drop obsolete acpi table code

It's there for backward compatibility with qemu 1.6 and older.  This
release is older than a decade.  Even qemu itself has removed backward
compatibility support (i.e. machine types) for qemu versions that old.

It should be safe to remove this code now.

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
This commit is contained in:
Gerd Hoffmann 2024-11-20 12:42:13 +01:00
parent 1b598a1d79
commit 35aa9a72c2
3 changed files with 1 additions and 692 deletions

View File

@ -251,21 +251,6 @@ $(OUT)vgabios.bin: $(OUT)vgabios.bin.raw scripts/buildrom.py
$(Q)$(PYTHON) ./scripts/buildrom.py $< $@ $(Q)$(PYTHON) ./scripts/buildrom.py $< $@
################ DSDT build rules
iasl-option=$(shell if test -z "`$(1) $(2) 2>&1 > /dev/null`" \
; then echo "$(2)"; else echo "$(3)"; fi ;)
%.hex: %.dsl ./scripts/acpi_extract_preprocess.py ./scripts/acpi_extract.py
@echo " Compiling IASL $@"
$(Q)$(CPP) $(CPPFLAGS) $< -o $(OUT)$*.dsl.i.orig
$(Q)$(PYTHON) ./scripts/acpi_extract_preprocess.py $(OUT)$*.dsl.i.orig > $(OUT)$*.dsl.i
$(Q)$(IASL) $(call iasl-option,$(IASL),-Pn,) -vs -l -tc -p $(OUT)$* $(OUT)$*.dsl.i
$(Q)$(PYTHON) ./scripts/acpi_extract.py $(OUT)$*.lst > $(OUT)$*.off
$(Q)cat $(OUT)$*.off > $@
iasl: src/fw/acpi-dsdt.hex src/fw/ssdt-proc.hex src/fw/ssdt-pcihp.hex src/fw/ssdt-misc.hex
################ Kconfig rules ################ Kconfig rules
define do-kconfig define do-kconfig

View File

@ -503,16 +503,6 @@ menu "BIOS Tables"
default y default y
help help
Support generation of ACPI tables. Support generation of ACPI tables.
config ACPI_DSDT
bool "Include default ACPI DSDT"
default y
depends on ACPI
help
Include default DSDT ACPI table in BIOS.
Required for QEMU 1.3 and older.
This option can be disabled for QEMU 1.4 and newer
to save some space in the ROM file.
If unsure, say Y.
config FW_ROMFILE_LOAD config FW_ROMFILE_LOAD
bool "Load BIOS tables from ROM files" bool "Load BIOS tables from ROM files"
depends on QEMU_HARDWARE depends on QEMU_HARDWARE

View File

@ -6,680 +6,14 @@
// //
// This file may be distributed under the terms of the GNU LGPLv3 license. // This file may be distributed under the terms of the GNU LGPLv3 license.
