mirror of
https://github.com/intel/compute-runtime.git
synced 2026-01-03 06:49:52 +08:00
fix(sysman): ULTs for Frequency w.r.t Xe driver
Related-To: NEO-8815 Signed-off-by: Bari, Pratik <pratik.bari@intel.com>
This commit is contained in:
committed by
Compute-Runtime-Automation
parent
cb448c6c35
commit
13a451712c
@@ -13,6 +13,8 @@
|
||||
#include "level_zero/sysman/source/shared/linux/sysman_kmd_interface.h"
|
||||
#include "level_zero/sysman/source/shared/linux/zes_os_sysman_imp.h"
|
||||
|
||||
#include "igfxfmid.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
namespace L0 {
|
||||
@@ -41,7 +43,13 @@ ze_result_t LinuxFrequencyImp::osFrequencyGetProperties(zes_freq_properties_t &p
|
||||
}
|
||||
|
||||
double LinuxFrequencyImp::osFrequencyGetStepSize() {
|
||||
return 50.0 / 3; // Step of 16.6666667 Mhz (GEN9 Hardcode);
|
||||
double stepSize;
|
||||
if (productFamily >= IGFX_XE_HP_SDV) {
|
||||
stepSize = 50.0;
|
||||
} else {
|
||||
stepSize = 50.0 / 3; // Step of 16.6666667 Mhz (GEN9 Hardcode)
|
||||
}
|
||||
return stepSize;
|
||||
}
|
||||
|
||||
ze_result_t LinuxFrequencyImp::osFrequencyGetRange(zes_freq_range_t *pLimits) {
|
||||
@@ -428,6 +436,7 @@ LinuxFrequencyImp::LinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice,
|
||||
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
|
||||
pSysmanKmdInterface = pLinuxSysmanImp->getSysmanKmdInterface();
|
||||
pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
|
||||
productFamily = pLinuxSysmanImp->getProductFamily();
|
||||
init();
|
||||
}
|
||||
|
||||
|
||||
@@ -76,6 +76,7 @@ class LinuxFrequencyImp : public OsFrequency, NEO::NonCopyableOrMovableClass {
|
||||
bool isSubdevice = false;
|
||||
uint32_t subdeviceId = 0;
|
||||
zes_freq_domain_t frequencyDomainNumber = ZES_FREQ_DOMAIN_GPU;
|
||||
PRODUCT_FAMILY productFamily;
|
||||
void init();
|
||||
};
|
||||
|
||||
|
||||
@@ -17,6 +17,8 @@ else()
|
||||
list(APPEND L0_TESTS_SYSMAN_FREQUENCY_LINUX
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/test_zes_frequency.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/mock_sysfs_frequency.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/test_zes_frequency_xe.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/mock_sysfs_frequency_xe.h
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
@@ -0,0 +1,224 @@
|
||||
/*
|
||||
* Copyright (C) 2023 Intel Corporation
|
||||
*
|
||||
* SPDX-License-Identifier: MIT
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "shared/test/common/test_macros/mock_method_macros.h"
|
||||
|
||||
#include "level_zero/sysman/source/api/frequency/linux/sysman_os_frequency_imp.h"
|
||||
#include "level_zero/sysman/source/shared/linux/sysman_fs_access_interface.h"
|
||||
#include "level_zero/sysman/source/shared/linux/sysman_kmd_interface.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace L0 {
|
||||
namespace Sysman {
|
||||
namespace ult {
|
||||
|
||||
const std::string minFreqFile("device/tile0/gt0/freq0/min_freq");
|
||||
const std::string maxFreqFile("device/tile0/gt0/freq0/max_freq");
|
||||
const std::string requestFreqFile("device/tile0/gt0/freq0/cur_freq");
|
||||
const std::string actualFreqFile("device/tile0/gt0/freq0/act_freq");
|
||||
const std::string efficientFreqFile("device/tile0/gt0/freq0/rpe_freq");
|
||||
const std::string maxValFreqFile("device/tile0/gt0/freq0/rp0_freq");
|
||||
const std::string minValFreqFile("device/tile0/gt0/freq0/rpn_freq");
|
||||
const std::string throttleReasonStatusFile("device/tile0/gt0/freq0/throttle/status");
|
||||
const std::string throttleReasonPL1File("device/tile0/gt0/freq0/throttle/reason_pl1");
|
||||
const std::string throttleReasonPL2File("device/tile0/gt0/freq0/throttle/reason_pl2");
|
||||
const std::string throttleReasonPL4File("device/tile0/gt0/freq0/throttle/reason_pl4");
