Files
compute-runtime/level_zero/tools/source/metrics/metric_ip_sampling_source.cpp

582 lines
24 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2022-2023 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/metrics/metric_ip_sampling_source.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/string.h"
#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/tools/source/metrics/metric.h"
#include "level_zero/tools/source/metrics/metric_ip_sampling_streamer.h"
#include "level_zero/tools/source/metrics/os_interface_metric.h"
#include <level_zero/zet_api.h>
#include <cstring>
namespace L0 {
constexpr uint32_t ipSamplinMetricCount = 10u;
constexpr uint32_t ipSamplinDomainId = 100u;
std::unique_ptr<IpSamplingMetricSourceImp> IpSamplingMetricSourceImp::create(const MetricDeviceContext &metricDeviceContext) {
return std::unique_ptr<IpSamplingMetricSourceImp>(new (std::nothrow) IpSamplingMetricSourceImp(metricDeviceContext));
}
IpSamplingMetricSourceImp::IpSamplingMetricSourceImp(const MetricDeviceContext &metricDeviceContext) : metricDeviceContext(metricDeviceContext) {
metricIPSamplingOsInterface = MetricIpSamplingOsInterface::create(metricDeviceContext.getDevice());
}
ze_result_t IpSamplingMetricSourceImp::getTimerResolution(uint64_t &resolution) {
resolution = metricDeviceContext.getDevice().getNEODevice()->getDeviceInfo().outProfilingTimerClock;
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricSourceImp::getTimestampValidBits(uint64_t &validBits) {
validBits = metricDeviceContext.getDevice().getNEODevice()->getHardwareInfo().capabilityTable.timestampValidBits;
return ZE_RESULT_SUCCESS;
}
void IpSamplingMetricSourceImp::enable() {
isEnabled = metricIPSamplingOsInterface->isDependencyAvailable();
}
bool IpSamplingMetricSourceImp::isAvailable() {
return isEnabled;
}
void IpSamplingMetricSourceImp::cacheMetricGroup() {
if (metricDeviceContext.isImplicitScalingCapable()) {
const auto deviceImp = static_cast<DeviceImp *>(&metricDeviceContext.getDevice());
std::vector<IpSamplingMetricGroupImp *> subDeviceMetricGroup = {};
subDeviceMetricGroup.reserve(deviceImp->subDevices.size());
// Prepare cached metric group for sub-devices
for (auto &subDevice : deviceImp->subDevices) {
IpSamplingMetricSourceImp &source = subDevice->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
// 1 metric group available for IP Sampling
uint32_t count = 1;
zet_metric_group_handle_t hMetricGroup = {};
const auto result = source.metricGroupGet(&count, &hMetricGroup);
// Getting MetricGroup from sub-device cannot fail, since RootDevice is successful
UNRECOVERABLE_IF(result != ZE_RESULT_SUCCESS);
subDeviceMetricGroup.push_back(static_cast<IpSamplingMetricGroupImp *>(MetricGroup::fromHandle(hMetricGroup)));
}
cachedMetricGroup = MultiDeviceIpSamplingMetricGroupImp::create(subDeviceMetricGroup);
return;
}
std::vector<IpSamplingMetricImp> metrics = {};
metrics.reserve(ipSamplinMetricCount);
zet_metric_properties_t metricProperties = {};
metricProperties.stype = ZET_STRUCTURE_TYPE_METRIC_PROPERTIES;
metricProperties.pNext = nullptr;
strcpy_s(metricProperties.component, ZET_MAX_METRIC_COMPONENT, "XVE");
metricProperties.tierNumber = 4;
metricProperties.resultType = ZET_VALUE_TYPE_UINT64;
// Preparing properties for IP seperately because of unique values
strcpy_s(metricProperties.name, ZET_MAX_METRIC_NAME, "IP");
