opensbi/lib/utils/fdt/fdt_helper.c

244 lines
5.7 KiB
C
Raw Normal View History

// SPDX-License-Identifier: BSD-2-Clause
/*
* fdt_helper.c - Flat Device Tree manipulation helper routines
* Implement helper routines on top of libfdt for OpenSBI usage
*
* Copyright (C) 2020 Bin Meng <bmeng.cn@gmail.com>
*/
#include <libfdt.h>
#include <sbi/riscv_asm.h>
#include <sbi/sbi_console.h>
#include <sbi/sbi_platform.h>
#include <sbi/sbi_scratch.h>
#include <sbi_utils/fdt/fdt_helper.h>
#define DEFAULT_UART_FREQ 0
#define DEFAULT_UART_BAUD 115200
#define DEFAULT_UART_REG_SHIFT 0
#define DEFAULT_UART_REG_IO_WIDTH 1
#define DEFAULT_SIFIVE_UART_FREQ 0
#define DEFAULT_SIFIVE_UART_BAUD 115200
#define DEFAULT_SIFIVE_UART_REG_SHIFT 0
#define DEFAULT_SIFIVE_UART_REG_IO_WIDTH 4
const struct fdt_match *fdt_match_node(void *fdt, int nodeoff,
const struct fdt_match *match_table)
{
int ret;
if (!fdt || nodeoff < 0 || !match_table)
return NULL;
while (match_table->compatible) {
ret = fdt_node_check_compatible(fdt, nodeoff,
match_table->compatible);
if (!ret)
return match_table;
match_table++;
}
return NULL;
}
int fdt_find_match(void *fdt, const struct fdt_match *match_table,
const struct fdt_match **out_match)
{
int nodeoff;
if (!fdt || !match_table)
return SBI_ENODEV;
while (match_table->compatible) {
nodeoff = fdt_node_offset_by_compatible(fdt, -1,
match_table->compatible);
if (nodeoff >= 0) {
if (out_match)
*out_match = match_table;
return nodeoff;
}
match_table++;
}
return SBI_ENODEV;
}
int fdt_get_node_addr_size(void *fdt, int node, unsigned long *addr,
unsigned long *size)
{
int parent, len, i;
int cell_addr, cell_size;
const fdt32_t *prop_addr, *prop_size;
uint64_t temp = 0;
parent = fdt_parent_offset(fdt, node);
if (parent < 0)
return parent;
cell_addr = fdt_address_cells(fdt, parent);
if (cell_addr < 1)
return SBI_ENODEV;
cell_size = fdt_size_cells(fdt, parent);
if (cell_size < 0)
return SBI_ENODEV;
prop_addr = fdt_getprop(fdt, node, "reg", &len);
if (!prop_addr)
return SBI_ENODEV;
prop_size = prop_addr + cell_addr;
if (addr) {
for (i = 0; i < cell_addr; i++)
temp = (temp << 32) | fdt32_to_cpu(*prop_addr++);
*addr = temp;
}
temp = 0;
if (size) {
for (i = 0; i < cell_size; i++)
temp = (temp << 32) | fdt32_to_cpu(*prop_size++);
*size = temp;
}
return 0;
}
int fdt_parse_sifive_uart_node(void *fdt, int nodeoffset,
struct platform_uart_data *uart)
{
int len, rc;
const fdt32_t *val;
unsigned long reg_addr, reg_size;
if (nodeoffset < 0 || !uart || !fdt)
return SBI_ENODEV;
rc = fdt_get_node_addr_size(fdt, nodeoffset, &reg_addr, &reg_size);
if (rc < 0 || !reg_addr || !reg_size)
return SBI_ENODEV;
uart->addr = reg_addr;
/**
* UART address is mandaotry. clock-frequency and current-speed
* may not be present. Don't return error.