|
||||
const std::string throttleReasonThermalFile("device/tile0/gt0/freq0/throttle/reason_thermal");
|
||||
|
||||
struct MockXeFrequencySysfsAccess : public L0::Sysman::SysFsAccessInterface {
|
||||
double mockMin = 0;
|
||||
double mockMax = 0;
|
||||
double mockRequest = 0;
|
||||
double mockActual = 0;
|
||||
double mockEfficient = 0;
|
||||
double mockMaxVal = 0;
|
||||
double mockMinVal = 0;
|
||||
uint32_t throttleVal = 0;
|
||||
uint32_t throttleReasonPL1Val = 0;
|
||||
uint32_t throttleReasonPL2Val = 0;
|
||||
uint32_t throttleReasonPL4Val = 0;
|
||||
uint32_t throttleReasonThermalVal = 0;
|
||||
ze_result_t mockReadDoubleValResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadRequestResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadEfficientResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadActualResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadMinValResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadMaxValResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadMaxResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockReadVal32Result = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockWriteMaxResult = ZE_RESULT_SUCCESS;
|
||||
ze_result_t mockWriteMinResult = ZE_RESULT_SUCCESS;
|
||||
bool mockReadPL1Error = false;
|
||||
bool mockReadPL2Error = false;
|
||||
bool mockReadPL4Error = false;
|
||||
bool mockReadThermalError = false;
|
||||
|
||||
ADDMETHOD_NOBASE(directoryExists, bool, true, (const std::string path));
|
||||
|
||||
ze_result_t setValU32(const std::string file, uint32_t val) {
|
||||
if (file.compare(throttleReasonStatusFile) == 0) {
|
||||
throttleVal = val;
|
||||
}
|
||||
if (file.compare(throttleReasonPL1File) == 0) {
|
||||
throttleReasonPL1Val = val;
|
||||
}
|
||||
if (file.compare(throttleReasonPL2File) == 0) {
|
||||
throttleReasonPL2Val = val;
|
||||
}
|
||||
if (file.compare(throttleReasonPL4File) == 0) {
|
||||
throttleReasonPL4Val = val;
|
||||
}
|
||||
if (file.compare(throttleReasonThermalFile) == 0) {
|
||||
throttleReasonThermalVal = val;
|
||||
}
|
||||
|
||||
return ZE_RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
ze_result_t read(const std::string file, double &val) override {
|
||||
|
||||
if (mockReadDoubleValResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadDoubleValResult;
|
||||
}
|
||||
if (file.compare(minFreqFile) == 0) {
|
||||
val = mockMin;
|
||||
} else if (file.compare(maxFreqFile) == 0) {
|
||||
if (mockReadMaxResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadMaxResult;
|
||||
}
|
||||
val = mockMax;
|
||||
} else if (file.compare(requestFreqFile) == 0) {
|
||||
if (mockReadRequestResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadRequestResult;
|
||||
}
|
||||
val = mockRequest;
|
||||
} else if (file.compare(actualFreqFile) == 0) {
|
||||
if (mockReadActualResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadActualResult;
|
||||
}
|
||||
val = mockActual;
|
||||
} else if (file.compare(efficientFreqFile) == 0) {
|
||||
if (mockReadEfficientResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadEfficientResult;
|
||||
}
|
||||
val = mockEfficient;
|
||||
} else if (file.compare(maxValFreqFile) == 0) {
|
||||
if (mockReadMaxValResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadMaxValResult;
|
||||
}
|
||||
val = mockMaxVal;
|
||||
} else if (file.compare(minValFreqFile) == 0) {
|
||||
if (mockReadMinValResult != ZE_RESULT_SUCCESS) {
|
||||
return mockReadMinValResult;
|
||||
}
|
||||
val = mockMinVal;
|
||||
} else {
|
||||
return ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
}
|
||||
return ZE_RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
ze_result_t setVal(const std::string file, const double val) {
|
||||
if (file.compare(minFreqFile) == 0) {
|
||||