strcpy_s(metricProperties.description, ZET_MAX_METRIC_DESCRIPTION, "IP address");
metricProperties.metricType = ZET_METRIC_TYPE_IP_EXP;
strcpy_s(metricProperties.resultUnits, ZET_MAX_METRIC_RESULT_UNITS, "Address");
metrics.push_back(IpSamplingMetricImp(metricProperties));
std::vector<std::pair<const char *, const char *>> metricPropertiesList = {
{"Active", "Active cycles"},
{"ControlStall", "Stall on control"},
{"PipeStall", "Stall on pipe"},
{"SendStall", "Stall on send"},
{"DistStall", "Stall on distance"},
{"SbidStall", "Stall on scoreboard"},
{"SyncStall", "Stall on sync"},
{"InstrFetchStall", "Stall on instruction fetch"},
{"OtherStall", "Stall on other condition"},
};
// Preparing properties for others because of common values
metricProperties.metricType = ZET_METRIC_TYPE_EVENT;
strcpy_s(metricProperties.resultUnits, ZET_MAX_METRIC_RESULT_UNITS, "Events");
for (auto &property : metricPropertiesList) {
strcpy_s(metricProperties.name, ZET_MAX_METRIC_NAME, property.first);
strcpy_s(metricProperties.description, ZET_MAX_METRIC_DESCRIPTION, property.second);
metrics.push_back(IpSamplingMetricImp(metricProperties));
}
cachedMetricGroup = IpSamplingMetricGroupImp::create(*this, metrics);
DEBUG_BREAK_IF(cachedMetricGroup == nullptr);
}
ze_result_t IpSamplingMetricSourceImp::metricGroupGet(uint32_t *pCount, zet_metric_group_handle_t *phMetricGroups) {
if (!isEnabled) {
*pCount = 0;
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
if (*pCount == 0) {
*pCount = 1;
return ZE_RESULT_SUCCESS;
}
if (cachedMetricGroup == nullptr) {
cacheMetricGroup();
}
DEBUG_BREAK_IF(phMetricGroups == nullptr);
phMetricGroups[0] = cachedMetricGroup->toHandle();
*pCount = 1;
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricSourceImp::appendMetricMemoryBarrier(CommandList &commandList) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
void IpSamplingMetricSourceImp::setMetricOsInterface(std::unique_ptr<MetricIpSamplingOsInterface> &metricIPSamplingOsInterface) {
this->metricIPSamplingOsInterface = std::move(metricIPSamplingOsInterface);
}
IpSamplingMetricGroupImp::IpSamplingMetricGroupImp(IpSamplingMetricSourceImp &metricSource,
std::vector<IpSamplingMetricImp> &metrics) : metricSource(metricSource) {
this->metrics.reserve(metrics.size());
for (const auto &metric : metrics) {
this->metrics.push_back(std::make_unique<IpSamplingMetricImp>(metric));
}
properties.stype = ZET_STRUCTURE_TYPE_METRIC_GROUP_PROPERTIES;
properties.pNext = nullptr;
strcpy_s(properties.name, ZET_MAX_METRIC_GROUP_NAME, "EuStallSampling");
strcpy_s(properties.description, ZET_MAX_METRIC_GROUP_DESCRIPTION, "EU stall sampling");
properties.samplingType = ZET_METRIC_GROUP_SAMPLING_TYPE_FLAG_TIME_BASED;
properties.domain = ipSamplinDomainId;
properties.metricCount = ipSamplinMetricCount;
}
ze_result_t IpSamplingMetricGroupImp::getProperties(zet_metric_group_properties_t *pProperties) {
void *pNext = pProperties->pNext;
*pProperties = properties;
pProperties->pNext = pNext;
if (pNext) {
return getMetricGroupExtendedProperties(metricSource, pNext);
}
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricGroupImp::metricGet(uint32_t *pCount, zet_metric_handle_t *phMetrics) {
if (*pCount == 0) {
*pCount = static_cast<uint32_t>(metrics.size());
return ZE_RESULT_SUCCESS;
}
// User is expected to allocate space.