#include "byteorder.h" // cpu_to_le16
#include "config.h" // CONFIG_* #include "config.h" // CONFIG_*
#include "dev-q35.h"
#include "dev-piix.h"
#include "hw/pcidevice.h" // pci_find_init_device
#include "hw/pci_ids.h" // PCI_VENDOR_ID_INTEL
#include "hw/pci_regs.h" // PCI_INTERRUPT_LINE
#include "malloc.h" // free
#include "output.h" // dprintf #include "output.h" // dprintf
#include "paravirt.h" // RamSize
#include "romfile.h" // romfile_loadint
#include "std/acpi.h" // struct rsdp_descriptor
#include "string.h" // memset
#include "util.h" // MaxCountCPUs
#include "x86.h" // readl
#include "fw/acpi-dsdt.hex"
static void
build_header(struct acpi_table_header *h, u32 sig, int len, u8 rev)
{
h->signature = cpu_to_le32(sig);
h->length = cpu_to_le32(len);
h->revision = rev;
memcpy(h->oem_id, BUILD_APPNAME6, 6);
memcpy(h->oem_table_id, BUILD_APPNAME4, 4);
memcpy(h->oem_table_id + 4, (void*)&sig, 4);
h->oem_revision = cpu_to_le32(1);
memcpy(h->asl_compiler_id, BUILD_APPNAME4, 4);
h->asl_compiler_revision = cpu_to_le32(1);
h->checksum -= checksum(h, len);
}
static void piix4_fadt_setup(struct pci_device *pci, void *arg)
{
struct fadt_descriptor_rev1 *fadt = arg;
fadt->model = 1;
fadt->reserved1 = 0;
fadt->sci_int = cpu_to_le16(PIIX_PM_INTRRUPT);
fadt->smi_cmd = cpu_to_le32(PORT_SMI_CMD);
fadt->acpi_enable = PIIX_ACPI_ENABLE;
fadt->acpi_disable = PIIX_ACPI_DISABLE;
fadt->pm1a_evt_blk = cpu_to_le32(acpi_pm_base);
fadt->pm1a_cnt_blk = cpu_to_le32(acpi_pm_base + 0x04);
fadt->pm_tmr_blk = cpu_to_le32(acpi_pm_base + 0x08);
fadt->gpe0_blk = cpu_to_le32(PIIX_GPE0_BLK);
fadt->pm1_evt_len = 4;
fadt->pm1_cnt_len = 2;
fadt->pm_tmr_len = 4;
fadt->gpe0_blk_len = PIIX_GPE0_BLK_LEN;
fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported
fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported
fadt->flags = cpu_to_le32(ACPI_FADT_F_WBINVD |
ACPI_FADT_F_PROC_C1 |
ACPI_FADT_F_SLP_BUTTON |
ACPI_FADT_F_RTC_S4 |
ACPI_FADT_F_USE_PLATFORM_CLOCK);
}
/* PCI_VENDOR_ID_INTEL && PCI_DEVICE_ID_INTEL_ICH9_LPC */
static void ich9_lpc_fadt_setup(struct pci_device *dev, void *arg)
{
struct fadt_descriptor_rev1 *fadt = arg;
fadt->model = 1;
fadt->reserved1 = 0;
fadt->sci_int = cpu_to_le16(9);
fadt->smi_cmd = cpu_to_le32(PORT_SMI_CMD);
fadt->acpi_enable = ICH9_ACPI_ENABLE;
fadt->acpi_disable = ICH9_ACPI_DISABLE;
fadt->pm1a_evt_blk = cpu_to_le32(acpi_pm_base);
fadt->pm1a_cnt_blk = cpu_to_le32(acpi_pm_base + 0x04);
fadt->pm_tmr_blk = cpu_to_le32(acpi_pm_base + 0x08);
fadt->gpe0_blk = cpu_to_le32(acpi_pm_base + ICH9_PMIO_GPE0_STS);
fadt->pm1_evt_len = 4;
fadt->pm1_cnt_len = 2;
fadt->pm_tmr_len = 4;
fadt->gpe0_blk_len = ICH9_PMIO_GPE0_BLK_LEN;
fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported
fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported
fadt->flags = cpu_to_le32(ACPI_FADT_F_WBINVD |
ACPI_FADT_F_PROC_C1 |
ACPI_FADT_F_SLP_BUTTON |
ACPI_FADT_F_RTC_S4 |
ACPI_FADT_F_USE_PLATFORM_CLOCK);
}
static const struct pci_device_id fadt_init_tbl[] = {
/* PIIX4 Power Management device (for ACPI) */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3,
piix4_fadt_setup),
PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_LPC,
ich9_lpc_fadt_setup),