if (mockWriteMinResult != ZE_RESULT_SUCCESS) {
|
||||
return mockWriteMinResult;
|
||||
}
|
||||
mockMin = val;
|
||||
}
|
||||
if (file.compare(maxFreqFile) == 0) {
|
||||
if (mockWriteMaxResult != ZE_RESULT_SUCCESS) {
|
||||
return mockWriteMaxResult;
|
||||
}
|
||||
mockMax = val;
|
||||
}
|
||||
if (file.compare(requestFreqFile) == 0) {
|
||||
mockRequest = val;
|
||||
}
|
||||
if (file.compare(actualFreqFile) == 0) {
|
||||
mockActual = val;
|
||||
}
|
||||
if (file.compare(efficientFreqFile) == 0) {
|
||||
mockEfficient = val;
|
||||
}
|
||||
if (file.compare(maxValFreqFile) == 0) {
|
||||
mockMaxVal = val;
|
||||
}
|
||||
if (file.compare(minValFreqFile) == 0) {
|
||||
mockMinVal = val;
|
||||
}
|
||||
return ZE_RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
ze_result_t getValU32(const std::string file, uint32_t &val) {
|
||||
if (file.compare(throttleReasonStatusFile) == 0) {
|
||||
val = throttleVal;
|
||||
}
|
||||
if (file.compare(throttleReasonPL1File) == 0) {
|
||||
if (mockReadPL1Error) {
|
||||
return ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
}
|
||||
val = throttleReasonPL1Val;
|
||||
}
|
||||
if (file.compare(throttleReasonPL2File) == 0) {
|
||||
if (mockReadPL2Error) {
|
||||
return ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
}
|
||||
val = throttleReasonPL2Val;
|
||||
}
|
||||
if (file.compare(throttleReasonPL4File) == 0) {
|
||||
if (mockReadPL4Error) {
|
||||
return ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
}
|
||||
val = throttleReasonPL4Val;
|
||||
}
|
||||
if (file.compare(throttleReasonThermalFile) == 0) {
|
||||
if (mockReadThermalError) {
|
||||
return ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
}
|
||||
val = throttleReasonThermalVal;
|
||||
}
|
||||
|
||||
return ZE_RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
ze_result_t read(const std::string file, uint32_t &val) override {
|
||||
if (mockReadVal32Result != ZE_RESULT_SUCCESS) {
|
||||
return mockReadVal32Result;
|
||||
}
|
||||
return getValU32(file, val);
|
||||
}
|
||||
|
||||
ze_result_t write(const std::string file, double val) override {
|
||||
return setVal(file, val);
|
||||
}
|
||||
|
||||
MockXeFrequencySysfsAccess() = default;
|
||||
~MockXeFrequencySysfsAccess() override = default;
|
||||
};
|
||||
|
||||
class PublicLinuxFrequencyImp : public L0::Sysman::LinuxFrequencyImp {
|
||||
public:
|
||||
PublicLinuxFrequencyImp(L0::Sysman::OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t type) : L0::Sysman::LinuxFrequencyImp(pOsSysman, onSubdevice, subdeviceId, type) {}
|
||||
using L0::Sysman::LinuxFrequencyImp::getMaxVal;
|
||||
using L0::Sysman::LinuxFrequencyImp::getMin;
|
||||
using L0::Sysman::LinuxFrequencyImp::getMinVal;
|
||||
using L0::Sysman::LinuxFrequencyImp::pSysfsAccess;
|
||||
};
|
||||
|
||||
class MockSysmanKmdInterfaceXe : public L0::Sysman::SysmanKmdInterfaceXe {
|
||||
public:
|
||||
std::unique_ptr<MockXeFrequencySysfsAccess> pSysfsAccess;
|
||||
MockSysmanKmdInterfaceXe(const PRODUCT_FAMILY productFamily) : SysmanKmdInterfaceXe(productFamily) {}
|
||||
~MockSysmanKmdInterfaceXe() override = default;
|
||||
};
|
||||
|
||||
} // namespace ult
|
||||
} // namespace Sysman
|
||||
} // namespace L0
|
||||
@@ -16,14 +16,12 @@ namespace ult {
|
||||
|
||||
constexpr double minFreq = 300.0;
|
||||
constexpr double maxFreq = 1100.0;
|
||||
constexpr double step = 100.0 / 6;
|
||||
constexpr double request = 300.0;
|
||||
constexpr double tdp = 1100.0;
|
||||
constexpr double actual = 300.0;
|
||||
constexpr double efficient = 300.0;
|
||||
constexpr double maxVal = 1100.0;
|
||||
constexpr double minVal = 300.0;
|
||||
constexpr uint32_t numClocks = static_cast<uint32_t>((maxFreq - minFreq) / step) + 1;
|
||||
constexpr uint32_t handleComponentCount = 1u;
|
||||
constexpr uint32_t multiHandleComponentCount = 2u;
