Files
openbios/arch/sparc32/lib.c

593 lines
14 KiB
C
Raw Normal View History

/* lib.c
* tag: simple function library
*
* Copyright (C) 2003 Stefan Reinauer
*
* See the file "COPYING" for further information about
* the copyright and warranty status of this work.
*/
#include "libc/vsprintf.h"
#include "libopenbios/bindings.h"
#include "libopenbios/ofmem.h"
#include "asm/asi.h"
#include "pgtsrmmu.h"
#include "openprom.h"
#include "libopenbios/sys_info.h"
#include "boot.h"
#define NCTX_SWIFT 0x100
#define LOWMEMSZ 32 * 1024 * 1024
#ifdef CONFIG_DEBUG_MEM
#define DPRINTF(fmt, args...) \
do { printk(fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/* Format a string and print it on the screen, just like the libc
* function printf.
*/
int printk( const char *fmt, ... )
{
char *p, buf[512];
va_list args;
int i;
va_start(args, fmt);
i = vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
for( p=buf; *p; p++ )
putchar(*p);
return i;
}
/*
* Allocatable memory chunk.
*/
struct mem {
char *start, *uplim;
char *curp;
};
static struct mem cmem; /* Current memory, virtual */
static struct mem cio; /* Current I/O space */
struct mem cdvmem; /* Current device virtual memory space */
unsigned int va_shift;
static unsigned long *context_table;
static unsigned long *l1;
static struct linux_mlist_v0 totphys[1];
static struct linux_mlist_v0 totmap[1];
static struct linux_mlist_v0 totavail[1];
struct linux_mlist_v0 *ptphys;
struct linux_mlist_v0 *ptmap;
struct linux_mlist_v0 *ptavail;
static struct {
char *next_malloc;
int left;
alloc_desc_t *mfree; /* list of free malloc blocks */
range_t *phys_range;
range_t *virt_range;
translation_t *trans; /* this is really a translation_t */
} ofmem;
#define ALLOC_BLOCK (64 * 1024)
// XXX should be posix_memalign
static int
posix_memalign2(void **memptr, size_t alignment, size_t size)
{
alloc_desc_t *d, **pp;
char *ret;
if( !size )
return -1;
size = (size + (alignment - 1)) & ~(alignment - 1);
size += sizeof(alloc_desc_t);
/* look in the freelist */
for( pp=&ofmem.mfree; *pp && (**pp).size < size; pp = &(**pp).next )
;
/* waste at most 4K by taking an entry from the freelist */
if( *pp && (**pp).size < size + 0x1000 ) {
ret = (char*)*pp + sizeof(alloc_desc_t);
memset( ret, 0, (**pp).size - sizeof(alloc_desc_t) );
*pp = (**pp).next;
*memptr = ret;
return 0;
}
if( !ofmem.next_malloc || ofmem.left < size) {
unsigned long alloc_size = ALLOC_BLOCK;
if (size > ALLOC_BLOCK)
alloc_size = size;
// Recover possible leftover
if ((size_t)ofmem.left > sizeof(alloc_desc_t) + 4) {
alloc_desc_t *d_leftover;
d_leftover = (alloc_desc_t*)ofmem.next_malloc;
d_leftover->size = ofmem.left - sizeof(alloc_desc_t);
free((void *)((unsigned long)d_leftover +
sizeof(alloc_desc_t)));
}
ofmem.next_malloc = mem_alloc(&cmem, alloc_size, 8);
ofmem.left = alloc_size;
}
if( ofmem.left < size) {
printk("out of malloc memory (%x)!\n", size );
return -1;
}
d = (alloc_desc_t*) ofmem.next_malloc;
ofmem.next_malloc += size;
ofmem.left -= size;
d->next = NULL;
d->size = size;
ret = (char*)d + sizeof(alloc_desc_t);
memset( ret, 0, size - sizeof(alloc_desc_t) );
*memptr = ret;
return 0;
}
void *malloc(int size)
{
int ret;
void *mem;
ret = posix_memalign2(&mem, 8, size);
if (ret != 0)
return NULL;
return mem;
}
void free(void *ptr)
{
alloc_desc_t **pp, *d;
/* it is legal to free NULL pointers (size zero allocations) */
if( !ptr )
return;
d = (alloc_desc_t*)((unsigned long)ptr - sizeof(alloc_desc_t));
d->next = ofmem.mfree;
/* insert in the (sorted) freelist */
for( pp=&ofmem.mfree; *pp && (**pp).size < d->size ; pp = &(**pp).next )
;
d->next = *pp;
*pp = d;
}
void *
realloc( void *ptr, size_t size )
{
alloc_desc_t *d = (alloc_desc_t*)((unsigned long)ptr - sizeof(alloc_desc_t));
char *p;
if( !ptr )
return malloc( size );
if( !size ) {
free( ptr );
return NULL;
}
p = malloc( size );
memcpy( p, ptr, MIN(d->size - sizeof(alloc_desc_t),size) );
free( ptr );
return p;
}
// XXX should be removed
int
posix_memalign(void **memptr, size_t alignment, size_t size)
{
void *block;
block = mem_alloc(&cmem, size, alignment);
if (!block)
return -1;
*memptr = block;
return 0;
}
/*
* Allocate memory. This is reusable.