PCI_DEVICE_END
};
static void fill_dsdt(struct fadt_descriptor_rev1 *fadt, void *dsdt)
{
if (fadt->dsdt) {
free((void *)le32_to_cpu(fadt->dsdt));
}
fadt->dsdt = cpu_to_le32((u32)dsdt);
fadt->checksum -= checksum(fadt, sizeof(*fadt));
dprintf(1, "ACPI DSDT=%p\n", dsdt);
}
static void *
build_fadt(struct pci_device *pci)
{
struct fadt_descriptor_rev1 *fadt = malloc_high(sizeof(*fadt));
struct facs_descriptor_rev1 *facs = memalign_high(64, sizeof(*facs));
if (!fadt || !facs) {
warn_noalloc();
return NULL;
}
/* FACS */
memset(facs, 0, sizeof(*facs));
facs->signature = cpu_to_le32(FACS_SIGNATURE);
facs->length = cpu_to_le32(sizeof(*facs));
/* FADT */
memset(fadt, 0, sizeof(*fadt));
fadt->firmware_ctrl = cpu_to_le32((u32)facs);
fadt->dsdt = 0; /* dsdt will be filled later in acpi_setup()
by fill_dsdt() */
pci_init_device(fadt_init_tbl, pci, fadt);
build_header((void*)fadt, FACP_SIGNATURE, sizeof(*fadt), 1);
return fadt;
}
static void*
build_madt(void)
{
int madt_size = (sizeof(struct multiple_apic_table)
+ sizeof(struct madt_processor_apic) * MaxCountCPUs
+ sizeof(struct madt_io_apic)
+ sizeof(struct madt_intsrcovr) * 16
+ sizeof(struct madt_local_nmi));
struct multiple_apic_table *madt = malloc_high(madt_size);
if (!madt) {
warn_noalloc();
return NULL;
}
memset(madt, 0, madt_size);
madt->local_apic_address = cpu_to_le32(BUILD_APIC_ADDR);
madt->flags = cpu_to_le32(1);
struct madt_processor_apic *apic = (void*)&madt[1];
int i;
for (i=0; i<MaxCountCPUs; i++) {
apic->type = APIC_PROCESSOR;
apic->length = sizeof(*apic);
apic->processor_id = i;
apic->local_apic_id = i;
if (apic_id_is_present(apic->local_apic_id))
apic->flags = cpu_to_le32(1);
else
apic->flags = cpu_to_le32(0);
apic++;
}
struct madt_io_apic *io_apic = (void*)apic;
io_apic->type = APIC_IO;
io_apic->length = sizeof(*io_apic);
io_apic->io_apic_id = BUILD_IOAPIC_ID;
io_apic->address = cpu_to_le32(BUILD_IOAPIC_ADDR);
io_apic->interrupt = cpu_to_le32(0);
struct madt_intsrcovr *intsrcovr = (void*)&io_apic[1];
if (romfile_loadint("etc/irq0-override", 0)) {
memset(intsrcovr, 0, sizeof(*intsrcovr));
intsrcovr->type = APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
intsrcovr->source = 0;
intsrcovr->gsi = cpu_to_le32(2);
intsrcovr->flags = cpu_to_le16(0); /* conforms to bus specifications */
intsrcovr++;
}
for (i = 1; i < 16; i++) {
if (!(BUILD_PCI_IRQS & (1 << i)))
/* No need for a INT source override structure. */
continue;
memset(intsrcovr, 0, sizeof(*intsrcovr));
intsrcovr->type = APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
intsrcovr->source = i;
intsrcovr->gsi = cpu_to_le32(i);
intsrcovr->flags = cpu_to_le16(0xd); /* active high, level triggered */
intsrcovr++;
}
struct madt_local_nmi *local_nmi = (void*)intsrcovr;
local_nmi->type = APIC_LOCAL_NMI;
local_nmi->length = sizeof(*local_nmi);
local_nmi->processor_id = 0xff; /* all processors */
local_nmi->flags = cpu_to_le16(0);
local_nmi->lint = 1; /* LINT1 */
local_nmi++;
build_header((void*)madt, APIC_SIGNATURE, (void*)local_nmi - (void*)madt, 1);
return madt;
}
// Encode a hex value
static inline char getHex(u32 val) {
val &= 0x0f;
return (val <= 9) ? ('0' + val) : ('A' + val - 10);
}
// Encode a length in an SSDT.