|
||||
|
||||
@@ -32,6 +30,8 @@ class SysmanDeviceFrequencyFixture : public SysmanDeviceFixture {
|
||||
L0::Sysman::SysmanDevice *device = nullptr;
|
||||
std::unique_ptr<MockFrequencySysfsAccess> pSysfsAccess;
|
||||
L0::Sysman::SysFsAccessInterface *pSysfsAccessOld = nullptr;
|
||||
uint32_t numClocks = 0;
|
||||
double step = 0;
|
||||
|
||||
void SetUp() override {
|
||||
SysmanDeviceFixture::SetUp();
|
||||
@@ -48,6 +48,8 @@ class SysmanDeviceFrequencyFixture : public SysmanDeviceFixture {
|
||||
pSysfsAccess->setVal(efficientFreqFile, efficient);
|
||||
pSysfsAccess->setVal(maxValFreqFile, maxVal);
|
||||
pSysfsAccess->setVal(minValFreqFile, minVal);
|
||||
step = 50;
|
||||
numClocks = static_cast<uint32_t>((maxFreq - minFreq) / step) + 1;
|
||||
|
||||
// delete handles created in initial SysmanDeviceHandleContext::init() call
|
||||
for (auto handle : pSysmanDeviceImp->pFrequencyHandleContext->handleList) {
|
||||
@@ -132,7 +134,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFreq
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds) {
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
@@ -142,7 +144,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCa
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCountIsMoreThanNumClocksThenCallSucceeds) {
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCountIsMoreThanNumClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
@@ -152,7 +154,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCo
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCountIsLessThanNumClocksThenCallSucceeds) {
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCountIsLessThanNumClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
@@ -161,7 +163,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCo
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndCorrectCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds) {
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndCorrectCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
uint32_t count = 0;
|
||||
|
||||
@@ -0,0 +1,799 @@
|
||||
/*
|
||||
* Copyright (C) 2023 Intel Corporation
|
||||
*
|
||||
* SPDX-License-Identifier: MIT
|
||||
*
|
||||
*/
|
||||
|
||||
#include "level_zero/sysman/test/unit_tests/sources/frequency/linux/mock_sysfs_frequency_xe.h"
|
||||
#include "level_zero/sysman/test/unit_tests/sources/linux/mock_sysman_fixture.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
namespace L0 {
|
||||
namespace Sysman {
|
||||
namespace ult {
|
||||
|
||||
constexpr double minFreq = 300.0;
|
||||
constexpr double maxFreq = 1100.0;
|
||||
constexpr double request = 300.0;
|
||||
constexpr double actual = 300.0;
|
||||
constexpr double efficient = 300.0;
|
||||
constexpr double maxVal = 1100.0;
|
||||
constexpr double minVal = 300.0;
|
||||
constexpr uint32_t handleComponentCount = 1u;
|
||||
|
||||
class SysmanDeviceFrequencyFixtureXe : public SysmanDeviceFixture {
|
||||
protected:
|
||||
L0::Sysman::SysmanDevice *device = nullptr;
|
||||
MockSysmanKmdInterfaceXe *pSysmanKmdInterface = nullptr;
|
||||
uint32_t numClocks = 0;
|
||||
double step = 0;
|
||||
|
||||
void SetUp() override {
|
||||
SysmanDeviceFixture::SetUp();
|
||||
device = pSysmanDevice;
|
||||
|
||||
pSysmanKmdInterface = new MockSysmanKmdInterfaceXe(pLinuxSysmanImp->getProductFamily());
|
||||
pSysmanKmdInterface->pSysfsAccess = std::make_unique<MockXeFrequencySysfsAccess>();
|
||||
pLinuxSysmanImp->pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pLinuxSysmanImp->pSysmanKmdInterface.reset(pSysmanKmdInterface);
|
||||
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(minFreqFile, minFreq);
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(maxFreqFile, maxFreq);
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(requestFreqFile, request);
