNo, O); } static void printMemOffset(MCInst *MI, unsigned Op, SStream *O) { MCOperand *DispSpec = MCInst_getOperand(MI, Op); MCOperand *SegReg = MCInst_getOperand(MI, Op+1); // If this has a segment register, print it. if (MCOperand_getReg(SegReg)) { printOperand(MI, Op+1, O); SStream_concat0(O, ":"); } if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; } if (MCOperand_isImm(DispSpec)) { int64_t imm = MCOperand_getImm(DispSpec); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm; if (imm < 0) { SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & imm); } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, imm); else SStream_concat(O, "%"PRIu64, imm); } } if (MI->csh->detail) MI->flat_insn->detail->x86.op_count++; } static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printMemOffset(MI, OpNo, O); } static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printMemOffset(MI, OpNo, O); } static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printMemOffset(MI, OpNo, O); } static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printMemOffset(MI, OpNo, O); } static void printRegName(SStream *OS, unsigned RegNo); /// printPCRelImm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value (e.g. for jumps and calls). These /// print slightly differently than normal immediates. For example, a $ is not /// emitted. static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isImm(Op)) { int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address; if (imm < 0) { if (imm < -HEX_THRESHOLD) SStream_concat(O, "-0x%"PRIx64, -imm); else SStream_concat(O, "-%"PRIu64, -imm); } else { // handle 16bit segment bound if (MI->csh->mode == CS_MODE_16 && imm > 0x100000) imm -= 0x10000; if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, imm); else SStream_concat(O, "%"PRIu64, imm); } if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm; MI->flat_insn->detail->x86.op_count++; } } } static void printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { printRegName(O, MCOperand_getReg(Op)); if (MI->csh->detail) { unsigned int reg = MCOperand_getReg(Op); if (MI->csh->doing_mem) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = 0; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; MI->flat_insn->detail->x86.op_count++; } else { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.op_count++; } } } else if (MCOperand_isImm(Op)) { // Print X86 immediates as signed values. int64_t imm = MCOperand_getImm(Op); if (imm >= 0) { if (imm > HEX_THRESHOLD) SStream_concat(O, "$0x%"PRIx64, imm); else SStream_concat(O, "$%"PRIu64, imm); } else { if (imm < -HEX_THRESHOLD) SStream_concat(O, "$-0x%"PRIx64, -imm); else SStream_concat(O, "$-%"PRIu64, -imm); } if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = 0; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = 0; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm; MI->flat_insn->detail->x86.op_count++; } else { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm; MI->flat_insn->detail->x86.op_count++; } } } } // local printOperand, without updating public operands static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { printRegName(O, MCOperand_getReg(Op)); } else if (MCOperand_isImm(Op)) { // Print X86 immediates as signed values. int64_t imm = MCOperand_getImm(Op); if (imm < 0) { if (imm < -HEX_THRESHOLD) SStream_concat(O, "$-0x%"PRIx64, -imm); else SStream_concat(O, "$-%"PRIu64, -imm); } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "$0x%"PRIx64, imm); else SStream_concat(O, "$%"PRIu64, imm); } } } static void printMemReference(MCInst *MI, unsigned Op, SStream *O) { MCOperand *BaseReg = MCInst_getOperand(MI, Op); MCOperand *IndexReg = MCInst_getOperand(MI, Op+2); MCOperand *DispSpec = MCInst_getOperand(MI, Op+3); MCOperand *SegReg = MCInst_getOperand(MI, Op+4); uint64_t ScaleVal; if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; } // If this has a segment register, print it. if (MCOperand_getReg(SegReg)) { _printOperand(MI, Op+4, O); SStream_concat0(O, ":"); } if (MCOperand_isImm(DispSpec)) { int64_t DispVal = MCOperand_getImm(DispSpec); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal; if (DispVal || (!MCOperand_getReg(IndexReg) && !MCOperand_getReg(BaseReg))) { if (DispVal < 0) { SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & DispVal); } else { if (DispVal > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, DispVal); else SStream_concat(O, "%"PRIu64, DispVal); } } } if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) { SStream_concat0(O, "("); if (MCOperand_getReg(BaseReg)) _printOperand(MI, Op, O); if (MCOperand_getReg(IndexReg)) { SStream_concat0(O, ", "); _printOperand(MI, Op+2, O); ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op+1)); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal; if (ScaleVal != 1) { SStream_concat(O, ", %u", ScaleVal); } } SStream_concat0(O, ")"); } if (MI->csh->detail) MI->flat_insn->detail->x86.op_count++; } #include "X86InstPrinter.h" #define GET_REGINFO_ENUM #include "X86GenRegisterInfo.inc" // Include the auto-generated portion of the assembly writer. #define PRINT_ALIAS_INSTR #ifdef CAPSTONE_X86_REDUCE #include "X86GenAsmWriter_reduce.inc" #else #include "X86GenAsmWriter.inc" #endif static void printRegName(SStream *OS, unsigned RegNo) { SStream_concat(OS, "%%%s", getRegisterName(RegNo)); } void X86_ATT_printInst(MCInst *MI, SStream *OS, void *info) { char *mnem; unsigned int i; x86_reg reg; // Try to print any aliases first. mnem = printAliasInstr(MI, OS, NULL); if (mnem) cs_mem_free(mnem); else printInstruction(MI, OS, NULL); if (MI->csh->detail) { // special instruction needs to supply register op reg = X86_insn_reg(MCInst_getOpcode(MI)); if (reg) { // add register operand for (i = 0;; i++) { // find the first empty slot to put it there if (MI->flat_insn->detail->x86.operands[i].type == 0) { MI->flat_insn->detail->x86.operands[i].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[i].reg = reg; MI->flat_insn->detail->x86.operands[i].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.op_count++; break; } } } } } #endif