DEBUG_BREAK_IF(phMetrics == nullptr);
*pCount = std::min(*pCount, static_cast<uint32_t>(metrics.size()));
for (uint32_t i = 0; i < *pCount; i++) {
phMetrics[i] = metrics[i]->toHandle();
}
return ZE_RESULT_SUCCESS;
}
bool IpSamplingMetricGroupImp::isMultiDeviceCaptureData(const size_t rawDataSize, const uint8_t *pRawData) {
if (rawDataSize >= sizeof(IpSamplingMetricDataHeader)) {
const auto header = reinterpret_cast<const IpSamplingMetricDataHeader *>(pRawData);
return header->magic == IpSamplingMetricDataHeader::magicValue;
}
return false;
}
ze_result_t IpSamplingMetricGroupImp::calculateMetricValues(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
const uint8_t *pRawData, uint32_t *pMetricValueCount,
zet_typed_value_t *pMetricValues) {
const bool calculateCountOnly = *pMetricValueCount == 0;
if (isMultiDeviceCaptureData(rawDataSize, pRawData)) {
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr, "%s",
"INFO: The call is not supported for multiple devices\n"
"INFO: Please use zetMetricGroupCalculateMultipleMetricValuesExp instead\n");
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
if (calculateCountOnly) {
return getCalculatedMetricCount(rawDataSize, *pMetricValueCount);
} else {
return getCalculatedMetricValues(type, rawDataSize, pRawData, *pMetricValueCount, pMetricValues);
}
}
ze_result_t IpSamplingMetricGroupImp::calculateMetricValuesExp(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
const uint8_t *pRawData, uint32_t *pSetCount,
uint32_t *pTotalMetricValueCount, uint32_t *pMetricCounts,
zet_typed_value_t *pMetricValues) {
ze_result_t result = ZE_RESULT_SUCCESS;
const bool calculateCountOnly = (*pTotalMetricValueCount == 0) || (*pSetCount == 0);
if (calculateCountOnly) {
*pTotalMetricValueCount = 0;
*pSetCount = 0;
}
if (!isMultiDeviceCaptureData(rawDataSize, pRawData)) {
result = this->calculateMetricValues(type, rawDataSize, pRawData, pTotalMetricValueCount, pMetricValues);
} else {
if (calculateCountOnly) {
result = getCalculatedMetricCount(pRawData, rawDataSize, *pTotalMetricValueCount, 0);
} else {
result = getCalculatedMetricValues(type, rawDataSize, pRawData, *pTotalMetricValueCount, pMetricValues, 0);
}
}
if ((result == ZE_RESULT_SUCCESS) || (result == ZE_RESULT_WARNING_DROPPED_DATA)) {
*pSetCount = 1;
if (!calculateCountOnly) {
pMetricCounts[0] = *pTotalMetricValueCount;
}
} else {
if (!calculateCountOnly) {
pMetricCounts[0] = 0;
}
}
return result;
}
ze_result_t IpSamplingMetricGroupImp::getCalculatedMetricCount(const size_t rawDataSize,
uint32_t &metricValueCount) {
if ((rawDataSize % IpSamplingMetricGroupBase::rawReportSize) != 0) {
return ZE_RESULT_ERROR_INVALID_SIZE;
}
const uint32_t rawReportCount = static_cast<uint32_t>(rawDataSize) / IpSamplingMetricGroupBase::rawReportSize;
metricValueCount = rawReportCount * properties.metricCount;
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricGroupImp::getCalculatedMetricCount(const uint8_t *pMultiMetricData, const size_t rawDataSize, uint32_t &metricValueCount, const uint32_t setIndex) {
// Iterate through headers and assign required sizes
auto processedSize = 0u;
while (processedSize < rawDataSize) {
auto processMetricData = pMultiMetricData + processedSize;
if (!isMultiDeviceCaptureData(rawDataSize - processedSize, processMetricData)) {
return ZE_RESULT_ERROR_INVALID_SIZE;
}
auto header = reinterpret_cast<const IpSamplingMetricDataHeader *>(processMetricData);