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(actualFreqFile, actual);
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(efficientFreqFile, efficient);
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(maxValFreqFile, maxVal);
|
||||
pSysmanKmdInterface->pSysfsAccess->setVal(minValFreqFile, minVal);
|
||||
step = 50;
|
||||
numClocks = static_cast<uint32_t>((maxFreq - minFreq) / step) + 1;
|
||||
|
||||
for (auto handle : pSysmanDeviceImp->pFrequencyHandleContext->handleList) {
|
||||
delete handle;
|
||||
}
|
||||
pSysmanDeviceImp->pFrequencyHandleContext->handleList.clear();
|
||||
getFreqHandles(0);
|
||||
}
|
||||
|
||||
void TearDown() override {
|
||||
SysmanDeviceFixture::TearDown();
|
||||
}
|
||||
|
||||
double clockValue(const double calculatedClock) {
|
||||
uint32_t actualClock = static_cast<uint32_t>(calculatedClock + 0.5);
|
||||
return static_cast<double>(actualClock);
|
||||
}
|
||||
|
||||
std::vector<zes_freq_handle_t> getFreqHandles(uint32_t count) {
|
||||
std::vector<zes_freq_handle_t> handles(count, nullptr);
|
||||
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, handles.data()), ZE_RESULT_SUCCESS);
|
||||
return handles;
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenSysmanKmdInterfaceInstanceWhenCheckingAvailabilityOfFrequencyFilesThenFalseValueIsReturned) {
|
||||
auto pSysmanKmdInterface = pLinuxSysmanImp->pSysmanKmdInterface.get();
|
||||
EXPECT_FALSE(pSysmanKmdInterface->isDefaultFrequencyAvailable());
|
||||
EXPECT_FALSE(pSysmanKmdInterface->isBoostFrequencyAvailable());
|
||||
EXPECT_FALSE(pSysmanKmdInterface->isTdpFrequencyAvailable());
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenComponentCountZeroWhenEnumeratingFrequencyHandlesThenNonZeroCountIsReturnedAndCallSucceds) {
|
||||
uint32_t count = 0U;
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesDeviceEnumFrequencyDomains(device->toHandle(), &count, nullptr));
|
||||
EXPECT_EQ(count, handleComponentCount);
|
||||
|
||||
uint32_t testCount = count + 1;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesDeviceEnumFrequencyDomains(device->toHandle(), &testCount, nullptr));
|
||||
EXPECT_EQ(count, testCount);
|
||||
|
||||
auto handles = getFreqHandles(count);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenComponentCountZeroAndValidPtrWhenEnumeratingFrequencyHandlesThenNonZeroCountAndNoHandlesAreReturnedAndCallSucceds) {
|
||||
uint32_t count = 0U;
|
||||
zes_freq_handle_t handle = static_cast<zes_freq_handle_t>(0UL);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesDeviceEnumFrequencyDomains(device->toHandle(), &count, &handle));
|
||||
EXPECT_EQ(count, handleComponentCount);
|
||||
EXPECT_EQ(handle, static_cast<zes_freq_handle_t>(0UL));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenActualComponentCountTwoWhenTryingToGetOneComponentOnlyThenOneComponentIsReturnedAndCountUpdated) {
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyHandleContextTest = std::make_unique<L0::Sysman::FrequencyHandleContext>(pOsSysman);
|
||||
pFrequencyHandleContextTest->handleList.push_back(new L0::Sysman::FrequencyImp(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU));
|
||||
pFrequencyHandleContextTest->handleList.push_back(new L0::Sysman::FrequencyImp(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU));
|
||||
|
||||
uint32_t count = 1;
|
||||
std::vector<zes_freq_handle_t> phFrequency(count, nullptr);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyHandleContextTest->frequencyGet(&count, phFrequency.data()));
|
||||
EXPECT_EQ(count, 1u);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetPropertiesThenSuccessIsReturned) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
zes_freq_properties_t properties;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetProperties(handle, &properties));
