mirror of
				https://gitlab.com/qemu-project/qemu.git
				synced 2025-10-30 07:57:14 +08:00 
			
		
		
		
	 871de7078f
			
		
	
	871de7078f
	
	
	
		
			
			Do so before extending it to the user-mode emulators, where there is no such thing as an "I/O thread". Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			456 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			456 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CPU thread main loop - common bits for user and system mode emulation
 | |
|  *
 | |
|  *  Copyright (c) 2003-2005 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "exec/cpu-common.h"
 | |
| #include "hw/core/cpu.h"
 | |
| #include "qemu/lockable.h"
 | |
| #include "trace/trace-root.h"
 | |
| 
 | |
| QemuMutex qemu_cpu_list_lock;
 | |
| static QemuCond exclusive_cond;
 | |
| static QemuCond exclusive_resume;
 | |
| static QemuCond qemu_work_cond;
 | |
| 
 | |
| /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
 | |
|  * under qemu_cpu_list_lock, read with atomic operations.
 | |
|  */
 | |
| static int pending_cpus;
 | |
| 
 | |
| void qemu_init_cpu_list(void)
 | |
| {
 | |
|     /* This is needed because qemu_init_cpu_list is also called by the
 | |
|      * child process in a fork.  */
 | |
|     pending_cpus = 0;
 | |
| 
 | |
|     qemu_mutex_init(&qemu_cpu_list_lock);
 | |
|     qemu_cond_init(&exclusive_cond);
 | |
|     qemu_cond_init(&exclusive_resume);
 | |
|     qemu_cond_init(&qemu_work_cond);
 | |
| }
 | |
| 
 | |
| void cpu_list_lock(void)
 | |
| {
 | |
|     qemu_mutex_lock(&qemu_cpu_list_lock);
 | |
| }
 | |
| 
 | |
| void cpu_list_unlock(void)
 | |
| {
 | |
|     qemu_mutex_unlock(&qemu_cpu_list_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| int cpu_get_free_index(void)
 | |
| {
 | |
|     CPUState *some_cpu;
 | |
|     int max_cpu_index = 0;
 | |
| 
 | |
|     CPU_FOREACH(some_cpu) {
 | |
|         if (some_cpu->cpu_index >= max_cpu_index) {
 | |
|             max_cpu_index = some_cpu->cpu_index + 1;
 | |
|         }
 | |
|     }
 | |
|     return max_cpu_index;
 | |
| }
 | |
| 
 | |
| CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
 | |
| static unsigned int cpu_list_generation_id;
 | |
| 
 | |
| unsigned int cpu_list_generation_id_get(void)
 | |
| {
 | |
|     return cpu_list_generation_id;
 | |
| }
 | |
| 
 | |
| void cpu_list_add(CPUState *cpu)
 | |
| {
 | |
|     static bool cpu_index_auto_assigned;
 | |
| 
 | |
|     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
 | |
|     if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
 | |
|         cpu_index_auto_assigned = true;
 | |
|         cpu->cpu_index = cpu_get_free_index();
 | |
|         assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
 | |
|     } else {
 | |
|         assert(!cpu_index_auto_assigned);
 | |
|     }
 | |
|     QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
 | |
|     cpu_list_generation_id++;
 | |
| }
 | |
| 
 | |
| void cpu_list_remove(CPUState *cpu)
 | |
| {
 | |
|     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
 | |
|     if (!QTAILQ_IN_USE(cpu, node)) {
 | |
|         /* there is nothing to undo since cpu_exec_init() hasn't been called */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
 | |
|     cpu->cpu_index = UNASSIGNED_CPU_INDEX;
 | |
|     cpu_list_generation_id++;
 | |
| }
 | |
| 
 | |
| CPUState *qemu_get_cpu(int index)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu->cpu_index == index) {
 | |
|             return cpu;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* current CPU in the current thread. It is only valid inside cpu_exec() */
 | |
| __thread CPUState *current_cpu;
 | |
| 
 | |
| struct qemu_work_item {
 | |
|     QSIMPLEQ_ENTRY(qemu_work_item) node;
 | |
|     run_on_cpu_func func;
 | |
|     run_on_cpu_data data;
 | |
|     bool free, exclusive, done;
 | |
| };
 | |
| 
 | |
| static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
 | |
| {
 | |
|     qemu_mutex_lock(&cpu->work_mutex);
 | |
|     QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
 | |
|     wi->done = false;
 | |
|     qemu_mutex_unlock(&cpu->work_mutex);
 | |
| 
 | |
|     /* exit the inner loop and reach qemu_process_cpu_events_common().  */
 | |
|     cpu_exit(cpu);
 | |
| }
 | |
| 
 | |
| void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
 | |
|                    QemuMutex *mutex)
 | |
| {
 | |
|     struct qemu_work_item wi;
 | |
| 
 | |
|     if (qemu_cpu_is_self(cpu)) {
 | |
|         func(cpu, data);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     wi.func = func;
 | |
|     wi.data = data;
 | |
|     wi.done = false;
 | |
|     wi.free = false;
 | |
|     wi.exclusive = false;
 | |
| 
 | |
|     queue_work_on_cpu(cpu, &wi);
 | |
|     while (!qatomic_load_acquire(&wi.done)) {
 | |
|         CPUState *self_cpu = current_cpu;
 | |
| 
 | |
|         qemu_cond_wait(&qemu_work_cond, mutex);
 | |
|         current_cpu = self_cpu;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
 | |
| {
 | |
|     struct qemu_work_item *wi;
 | |
| 
 | |