static u8 *
encodeLen(u8 *ssdt_ptr, int length, int bytes)
{
switch (bytes) {
default:
case 4: ssdt_ptr[3] = ((length >> 20) & 0xff);
case 3: ssdt_ptr[2] = ((length >> 12) & 0xff);
case 2: ssdt_ptr[1] = ((length >> 4) & 0xff);
ssdt_ptr[0] = (((bytes-1) & 0x3) << 6) | (length & 0x0f);
break;
case 1: ssdt_ptr[0] = length & 0x3f;
}
return ssdt_ptr + bytes;
}
#include "fw/ssdt-proc.hex"
/* 0x5B 0x83 ProcessorOp PkgLength NameString ProcID */
#define PROC_OFFSET_CPUHEX (*ssdt_proc_name - *ssdt_proc_start + 2)
#define PROC_OFFSET_CPUID1 (*ssdt_proc_name - *ssdt_proc_start + 4)
#define PROC_OFFSET_CPUID2 (*ssdt_proc_id - *ssdt_proc_start)
#define PROC_SIZEOF (*ssdt_proc_end - *ssdt_proc_start)
#define PROC_AML (ssdp_proc_aml + *ssdt_proc_start)
/* 0x5B 0x82 DeviceOp PkgLength NameString */
#define PCIHP_OFFSET_HEX (*ssdt_pcihp_name - *ssdt_pcihp_start + 1)
#define PCIHP_OFFSET_ID (*ssdt_pcihp_id - *ssdt_pcihp_start)
#define PCIHP_OFFSET_ADR (*ssdt_pcihp_adr - *ssdt_pcihp_start)
#define PCIHP_OFFSET_EJ0 (*ssdt_pcihp_ej0 - *ssdt_pcihp_start)
#define PCIHP_SIZEOF (*ssdt_pcihp_end - *ssdt_pcihp_start)
#define PCIHP_AML (ssdp_pcihp_aml + *ssdt_pcihp_start)
#define PCI_SLOTS 32
#define SSDT_SIGNATURE 0x54445353 // SSDT
#define SSDT_HEADER_LENGTH 36
#include "fw/ssdt-misc.hex"
#include "fw/ssdt-pcihp.hex"
#define PCI_RMV_BASE 0xae0c
static u8*
build_notify(u8 *ssdt_ptr, const char *name, int skip, int count,
const char *target, int ofs)
{
count -= skip;
*(ssdt_ptr++) = 0x14; // MethodOp
ssdt_ptr = encodeLen(ssdt_ptr, 2+5+(12*count), 2);
memcpy(ssdt_ptr, name, 4);
ssdt_ptr += 4;
*(ssdt_ptr++) = 0x02; // MethodOp
int i;
for (i = skip; count-- > 0; i++) {
*(ssdt_ptr++) = 0xA0; // IfOp
ssdt_ptr = encodeLen(ssdt_ptr, 11, 1);
*(ssdt_ptr++) = 0x93; // LEqualOp
*(ssdt_ptr++) = 0x68; // Arg0Op
*(ssdt_ptr++) = 0x0A; // BytePrefix
*(ssdt_ptr++) = i;
*(ssdt_ptr++) = 0x86; // NotifyOp
memcpy(ssdt_ptr, target, 4);
ssdt_ptr[ofs] = getHex(i >> 4);
ssdt_ptr[ofs + 1] = getHex(i);
ssdt_ptr += 4;
*(ssdt_ptr++) = 0x69; // Arg1Op
}
return ssdt_ptr;
}
static void patch_pcihp(int slot, u8 *ssdt_ptr, u32 eject)
{
ssdt_ptr[PCIHP_OFFSET_HEX] = getHex(slot >> 4);
ssdt_ptr[PCIHP_OFFSET_HEX+1] = getHex(slot);
ssdt_ptr[PCIHP_OFFSET_ID] = slot;
ssdt_ptr[PCIHP_OFFSET_ADR + 2] = slot;
/* Runtime patching of EJ0: to disable hotplug for a slot,
* replace the method name: _EJ0 by EJ0_. */
/* Sanity check */
if (memcmp(ssdt_ptr + PCIHP_OFFSET_EJ0, "_EJ0", 4)) {
warn_internalerror();
}
if (!eject) {
memcpy(ssdt_ptr + PCIHP_OFFSET_EJ0, "EJ0_", 4);
}
}
static void*
build_ssdt(void)