|
||||
EXPECT_EQ(nullptr, properties.pNext);
|
||||
EXPECT_EQ(ZES_FREQ_DOMAIN_GPU, properties.type);
|
||||
EXPECT_FALSE(properties.onSubdevice);
|
||||
EXPECT_DOUBLE_EQ(maxFreq, properties.max);
|
||||
EXPECT_DOUBLE_EQ(minFreq, properties.min);
|
||||
EXPECT_TRUE(properties.canControl);
|
||||
}
|
||||
}
|
||||
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleAndZeroCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
uint32_t count = 0;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
|
||||
EXPECT_EQ(numClocks, count);
|
||||
}
|
||||
}
|
||||
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleAndZeroCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds, IsGen8) {
|
||||
step = 50 / 3;
|
||||
numClocks = static_cast<uint32_t>((maxFreq - minFreq) / step) + 1;
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
uint32_t count = 0;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
|
||||
EXPECT_EQ(numClocks, count);
|
||||
}
|
||||
}
|
||||
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleAndZeroCountWhenCountIsMoreThanNumClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
uint32_t count = 80;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
|
||||
EXPECT_EQ(numClocks, count);
|
||||
}
|
||||
}
|
||||
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleAndZeroCountWhenCountIsLessThanNumClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
EXPECT_NE(handle, nullptr);
|
||||
uint32_t count = 20;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
HWTEST2_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleAndCorrectCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds, IsPVC) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
uint32_t count = 0;
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
|
||||
EXPECT_EQ(numClocks, count);
|
||||
|
||||
double *clocks = new double[count];
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, clocks));
|
||||
EXPECT_EQ(numClocks, count);
|
||||
for (uint32_t i = 0; i < count; i++) {
|
||||
EXPECT_DOUBLE_EQ(clockValue(minFreq + (step * i)), clocks[i]);
|
||||
}
|
||||
delete[] clocks;
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidateFrequencyGetRangeWhengetMaxAndgetMinFailsThenFrequencyGetRangeCallReturnsNegativeValuesForRange) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyImp = std::make_unique<L0::Sysman::FrequencyImp>(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU);
|
||||
zes_freq_range_t limit = {};
|
||||
pSysfsAccess->mockReadDoubleValResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetRange(&limit));
|
||||
EXPECT_EQ(-1, limit.max);
|
||||
EXPECT_EQ(-1, limit.min);
|
||||
|
||||
pSysfsAccess->mockReadDoubleValResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetRange(&limit));
|
||||
EXPECT_EQ(-1, limit.max);
|
||||
EXPECT_EQ(-1, limit.min);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetRangeThenVerifyzesFrequencyGetRangeTestCallSucceeds) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_freq_range_t limits;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
|
||||
EXPECT_DOUBLE_EQ(minFreq, limits.min);
|
||||
EXPECT_DOUBLE_EQ(maxFreq, limits.max);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyLimitsWhenCallingFrequencySetRangeForFailures1ThenAPIExitsGracefully) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyImp = std::make_unique<L0::Sysman::FrequencyImp>(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU);
|
||||
zes_freq_range_t limits = {};
|
||||
|
||||
// Verify that Max must be within range.
|
||||
limits.min = minFreq;
|
||||
limits.max = 600.0;
|
||||
pSysfsAccess->mockWriteMinResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, pFrequencyImp->frequencySetRange(&limits));
|
||||
|
||||