*/
void
mem_init(struct mem *t, char *begin, char *limit)
{
t->start = begin;
t->uplim = limit;
t->curp = begin;
}
void *
mem_alloc(struct mem *t, int size, int align)
{
char *p;
unsigned long pa;
// The alignment restrictions refer to physical, not virtual
// addresses
pa = va2pa((unsigned long)t->curp) + (align - 1);
pa &= ~(align - 1);
p = (char *)pa2va(pa);
if ((unsigned long)p >= (unsigned long)t->uplim ||
(unsigned long)p + size > (unsigned long)t->uplim)
return NULL;
t->curp = p + size;
return p;
}
static unsigned long
find_pte(unsigned long va, int alloc)
{
uint32_t pte;
void *p;
unsigned long pa;
int ret;
pte = l1[(va >> SRMMU_PGDIR_SHIFT) & (SRMMU_PTRS_PER_PGD - 1)];
if ((pte & SRMMU_ET_MASK) == SRMMU_ET_INVALID) {
if (alloc) {
ret = posix_memalign(&p, SRMMU_PTRS_PER_PMD * sizeof(int),
SRMMU_PTRS_PER_PMD * sizeof(int));
if (ret != 0)
return ret;
pte = SRMMU_ET_PTD | ((va2pa((unsigned long)p)) >> 4);
l1[(va >> SRMMU_PGDIR_SHIFT) & (SRMMU_PTRS_PER_PGD - 1)] = pte;
/* barrier() */
} else {
return -1;
}
}
pa = (pte & 0xFFFFFFF0) << 4;
pa += ((va >> SRMMU_PMD_SHIFT) & (SRMMU_PTRS_PER_PMD - 1)) << 2;
pte = *(uint32_t *)pa2va(pa);
if ((pte & SRMMU_ET_MASK) == SRMMU_ET_INVALID) {
if (alloc) {
ret = posix_memalign(&p, SRMMU_PTRS_PER_PTE * sizeof(void *),
SRMMU_PTRS_PER_PTE * sizeof(void *));
if (ret != 0)
return ret;
pte = SRMMU_ET_PTD | ((va2pa((unsigned int)p)) >> 4);
*(uint32_t *)pa2va(pa) = pte;
} else {
return -2;
}
}
pa = (pte & 0xFFFFFFF0) << 4;
pa += ((va >> PAGE_SHIFT) & (SRMMU_PTRS_PER_PTE - 1)) << 2;
return pa2va(pa);
}
/*
* Create a memory mapping from va to epa.