{
int acpi_cpus = MaxCountCPUs > 0xff ? 0xff : MaxCountCPUs;
int length = (sizeof(ssdp_misc_aml) // _S3_ / _S4_ / _S5_
+ (1+3+4) // Scope(_SB_)
+ (acpi_cpus * PROC_SIZEOF) // procs
+ (1+2+5+(12*acpi_cpus)) // NTFY
+ (6+2+1+(1*acpi_cpus)) // CPON
+ (1+3+4) // Scope(PCI0)
+ ((PCI_SLOTS - 1) * PCIHP_SIZEOF) // slots
+ (1+2+5+(12*(PCI_SLOTS - 1)))); // PCNT
u8 *ssdt = malloc_high(length);
if (! ssdt) {
warn_noalloc();
return NULL;
}
u8 *ssdt_ptr = ssdt;
// Copy header and encode fwcfg values in the S3_ / S4_ / S5_ packages
int sys_state_size;
char *sys_states = romfile_loadfile("etc/system-states", &sys_state_size);
if (!sys_states || sys_state_size != 6)
sys_states = (char[]){128, 0, 0, 129, 128, 128};
memcpy(ssdt_ptr, ssdp_misc_aml, sizeof(ssdp_misc_aml));
if (!(sys_states[3] & 128))
ssdt_ptr[acpi_s3_name[0]] = 'X';
if (!(sys_states[4] & 128))
ssdt_ptr[acpi_s4_name[0]] = 'X';
else
ssdt_ptr[acpi_s4_pkg[0] + 1] = ssdt[acpi_s4_pkg[0] + 3] = sys_states[4] & 127;
// store pci io windows
*(u32*)&ssdt_ptr[acpi_pci32_start[0]] = cpu_to_le32(pcimem_start);
*(u32*)&ssdt_ptr[acpi_pci32_end[0]] = cpu_to_le32(pcimem_end - 1);
if (pcimem64_start) {
ssdt_ptr[acpi_pci64_valid[0]] = 1;
*(u64*)&ssdt_ptr[acpi_pci64_start[0]] = cpu_to_le64(pcimem64_start);
*(u64*)&ssdt_ptr[acpi_pci64_end[0]] = cpu_to_le64(pcimem64_end - 1);
*(u64*)&ssdt_ptr[acpi_pci64_length[0]] = cpu_to_le64(
pcimem64_end - pcimem64_start);
} else {
ssdt_ptr[acpi_pci64_valid[0]] = 0;
}
int pvpanic_port = romfile_loadint("etc/pvpanic-port", 0x0);
*(u16 *)(ssdt_ptr + *ssdt_isa_pest) = pvpanic_port;
ssdt_ptr += sizeof(ssdp_misc_aml);
// build Scope(_SB_) header
*(ssdt_ptr++) = 0x10; // ScopeOp
ssdt_ptr = encodeLen(ssdt_ptr, length - (ssdt_ptr - ssdt), 3);
*(ssdt_ptr++) = '_';
*(ssdt_ptr++) = 'S';
*(ssdt_ptr++) = 'B';
*(ssdt_ptr++) = '_';
// build Processor object for each processor
int i;
for (i=0; i<acpi_cpus; i++) {
memcpy(ssdt_ptr, PROC_AML, PROC_SIZEOF);
ssdt_ptr[PROC_OFFSET_CPUHEX] = getHex(i >> 4);
ssdt_ptr[PROC_OFFSET_CPUHEX+1] = getHex(i);
ssdt_ptr[PROC_OFFSET_CPUID1] = i;
ssdt_ptr[PROC_OFFSET_CPUID2] = i;
ssdt_ptr += PROC_SIZEOF;
}
// build "Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}"
// Arg0 = Processor ID = APIC ID
ssdt_ptr = build_notify(ssdt_ptr, "NTFY", 0, acpi_cpus, "CP00", 2);
// build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
*(ssdt_ptr++) = 0x08; // NameOp
*(ssdt_ptr++) = 'C';
*(ssdt_ptr++) = 'P';
*(ssdt_ptr++) = 'O';
*(ssdt_ptr++) = 'N';
*(ssdt_ptr++) = 0x12; // PackageOp
ssdt_ptr = encodeLen(ssdt_ptr, 2+1+(1*acpi_cpus), 2);
*(ssdt_ptr++) = acpi_cpus;