|     wi = g_new0(struct qemu_work_item, 1);
 | |
|     wi->func = func;
 | |
|     wi->data = data;
 | |
|     wi->free = true;
 | |
| 
 | |
|     queue_work_on_cpu(cpu, wi);
 | |
| }
 | |
| 
 | |
| /* Wait for pending exclusive operations to complete.  The CPU list lock
 | |
|    must be held.  */
 | |
| static inline void exclusive_idle(void)
 | |
| {
 | |
|     while (pending_cpus) {
 | |
|         qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Start an exclusive operation.
 | |
|    Must only be called from outside cpu_exec.  */
 | |
| void start_exclusive(void)
 | |
| {
 | |
|     CPUState *other_cpu;
 | |
|     int running_cpus;
 | |
| 
 | |
|     /* Ensure we are not running, or start_exclusive will be blocked. */
 | |
|     g_assert(!current_cpu->running);
 | |
| 
 | |
|     if (current_cpu->exclusive_context_count) {
 | |
|         current_cpu->exclusive_context_count++;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_lock(&qemu_cpu_list_lock);
 | |
|     exclusive_idle();
 | |
| 
 | |
|     /* Make all other cpus stop executing.  */
 | |
|     qatomic_set(&pending_cpus, 1);
 | |
| 
 | |
|     /* Write pending_cpus before reading other_cpu->running.  */
 | |
|     smp_mb();
 | |
|     running_cpus = 0;
 | |
|     CPU_FOREACH(other_cpu) {
 | |
|         if (qatomic_read(&other_cpu->running)) {
 | |
|             other_cpu->has_waiter = true;
 | |
|             running_cpus++;
 | |
|             qemu_cpu_kick(other_cpu);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qatomic_set(&pending_cpus, running_cpus + 1);
 | |
|     while (pending_cpus > 1) {
 | |
|         qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
 | |
|     }
 | |
| 
 | |
|     /* Can release mutex, no one will enter another exclusive
 | |
|      * section until end_exclusive resets pending_cpus to 0.
 | |
|      */
 | |
|     qemu_mutex_unlock(&qemu_cpu_list_lock);
 | |
| 
 | |
|     current_cpu->exclusive_context_count = 1;
 | |
| }
 | |
| 
 | |
| /* Finish an exclusive operation.  */
 | |
| void end_exclusive(void)
 | |
| {
 | |
|     current_cpu->exclusive_context_count--;
 | |
|     if (current_cpu->exclusive_context_count) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_lock(&qemu_cpu_list_lock);
 | |
|     qatomic_set(&pending_cpus, 0);
 | |
|     qemu_cond_broadcast(&exclusive_resume);
 | |
|     qemu_mutex_unlock(&qemu_cpu_list_lock);
 | |
| }
 | |
| 
 | |
| /* Wait for exclusive ops to finish, and begin cpu execution.  */
 | |
| void cpu_exec_start(CPUState *cpu)
 | |
| {
 | |
|     qatomic_set(&cpu->running, true);
 | |
| 
 | |
|     /* Write cpu->running before reading pending_cpus.  */
 | |
|     smp_mb();
 | |
| 
 | |
|     /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
 | |
|      * After taking the lock we'll see cpu->has_waiter == true and run---not
 | |
|      * for long because start_exclusive kicked us.  cpu_exec_end will
 | |
|      * decrement pending_cpus and signal the waiter.
 | |
|      *
 | |
|      * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
 | |
|      * This includes the case when an exclusive item is running now.
 | |
|      * Then we'll see cpu->has_waiter == false and wait for the item to
 | |
|      * complete.
 | |
|      *
 | |
|      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
 | |
|      * see cpu->running == true, and it will kick the CPU.
 | |
|      */
 | |
|     if (unlikely(qatomic_read(&pending_cpus))) {
 | |
|         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
 | |
|         if (!cpu->has_waiter) {
 | |
|             /* Not counted in pending_cpus, let the exclusive item
 | |
|              * run.  Since we have the lock, just set cpu->running to true
 | |
|              * while holding it; no need to check pending_cpus again.
 | |
|              */
 | |
|             qatomic_set(&cpu->running, false);
 | |
|             exclusive_idle();
 | |
|             /* Now pending_cpus is zero.  */
 | |
|             qatomic_set(&cpu->running, true);
 | |
|         } else {
 | |
|             /* Counted in pending_cpus, go ahead and release the
 | |
|              * waiter at cpu_exec_end.
 | |
|              */
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Mark cpu as not executing, and release pending exclusive ops.  */
 | |
| void cpu_exec_end(CPUState *cpu)
 | |
| {
 | |
|     qatomic_set(&cpu->running, false);
 | |
| 
 | |
|     /* Write cpu->running before reading pending_cpus.  */
 | |
|     smp_mb();
 | |
| 
 | |
|     /* 1. start_exclusive saw cpu->running == true.  Then it will increment
 | |
|      * pending_cpus and wait for exclusive_cond.  After taking the lock
 | |
|      * we'll see cpu->has_waiter == true.
 | |
|      *
 | |
|      * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
 | |
|      * This includes the case when an exclusive item started after setting
 | |
|      * cpu->running to false and before we read pending_cpus.  Then we'll see
 | |
|      * cpu->has_waiter == false and not touch pending_cpus.  The next call to
 | |