processedSize += sizeof(IpSamplingMetricDataHeader) + header->rawDataSize;
if (header->setIndex != setIndex) {
continue;
}
auto currTotalMetricValueCount = 0u;
auto result = this->getCalculatedMetricCount(header->rawDataSize, currTotalMetricValueCount);
if (result != ZE_RESULT_SUCCESS) {
metricValueCount = 0;
return result;
}
metricValueCount += currTotalMetricValueCount;
}
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricGroupImp::getCalculatedMetricValues(const zet_metric_group_calculation_type_t type, const size_t rawDataSize, const uint8_t *pMultiMetricData,
uint32_t &metricValueCount,
zet_typed_value_t *pCalculatedData, const uint32_t setIndex) {
auto processedSize = 0u;
auto isDataDropped = false;
auto requestTotalMetricValueCount = metricValueCount;
while (processedSize < rawDataSize && requestTotalMetricValueCount > 0) {
auto processMetricData = pMultiMetricData + processedSize;
if (!isMultiDeviceCaptureData(rawDataSize - processedSize, processMetricData)) {
return ZE_RESULT_ERROR_INVALID_SIZE;
}
auto header = reinterpret_cast<const IpSamplingMetricDataHeader *>(processMetricData);
processedSize += header->rawDataSize + sizeof(IpSamplingMetricDataHeader);
if (header->setIndex != setIndex) {
continue;
}
auto processMetricRawData = processMetricData + sizeof(IpSamplingMetricDataHeader);
auto currTotalMetricValueCount = requestTotalMetricValueCount;
auto result = this->calculateMetricValues(type, header->rawDataSize, processMetricRawData, &currTotalMetricValueCount, pCalculatedData);
if (result != ZE_RESULT_SUCCESS) {
if (result == ZE_RESULT_WARNING_DROPPED_DATA) {
isDataDropped = true;
} else {
metricValueCount = 0;
return result;
}
}
pCalculatedData += currTotalMetricValueCount;
requestTotalMetricValueCount -= currTotalMetricValueCount;
}
metricValueCount -= requestTotalMetricValueCount;
return isDataDropped ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricGroupImp::getCalculatedMetricValues(const zet_metric_group_calculation_type_t type, const size_t rawDataSize, const uint8_t *pRawData,
uint32_t &metricValueCount,
zet_typed_value_t *pCalculatedData) {
bool dataOverflow = false;
StallSumIpDataMap_t stallSumIpDataMap;
// MAX_METRIC_VALUES is not supported yet.
if (type != ZET_METRIC_GROUP_CALCULATION_TYPE_METRIC_VALUES) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
DEBUG_BREAK_IF(pCalculatedData == nullptr);
const uint32_t rawReportSize = IpSamplingMetricGroupBase::rawReportSize;
if ((rawDataSize % rawReportSize) != 0) {
return ZE_RESULT_ERROR_INVALID_SIZE;
}
const uint32_t rawReportCount = static_cast<uint32_t>(rawDataSize) / rawReportSize;
for (const uint8_t *pRawIpData = pRawData; pRawIpData < pRawData + (rawReportCount * rawReportSize); pRawIpData += rawReportSize) {
dataOverflow |= stallIpDataMapUpdate(stallSumIpDataMap, pRawIpData);
}
metricValueCount = std::min<uint32_t>(metricValueCount, static_cast<uint32_t>(stallSumIpDataMap.size()) * properties.metricCount);
std::vector<zet_typed_value_t> ipDataValues;
uint32_t i = 0;
for (auto it = stallSumIpDataMap.begin(); it != stallSumIpDataMap.end(); ++it) {
stallSumIpDataToTypedValues(it->first, it->second, ipDataValues);
for (auto jt = ipDataValues.begin(); (jt != ipDataValues.end()) && (i < metricValueCount); jt++, i++) {
*(pCalculatedData + i) = *jt;
}
ipDataValues.clear();
}
return dataOverflow ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}
/*