for (i=0; i<acpi_cpus; i++)
*(ssdt_ptr++) = (apic_id_is_present(i)) ? 0x01 : 0x00;
// build Scope(PCI0) opcode
*(ssdt_ptr++) = 0x10; // ScopeOp
ssdt_ptr = encodeLen(ssdt_ptr, length - (ssdt_ptr - ssdt), 3);
*(ssdt_ptr++) = 'P';
*(ssdt_ptr++) = 'C';
*(ssdt_ptr++) = 'I';
*(ssdt_ptr++) = '0';
// build Device object for each slot
u32 rmvc_pcrm = inl(PCI_RMV_BASE);
for (i=1; i<PCI_SLOTS; i++) {
u32 eject = rmvc_pcrm & (0x1 << i);
memcpy(ssdt_ptr, PCIHP_AML, PCIHP_SIZEOF);
patch_pcihp(i, ssdt_ptr, eject != 0);
ssdt_ptr += PCIHP_SIZEOF;
}
ssdt_ptr = build_notify(ssdt_ptr, "PCNT", 1, PCI_SLOTS, "S00_", 1);
build_header((void*)ssdt, SSDT_SIGNATURE, ssdt_ptr - ssdt, 1);
//hexdump(ssdt, ssdt_ptr - ssdt);
return ssdt;
}
#define HPET_ID 0x000
#define HPET_PERIOD 0x004
static void*
build_hpet(void)
{
struct acpi_20_hpet *hpet;
const void *hpet_base = (void *)BUILD_HPET_ADDRESS;
u32 hpet_vendor = readl(hpet_base + HPET_ID) >> 16;
u32 hpet_period = readl(hpet_base + HPET_PERIOD);
if (hpet_vendor == 0 || hpet_vendor == 0xffff ||
hpet_period == 0 || hpet_period > 100000000)
return NULL;
hpet = malloc_high(sizeof(*hpet));
if (!hpet) {
warn_noalloc();
return NULL;
}
memset(hpet, 0, sizeof(*hpet));
/* Note timer_block_id value must be kept in sync with value advertised by
* emulated hpet
*/
hpet->timer_block_id = cpu_to_le32(0x8086a201);
hpet->addr.address = cpu_to_le64(BUILD_HPET_ADDRESS);
build_header((void*)hpet, HPET_SIGNATURE, sizeof(*hpet), 1);
return hpet;
}
static void
acpi_build_srat_memory(struct srat_memory_affinity *numamem,
u64 base, u64 len, int node, int enabled)
{
numamem->type = SRAT_MEMORY;
numamem->length = sizeof(*numamem);
memset(numamem->proximity, 0, 4);
numamem->proximity[0] = node;
numamem->flags = cpu_to_le32(!!enabled);
numamem->base_addr = cpu_to_le64(base);
numamem->range_length = cpu_to_le64(len);
}
static void *
build_srat(void)
{
int numadatasize, numacpusize;
u64 *numadata = romfile_loadfile("etc/numa-nodes", &numadatasize);
u64 *numacpumap = romfile_loadfile("etc/numa-cpu-map", &numacpusize);
if (!numadata || !numacpumap)
goto fail;
int max_cpu = numacpusize / sizeof(u64);
int nb_numa_nodes = numadatasize / sizeof(u64);
struct system_resource_affinity_table *srat;
int srat_size = sizeof(*srat) +
sizeof(struct srat_processor_affinity) * max_cpu +
sizeof(struct srat_memory_affinity) * (nb_numa_nodes + 2);
srat = malloc_high(srat_size);
if (!srat) {
warn_noalloc();
goto fail;
}
memset(srat, 0, srat_size);
srat->reserved1=cpu_to_le32(1);
struct srat_processor_affinity *core = (void*)(srat + 1);
int i;
u64 curnode;