*/
int
map_page(unsigned long va, uint64_t epa, int type)
{
uint32_t pte;
unsigned long pa;
pa = find_pte(va, 1);
pte = SRMMU_ET_PTE | ((epa & PAGE_MASK) >> 4);
if (type) { /* I/O */
pte |= SRMMU_REF;
/* SRMMU cannot make Supervisor-only, but not exectutable */
pte |= SRMMU_PRIV;
} else { /* memory */
pte |= SRMMU_REF | SRMMU_CACHE;
pte |= SRMMU_PRIV; /* Supervisor only access */
}
*(uint32_t *)pa = pte;
DPRINTF("map_page: va 0x%lx pa 0x%llx pte 0x%x\n", va, epa, pte);
return 0;
}
static void map_pages(unsigned long va, uint64_t pa, int type,
unsigned long size)
{
unsigned long npages, off;
DPRINTF("map_pages: va 0x%lx, pa 0x%llx, size 0x%lx\n", va, pa, size);
off = pa & (PAGE_SIZE - 1);
npages = (off + (size - 1) + (PAGE_SIZE - 1)) / PAGE_SIZE;
pa &= ~(uint64_t)(PAGE_SIZE - 1);
while (npages-- != 0) {
map_page(va, pa, type);
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
}
/*
* Create an I/O mapping to pa[size].
* Returns va of the mapping or 0 if unsuccessful.
*/
void *
map_io(uint64_t pa, int size)
{
unsigned long va;
unsigned int npages;
unsigned int off;
off = pa & (PAGE_SIZE - 1);
npages = (off + size - 1) / PAGE_SIZE + 1;
pa &= ~(PAGE_SIZE - 1);
va = (unsigned long)mem_alloc(&cio, npages * PAGE_SIZE, PAGE_SIZE);
if (va == 0)
return NULL;
map_pages(va, pa, 1, npages * PAGE_SIZE);
return (void *)(va + off);
}
/*
* D5.3 pgmap@ ( va -- pte )
*/
static void
pgmap_fetch(void)
{
uint32_t pte;
unsigned long va, pa;
va = POP();
pa = find_pte(va, 0);
if (pa == 1 || pa == 2)
goto error;
pte = *(uint32_t *)pa;
DPRINTF("pgmap@: va 0x%lx pa 0x%lx pte 0x%x\n", va, pa, pte);
PUSH(pte);
return;
error:
PUSH(0);
}
/*
* D5.3 pgmap! ( pte va -- )
*/
static void
pgmap_store(void)
{
uint32_t pte;
unsigned long va, pa;
va = POP();
pte = POP();
pa = find_pte(va, 1);
*(uint32_t *)pa = pte;
DPRINTF("pgmap!: va 0x%lx pa 0x%lx pte 0x%x\n", va, pa, pte);
}
/*
* D5.3 map-pages ( pa space va size -- )
*/
static void
ob_map_pages(void)
{
unsigned long va;
int size;
uint64_t pa;
size = POP();
va = POP();
pa = POP();
pa <<= 32;
pa |= POP() & 0xffffffff;
map_pages(va, pa, 0, size);
DPRINTF("map-page: va 0x%lx pa 0x%llx size 0x%x\n", va, pa, size);
}
static void
init_romvec_mem(void)
{
ptphys = totphys;
ptmap = totmap;
ptavail = totavail;
/*
* Form memory descriptors.
*/
totphys[0].theres_more = NULL;
totphys[0].start_adr = (char *) 0;
totphys[0].num_bytes = qemu_mem_size;
totavail[0].theres_more = NULL;
totavail[0].start_adr = (char *) 0;
totavail[0].num_bytes = va2pa((int)&_start) - PAGE_SIZE;
totmap[0].theres_more = NULL;
totmap[0].start_adr = &_start;
totmap[0].num_bytes = (unsigned long) &_iomem -
(unsigned long) &_start + PAGE_SIZE;
}
char *obp_dumb_mmap(char *va, int which_io, unsigned int pa,
unsigned int size)
{
uint64_t mpa = ((uint64_t)which_io << 32) | (uint64_t)pa;
map_pages((unsigned long)va, mpa, 0, size);
return va;
}
void obp_dumb_munmap(__attribute__((unused)) char *va,
__attribute__((unused)) unsigned int size)
{
DPRINTF("obp_dumb_munmap: virta 0x%x, sz %d\n", (unsigned int)va, size);
}
char *obp_dumb_memalloc(char *va, unsigned int size)
{
static unsigned int next_free_address = 0xFFEDA000;
size = (size + 7) & ~7;
// XXX should use normal memory alloc
totmap[0].num_bytes -= size;
DPRINTF("obp_dumb_memalloc va 0x%p size %x at 0x%x\n", va, size,
totmap[0].num_bytes);
// If va is null, the allocator is supposed to pick a "suitable" address.