* stall sample data item format:
*
* Bits Field
* 0 to 28 IP (addr)
* 29 to 36 active count
* 37 to 44 other count
* 45 to 52 control count
* 53 to 60 pipestall count
* 61 to 68 send count
* 69 to 76 dist_acc count
* 77 to 84 sbid count
* 85 to 92 sync count
* 93 to 100 inst_fetch count
*
* bytes 49 and 50, subSlice
* bytes 51 and 52, flags
*
* total size 64 bytes
*/
bool IpSamplingMetricGroupImp::stallIpDataMapUpdate(StallSumIpDataMap_t &stallSumIpDataMap, const uint8_t *pRawIpData) {
const uint8_t *tempAddr = pRawIpData;
uint64_t ip = 0ULL;
memcpy_s(reinterpret_cast<uint8_t *>(&ip), sizeof(ip), tempAddr, sizeof(ip));
ip &= 0x1fffffff;
StallSumIpData_t &stallSumData = stallSumIpDataMap[ip];
tempAddr += 3;
auto getCount = [&tempAddr]() {
uint16_t tempCount = 0;
memcpy_s(reinterpret_cast<uint8_t *>(&tempCount), sizeof(tempCount), tempAddr, sizeof(tempCount));
tempCount = (tempCount >> 5) & 0xff;
tempAddr += 1;
return static_cast<uint8_t>(tempCount);
};
stallSumData.activeCount += getCount();
stallSumData.otherCount += getCount();
stallSumData.controlCount += getCount();
stallSumData.pipeStallCount += getCount();
stallSumData.sendCount += getCount();
stallSumData.distAccCount += getCount();
stallSumData.sbidCount += getCount();
stallSumData.syncCount += getCount();
stallSumData.instFetchCount += getCount();
struct StallCntrInfo {
uint16_t subslice;
uint16_t flags;
} stallCntrInfo = {};
tempAddr = pRawIpData + 48;
memcpy_s(reinterpret_cast<uint8_t *>(&stallCntrInfo), sizeof(stallCntrInfo), tempAddr, sizeof(stallCntrInfo));
constexpr int overflowDropFlag = (1 << 8);
return stallCntrInfo.flags & overflowDropFlag;
}
// The order of push_back calls must match the order of metricPropertiesList.
void IpSamplingMetricGroupImp::stallSumIpDataToTypedValues(uint64_t ip,
StallSumIpData_t &sumIpData,
std::vector<zet_typed_value_t> &ipDataValues) {
zet_typed_value_t tmpValueData;
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = ip;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.activeCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.controlCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.pipeStallCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.sendCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.distAccCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.sbidCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.syncCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.instFetchCount;
ipDataValues.push_back(tmpValueData);
tmpValueData.type = ZET_VALUE_TYPE_UINT64;
tmpValueData.value.ui64 = sumIpData.otherCount;
ipDataValues.push_back(tmpValueData);
}
zet_metric_group_handle_t IpSamplingMetricGroupImp::getMetricGroupForSubDevice(const uint32_t subDeviceIndex) {
return toHandle();
}
std::unique_ptr<IpSamplingMetricGroupImp> IpSamplingMetricGroupImp::create(IpSamplingMetricSourceImp &metricSource,
std::vector<IpSamplingMetricImp> &ipSamplingMetrics) {
return std::unique_ptr<IpSamplingMetricGroupImp>(new (std::nothrow) IpSamplingMetricGroupImp(metricSource, ipSamplingMetrics));
}
ze_result_t MultiDeviceIpSamplingMetricGroupImp::getProperties(zet_metric_group_properties_t *pProperties) {
return subDeviceMetricGroup[0]->getProperties(pProperties);
}
ze_result_t MultiDeviceIpSamplingMetricGroupImp::metricGet(uint32_t *pCount, zet_metric_handle_t *phMetrics) {
return subDeviceMetricGroup[0]->metricGet(pCount, phMetrics);
}