pSysfsAccess->mockWriteMinResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNKNOWN, pFrequencyImp->frequencySetRange(&limits));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyLimitsWhenCallingFrequencySetRangeForFailures2ThenAPIExitsGracefully) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyImp = std::make_unique<L0::Sysman::FrequencyImp>(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU);
|
||||
zes_freq_range_t limits = {};
|
||||
|
||||
// Verify that Max must be within range.
|
||||
limits.min = 900.0;
|
||||
limits.max = maxFreq;
|
||||
pSysfsAccess->mockWriteMaxResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, pFrequencyImp->frequencySetRange(&limits));
|
||||
|
||||
pSysfsAccess->mockWriteMaxResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNKNOWN, pFrequencyImp->frequencySetRange(&limits));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencySetRangeThenVerifyzesFrequencySetRangeTest1CallSucceeds) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
const double startingMin = 900.0;
|
||||
const double newMax = 600.0;
|
||||
zes_freq_range_t limits;
|
||||
|
||||
pSysfsAccess->setVal(minFreqFile, startingMin);
|
||||
// If the new Max value is less than the old Min
|
||||
// value, the new Min must be set before the new Max
|
||||
limits.min = minFreq;
|
||||
limits.max = newMax;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencySetRange(handle, &limits));
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
|
||||
EXPECT_DOUBLE_EQ(minFreq, limits.min);
|
||||
EXPECT_DOUBLE_EQ(newMax, limits.max);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenNegativeRangeWhenSetRangeIsCalledAndSettingMaxValueFailsThenFailureIsReturned) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockWriteMaxResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto &handle : handles) {
|
||||
const double negativeMin = -1;
|
||||
const double negativeMax = -1;
|
||||
zes_freq_range_t limits;
|
||||
|
||||
limits.min = negativeMin;
|
||||
limits.max = negativeMax;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencySetRange(handle, &limits));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenNegativeRangeWhenSetRangeIsCalledAndGettingDefaultMaxValueFailsThenNoFreqRangeIsInEffect) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto &handle : handles) {
|
||||
const double negativeMin = -1;
|
||||
const double negativeMax = -1;
|
||||
zes_freq_range_t limits;
|
||||
|
||||
limits.min = negativeMin;
|
||||
limits.max = negativeMax;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencySetRange(handle, &limits));
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
|
||||
EXPECT_DOUBLE_EQ(-1, limits.min);
|
||||
EXPECT_DOUBLE_EQ(-1, limits.max);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencySetRangeThenVerifyzesFrequencySetRangeTest2CallSucceeds) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
const double startingMax = 600.0;
|
||||
const double newMin = 900.0;
|
||||
zes_freq_range_t limits;
|
||||
|
||||
pSysfsAccess->setVal(maxFreqFile, startingMax);
|
||||
// If the new Min value is greater than the old Max
|
||||
// value, the new Max must be set before the new Min
|
||||
limits.min = newMin;
|
||||
limits.max = maxFreq;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencySetRange(handle, &limits));
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
|
||||
EXPECT_DOUBLE_EQ(newMin, limits.min);
|
||||
EXPECT_DOUBLE_EQ(maxFreq, limits.max);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenInvalidFrequencyLimitsWhenCallingFrequencySetRangeThenVerifyFrequencySetRangeTest4ReturnsError) {
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyImp = std::make_unique<L0::Sysman::FrequencyImp>(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU);
|
||||
zes_freq_range_t limits;
|
||||
|
||||
// Verify that Max must be greater than min range.