// (See OpenSolaric prom_alloc.c) There's not any real guidance as
// to what might be "suitable". So we mimic the behavior of a Sun boot
// ROM.
if (va == NULL) {
// XXX should register virtual memory allocation
va = (char *)(next_free_address - size);
next_free_address -= size;
DPRINTF("obp_dumb_memalloc req null -> 0x%p\n", va);
}
map_pages((unsigned long)va, totmap[0].num_bytes, 0, size);
return va;
}
void obp_dumb_memfree(__attribute__((unused))char *va,
__attribute__((unused))unsigned sz)
{
DPRINTF("obp_dumb_memfree 0x%p (size %d)\n", va, sz);
}
void
ob_init_mmu(void)
{
push_str("/memory");
fword("find-device");
PUSH(0);
fword("encode-int");
PUSH(0);
fword("encode-int");
fword("encode+");
PUSH(qemu_mem_size);
fword("encode-int");
fword("encode+");
push_str("reg");
fword("property");
PUSH(0);
fword("encode-int");
PUSH(0);
fword("encode-int");
fword("encode+");
PUSH(va2pa((unsigned long)&_start) - PAGE_SIZE);
fword("encode-int");
fword("encode+");
push_str("available");
fword("property");
push_str("/virtual-memory");
fword("find-device");
PUSH(0);
fword("encode-int");
PUSH(0);
fword("encode-int");
fword("encode+");
PUSH((unsigned long)&_start - PAGE_SIZE);
fword("encode-int");
fword("encode+");
PUSH(0);
fword("encode-int");
fword("encode+");
PUSH(va2pa((unsigned long)&_iomem));
fword("encode-int");
fword("encode+");
PUSH(-va2pa((unsigned long)&_iomem));
fword("encode-int");
fword("encode+");
push_str("available");
fword("property");
PUSH(0);
fword("active-package!");
bind_func("pgmap@", pgmap_fetch);
bind_func("pgmap!", pgmap_store);
bind_func("map-pages", ob_map_pages);
init_romvec_mem();
}
/*
* Switch page tables.
*/
void
init_mmu_swift(void)
{
unsigned int addr, i;
unsigned long pa, va;
mem_init(&cmem, (char *) &_vmem, (char *)&_evmem);
mem_init(&cio, (char *)&_end, (char *)&_iomem);
posix_memalign((void *)&context_table, NCTX_SWIFT * sizeof(int),
NCTX_SWIFT * sizeof(int));
posix_memalign((void *)&l1, 256 * sizeof(int), 256 * sizeof(int));
context_table[0] = (((unsigned long)va2pa((unsigned long)l1)) >> 4) |
SRMMU_ET_PTD;
for (i = 1; i < NCTX_SWIFT; i++) {
context_table[i] = SRMMU_ET_INVALID;
}
for (i = 0; i < 256; i += 4) {
l1[i] = SRMMU_ET_INVALID;
}
// text, rodata, data, and bss mapped to end of RAM
va = (unsigned long)&_start;
for (; va < (unsigned long)&_end; va += PAGE_SIZE) {
pa = va2pa(va);
map_page(va, pa, 0);
}
// 1:1 mapping for RAM
pa = va = 0;
for (; va < LOWMEMSZ; va += PAGE_SIZE, pa += PAGE_SIZE) {
map_page(va, pa, 0);
}
/*
* Flush cache
*/
for (addr = 0; addr < 0x2000; addr += 0x10) {
__asm__ __volatile__ ("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_M_DATAC_TAG));
__asm__ __volatile__ ("sta %%g0, [%0] %1\n\t" : :
"r" (addr<<1), "i" (ASI_M_TXTC_TAG));
}
srmmu_set_context(0);
srmmu_set_ctable_ptr(va2pa((unsigned long)context_table));
srmmu_flush_whole_tlb();
}