ze_result_t MultiDeviceIpSamplingMetricGroupImp::calculateMetricValues(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
const uint8_t *pRawData, uint32_t *pMetricValueCount,
zet_typed_value_t *pMetricValues) {
return subDeviceMetricGroup[0]->calculateMetricValues(type, rawDataSize, pRawData, pMetricValueCount, pMetricValues);
}
ze_result_t MultiDeviceIpSamplingMetricGroupImp::calculateMetricValuesExp(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
const uint8_t *pRawData, uint32_t *pSetCount,
uint32_t *pTotalMetricValueCount, uint32_t *pMetricCounts,
zet_typed_value_t *pMetricValues) {
const bool calculateCountOnly = *pSetCount == 0 || *pTotalMetricValueCount == 0;
bool isDroppedData = false;
ze_result_t result = ZE_RESULT_SUCCESS;
if (calculateCountOnly) {
*pSetCount = 0;
*pTotalMetricValueCount = 0;
for (uint32_t setIndex = 0; setIndex < subDeviceMetricGroup.size(); setIndex++) {
uint32_t currTotalMetricValueCount = 0;
result = subDeviceMetricGroup[setIndex]->getCalculatedMetricCount(pRawData, rawDataSize, currTotalMetricValueCount, setIndex);
if (result != ZE_RESULT_SUCCESS) {
return result;
}
*pTotalMetricValueCount += currTotalMetricValueCount;
}
*pSetCount = static_cast<uint32_t>(subDeviceMetricGroup.size());
} else {
memset(pMetricCounts, 0, *pSetCount);
const auto maxSets = std::min<uint32_t>(static_cast<uint32_t>(subDeviceMetricGroup.size()), *pSetCount);
auto tempTotalMetricValueCount = *pTotalMetricValueCount;
for (uint32_t setIndex = 0; setIndex < maxSets; setIndex++) {
uint32_t currTotalMetricValueCount = tempTotalMetricValueCount;
result = subDeviceMetricGroup[setIndex]->getCalculatedMetricValues(type, rawDataSize, pRawData, currTotalMetricValueCount, pMetricValues, setIndex);
if (result != ZE_RESULT_SUCCESS) {
if (result == ZE_RESULT_WARNING_DROPPED_DATA) {
isDroppedData = true;
} else {
memset(pMetricCounts, 0, *pSetCount);
return result;
}
}
pMetricCounts[setIndex] = currTotalMetricValueCount;
pMetricValues += currTotalMetricValueCount;
tempTotalMetricValueCount -= currTotalMetricValueCount;
}
*pTotalMetricValueCount -= tempTotalMetricValueCount;
}
return isDroppedData ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}
zet_metric_group_handle_t MultiDeviceIpSamplingMetricGroupImp::getMetricGroupForSubDevice(const uint32_t subDeviceIndex) {
return subDeviceMetricGroup[subDeviceIndex]->toHandle();
}
void MultiDeviceIpSamplingMetricGroupImp::closeSubDeviceStreamers(std::vector<IpSamplingMetricStreamerImp *> &subDeviceStreamers) {
for (auto streamer : subDeviceStreamers) {
streamer->close();
}
}
std::unique_ptr<MultiDeviceIpSamplingMetricGroupImp> MultiDeviceIpSamplingMetricGroupImp::create(
std::vector<IpSamplingMetricGroupImp *> &subDeviceMetricGroup) {
UNRECOVERABLE_IF(subDeviceMetricGroup.size() == 0);
return std::unique_ptr<MultiDeviceIpSamplingMetricGroupImp>(new (std::nothrow) MultiDeviceIpSamplingMetricGroupImp(subDeviceMetricGroup));
}
IpSamplingMetricImp::IpSamplingMetricImp(zet_metric_properties_t &properties) : properties(properties) {
}
ze_result_t IpSamplingMetricImp::getProperties(zet_metric_properties_t *pProperties) {
*pProperties = properties;
return ZE_RESULT_SUCCESS;
}
template <>
IpSamplingMetricSourceImp &MetricDeviceContext::getMetricSource<IpSamplingMetricSourceImp>() const {
return static_cast<IpSamplingMetricSourceImp &>(*metricSources.at(MetricSource::SourceType::IpSampling));
}
} // namespace L0