*/
val = (fdt32_t *)fdt_getprop(fdt, nodeoffset, "clock-frequency", &len);
if (len > 0 && val)
uart->freq = fdt32_to_cpu(*val);
else
uart->freq = DEFAULT_SIFIVE_UART_FREQ;
val = (fdt32_t *)fdt_getprop(fdt, nodeoffset, "current-speed", &len);
if (len > 0 && val)
uart->baud = fdt32_to_cpu(*val);
else
uart->baud = DEFAULT_SIFIVE_UART_BAUD;
/* For SiFive UART, the reg-shift and reg-io-width are fixed .*/
uart->reg_shift = DEFAULT_SIFIVE_UART_REG_SHIFT;
uart->reg_io_width = DEFAULT_SIFIVE_UART_REG_IO_WIDTH;
return 0;
}
int fdt_parse_uart8250_node(void *fdt, int nodeoffset,
struct platform_uart_data *uart)
{
int len, rc;
const fdt32_t *val;
unsigned long reg_addr, reg_size;
if (nodeoffset < 0 || !uart || !fdt)
return SBI_ENODEV;
rc = fdt_get_node_addr_size(fdt, nodeoffset, &reg_addr, &reg_size);
if (rc < 0 || !reg_addr || !reg_size)
return SBI_ENODEV;
uart->addr = reg_addr;
/**
* UART address is mandaotry. clock-frequency and current-speed
* may not be present. Don't return error.
*/
val = (fdt32_t *)fdt_getprop(fdt, nodeoffset, "clock-frequency", &len);
if (len > 0 && val)
uart->freq = fdt32_to_cpu(*val);
else
uart->freq = DEFAULT_UART_FREQ;
val = (fdt32_t *)fdt_getprop(fdt, nodeoffset, "current-speed", &len);
if (len > 0 && val)
uart->baud = fdt32_to_cpu(*val);
else
uart->baud = DEFAULT_UART_BAUD;
val = (fdt32_t *)fdt_getprop(fdt, nodeoffset, "reg-shift", &len);
if (len > 0 && val)
uart->reg_shift = fdt32_to_cpu(*val);
else
uart->reg_shift = DEFAULT_UART_REG_SHIFT;
val = (fdt32_t *)fdt_getprop(fdt, nodeoffset, "reg-io-width", &len);
if (len > 0 && val)
uart->reg_io_width = fdt32_to_cpu(*val);
else
uart->reg_io_width = DEFAULT_UART_REG_IO_WIDTH;
return 0;
}
int fdt_parse_uart8250(void *fdt, struct platform_uart_data *uart,
const char *compatible)
{
int nodeoffset;
if (!compatible || !uart || !fdt)
return SBI_ENODEV;
nodeoffset = fdt_node_offset_by_compatible(fdt, -1, compatible);
if (nodeoffset < 0)
return nodeoffset;
return fdt_parse_uart8250_node(fdt, nodeoffset, uart);
}
int fdt_parse_plic(void *fdt, struct platform_plic_data *plic,
const char *compatible)
{
int nodeoffset, len, rc;
const fdt32_t *val;
unsigned long reg_addr, reg_size;
nodeoffset = fdt_node_offset_by_compatible(fdt, -1, compatible);
if (nodeoffset < 0)
return nodeoffset;
rc = fdt_get_node_addr_size(fdt, nodeoffset, &reg_addr, &reg_size);
if (rc < 0 || !reg_addr || !reg_size)
return SBI_ENODEV;
plic->addr = reg_addr;
val = fdt_getprop(fdt, nodeoffset, "riscv,ndev", &len);
if (len > 0)
plic->num_src = fdt32_to_cpu(*val);
return 0;
}
int fdt_parse_compat_addr(void *fdt, unsigned long *addr,
const char *compatible)
{
int nodeoffset, rc;
nodeoffset = fdt_node_offset_by_compatible(fdt, -1, compatible);
if (nodeoffset < 0)
return nodeoffset;
rc = fdt_get_node_addr_size(fdt, nodeoffset, addr, NULL);
if (rc < 0 || !addr)
return SBI_ENODEV;
return 0;
}