for (i = 0; i < max_cpu; ++i) {
core->type = SRAT_PROCESSOR;
core->length = sizeof(*core);
core->local_apic_id = i;
curnode = *numacpumap++;
core->proximity_lo = curnode;
memset(core->proximity_hi, 0, 3);
core->local_sapic_eid = 0;
if (apic_id_is_present(i))
core->flags = cpu_to_le32(1);
else
core->flags = cpu_to_le32(0);
core++;
}
/* the memory map is a bit tricky, it contains at least one hole
* from 640k-1M and possibly another one from 3.5G-4G.
*/
struct srat_memory_affinity *numamem = (void*)core;
int slots = 0;
u64 mem_len, mem_base, next_base = 0;
acpi_build_srat_memory(numamem, 0, 640*1024, 0, 1);
next_base = 1024 * 1024;
numamem++;
slots++;
for (i = 1; i < nb_numa_nodes + 1; ++i) {
mem_base = next_base;
mem_len = *numadata++;
if (i == 1)
mem_len -= 1024 * 1024;
next_base = mem_base + mem_len;
/* Cut out the PCI hole */
if (mem_base <= RamSize && next_base > RamSize) {
mem_len -= next_base - RamSize;
if (mem_len > 0) {
acpi_build_srat_memory(numamem, mem_base, mem_len, i-1, 1);
numamem++;
slots++;
}
mem_base = 1ULL << 32;
mem_len = next_base - RamSize;
next_base += (1ULL << 32) - RamSize;
}
acpi_build_srat_memory(numamem, mem_base, mem_len, i-1, 1);
numamem++;
slots++;
}
for (; slots < nb_numa_nodes + 2; slots++) {
acpi_build_srat_memory(numamem, 0, 0, 0, 0);
numamem++;
}
build_header((void*)srat, SRAT_SIGNATURE, srat_size, 1);
free(numadata);
free(numacpumap);
return srat;
fail:
free(numadata);
free(numacpumap);
return NULL;
}
static void *
build_mcfg_q35(void)
{
struct acpi_table_mcfg *mcfg;
int len = sizeof(*mcfg) + 1 * sizeof(mcfg->allocation[0]);
mcfg = malloc_high(len);
if (!mcfg) {
warn_noalloc();
return NULL;
}
memset(mcfg, 0, len);
mcfg->allocation[0].address = cpu_to_le64(Q35_HOST_BRIDGE_PCIEXBAR_ADDR);
mcfg->allocation[0].pci_segment = cpu_to_le16(Q35_HOST_PCIE_PCI_SEGMENT);
mcfg->allocation[0].start_bus_number = Q35_HOST_PCIE_START_BUS_NUMBER;
mcfg->allocation[0].end_bus_number = Q35_HOST_PCIE_END_BUS_NUMBER;
build_header((void *)mcfg, MCFG_SIGNATURE, len, 1);
return mcfg;
}
static const struct pci_device_id acpi_find_tbl[] = {
/* PIIX4 Power Management device. */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, NULL),
PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_LPC, NULL),
PCI_DEVICE_END,
};
#define MAX_ACPI_TABLES 20
void void
acpi_setup(void) acpi_setup(void)
{ {
if (! CONFIG_ACPI) if (! CONFIG_ACPI)
return; return;
dprintf(3, "init ACPI tables\n"); dprintf(1, "ACPI tables for qemu 1.6 and older are not supported any more.\n");
// This code is hardcoded for PIIX4 Power Management device.