|      * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
 | |
|      * for the item to complete.
 | |
|      *
 | |
|      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
 | |
|      * see cpu->running == false, and it can ignore this CPU until the
 | |
|      * next cpu_exec_start.
 | |
|      */
 | |
|     if (unlikely(qatomic_read(&pending_cpus))) {
 | |
|         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
 | |
|         if (cpu->has_waiter) {
 | |
|             cpu->has_waiter = false;
 | |
|             qatomic_set(&pending_cpus, pending_cpus - 1);
 | |
|             if (pending_cpus == 1) {
 | |
|                 qemu_cond_signal(&exclusive_cond);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
 | |
|                            run_on_cpu_data data)
 | |
| {
 | |
|     struct qemu_work_item *wi;
 | |
| 
 | |
|     wi = g_new0(struct qemu_work_item, 1);
 | |
|     wi->func = func;
 | |
|     wi->data = data;
 | |
|     wi->free = true;
 | |
|     wi->exclusive = true;
 | |
| 
 | |
|     queue_work_on_cpu(cpu, wi);
 | |
| }
 | |
| 
 | |
| void free_queued_cpu_work(CPUState *cpu)
 | |
| {
 | |
|     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
 | |
|         struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list);
 | |
|         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
 | |
|         if (wi->free) {
 | |
|             g_free(wi);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void process_queued_cpu_work(CPUState *cpu)
 | |
| {
 | |
|     struct qemu_work_item *wi;
 | |
| 
 | |
|     qemu_mutex_lock(&cpu->work_mutex);
 | |
|     if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
 | |
|         qemu_mutex_unlock(&cpu->work_mutex);
 | |
|         return;
 | |
|     }
 | |
|     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
 | |
|         wi = QSIMPLEQ_FIRST(&cpu->work_list);
 | |
|         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
 | |
|         qemu_mutex_unlock(&cpu->work_mutex);
 | |
|         if (wi->exclusive) {
 | |
|             /* Running work items outside the BQL avoids the following deadlock:
 | |
|              * 1) start_exclusive() is called with the BQL taken while another
 | |
|              * CPU is running; 2) cpu_exec in the other CPU tries to takes the
 | |
|              * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
 | |
|              * neither CPU can proceed.
 | |
|              */
 | |
|             bql_unlock();
 | |
|             start_exclusive();
 | |
|             wi->func(cpu, wi->data);
 | |
|             end_exclusive();
 | |
|             bql_lock();
 | |
|         } else {
 | |
|             wi->func(cpu, wi->data);
 | |
|         }
 | |
|         qemu_mutex_lock(&cpu->work_mutex);
 | |
|         if (wi->free) {
 | |
|             g_free(wi);
 | |
|         } else {
 | |
|             qatomic_store_release(&wi->done, true);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&cpu->work_mutex);
 | |
|     qemu_cond_broadcast(&qemu_work_cond);
 | |
| }
 | |
| 
 | |
| /* Add a breakpoint.  */
 | |
| int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
 | |
|                           CPUBreakpoint **breakpoint)
 | |
| {
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     if (cpu->cc->gdb_adjust_breakpoint) {
 | |
|         pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc);
 | |
|     }
 | |
| 
 | |
|     bp = g_malloc(sizeof(*bp));
 | |
| 
 | |
|     bp->pc = pc;
 | |
|     bp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected breakpoints in front */
 | |
|     if (flags & BP_GDB) {
 | |
|         QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
 | |
|     } else {
 | |
|         QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
 | |
|     }
 | |
| 
 | |
|     if (breakpoint) {
 | |
|         *breakpoint = bp;
 | |
|     }
 | |
| 
 | |
|     trace_breakpoint_insert(cpu->cpu_index, pc, flags);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint.  */
 | |
| int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
 | |
| {
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     if (cpu->cc->gdb_adjust_breakpoint) {
 | |
|         pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc);
 | |
|     }
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
 | |
|         if (bp->pc == pc && bp->flags == flags) {
 | |
|             cpu_breakpoint_remove_by_ref(cpu, bp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint by reference.  */
 | |
| void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
 | |
| {
 | |
|     QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
 | |
| 
 | |
|     trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
 | |
|     g_free(bp);
 | |
| }
 | |
| 
 | |
| /* Remove all matching breakpoints. */
 | |
| void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
 | |
| {
 | |
|     CPUBreakpoint *bp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
 | |
|         if (bp->flags & mask) {
 | |
|             cpu_breakpoint_remove_by_ref(cpu, bp);
 | |
|         }
 | |
|     }
 | |
| }
 |