struct pci_device *pci = pci_find_init_device(acpi_find_tbl, NULL);
if (!pci)
// Device not found
return;
// Build ACPI tables
u32 tables[MAX_ACPI_TABLES], tbl_idx = 0;
#define ACPI_INIT_TABLE(X) \
do { \
tables[tbl_idx] = cpu_to_le32((u32)(X)); \
if (le32_to_cpu(tables[tbl_idx])) \
tbl_idx++; \
} while(0)
struct fadt_descriptor_rev1 *fadt = build_fadt(pci);
ACPI_INIT_TABLE(fadt);
ACPI_INIT_TABLE(build_ssdt());
ACPI_INIT_TABLE(build_madt());
ACPI_INIT_TABLE(build_hpet());
ACPI_INIT_TABLE(build_srat());
if (pci->device == PCI_DEVICE_ID_INTEL_ICH9_LPC)
ACPI_INIT_TABLE(build_mcfg_q35());
struct romfile_s *file = NULL;
for (;;) {
file = romfile_findprefix("acpi/", file);
if (!file)
break;
struct acpi_table_header *table = malloc_high(file->size);
if (!table) {
warn_noalloc();
continue;
}
int ret = file->copy(file, table, file->size);
if (ret <= sizeof(*table))
continue;
if (table->signature == DSDT_SIGNATURE) {
if (fadt) {
fill_dsdt(fadt, table);
}
} else {
ACPI_INIT_TABLE(table);
}
if (tbl_idx == MAX_ACPI_TABLES) {
warn_noalloc();
break;
}
}
if (CONFIG_ACPI_DSDT && fadt && !fadt->dsdt) {
/* default DSDT */
struct acpi_table_header *dsdt = malloc_high(sizeof(AmlCode));
if (!dsdt) {
warn_noalloc();
return;
}
memcpy(dsdt, AmlCode, sizeof(AmlCode));
fill_dsdt(fadt, dsdt);
/* Strip out compiler-generated header if any */
memset(dsdt, 0, sizeof *dsdt);
build_header(dsdt, DSDT_SIGNATURE, sizeof(AmlCode), 1);
}
// Build final rsdt table
struct rsdt_descriptor_rev1 *rsdt;
size_t rsdt_len = sizeof(*rsdt) + sizeof(u32) * tbl_idx;
rsdt = malloc_high(rsdt_len);
if (!rsdt) {
warn_noalloc();
return;
}
memset(rsdt, 0, rsdt_len);
memcpy(rsdt->table_offset_entry, tables, sizeof(u32) * tbl_idx);
build_header((void*)rsdt, RSDT_SIGNATURE, rsdt_len, 1);
// Build rsdp pointer table
struct rsdp_descriptor rsdp;
memset(&rsdp, 0, sizeof(rsdp));
rsdp.signature = cpu_to_le64(RSDP_SIGNATURE);
memcpy(rsdp.oem_id, BUILD_APPNAME6, 6);
rsdp.rsdt_physical_address = cpu_to_le32((u32)rsdt);
rsdp.checksum -= checksum(&rsdp, 20);
copy_acpi_rsdp(&rsdp);
} }