|
||||
limits.min = clockValue(maxFreq + step);
|
||||
limits.max = minFreq;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_INVALID_ARGUMENT, pFrequencyImp->frequencySetRange(&limits));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyGetStateTestCallSucceeds) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
const double testRequestValue = 450.0;
|
||||
const double testEfficientValue = 400.0;
|
||||
const double testActualValue = 550.0;
|
||||
const uint32_t invalidReason = 0;
|
||||
zes_freq_state_t state;
|
||||
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, invalidReason);
|
||||
pSysfsAccess->setVal(requestFreqFile, testRequestValue);
|
||||
pSysfsAccess->setVal(actualFreqFile, testActualValue);
|
||||
pSysfsAccess->setVal(efficientFreqFile, testEfficientValue);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
|
||||
EXPECT_DOUBLE_EQ(testRequestValue, state.request);
|
||||
EXPECT_DOUBLE_EQ(testEfficientValue, state.efficient);
|
||||
EXPECT_DOUBLE_EQ(testActualValue, state.actual);
|
||||
EXPECT_EQ(0u, state.throttleReasons);
|
||||
EXPECT_EQ(nullptr, state.pNext);
|
||||
EXPECT_LE(state.currentVoltage, 0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsStatusforInvalidReasons) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadVal32Result = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t invalidReason = 0;
|
||||
uint32_t unsetAllThrottleReasons = 0u;
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, invalidReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, validReason);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(unsetAllThrottleReasons, state.throttleReasons);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonAveragePower) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, validReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
|
||||
EXPECT_EQ((ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP), state.throttleReasons);
|
||||
EXPECT_EQ(nullptr, state.pNext);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonBurstPower) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, validReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
|
||||
EXPECT_EQ((ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP), state.throttleReasons);
|
||||
EXPECT_EQ(nullptr, state.pNext);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsCurrentExcursion) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
|
||||
EXPECT_EQ((ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT), state.throttleReasons);
|
||||
EXPECT_EQ(nullptr, state.pNext);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsThermalExcursion) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, validReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
|
||||
EXPECT_EQ((ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT), state.throttleReasons);
|
||||
EXPECT_EQ(nullptr, state.pNext);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsInvalidThermalExcursion) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t invalidReason = 0;
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, invalidReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
|
||||
EXPECT_EQ((ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT), state.throttleReasons);
|
||||
EXPECT_EQ(nullptr, state.pNext);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsStatusforValidReasons) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t setAllThrottleReasons = (ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP);
|
||||
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, validReason);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasons, state.throttleReasons);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsStatusforMissingTHermalStatusFile) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadThermalError = true;
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t invalidReason = 0;
|
||||
uint32_t setAllThrottleReasonsExceptThermal =
|
||||
(ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP);
|
||||
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptThermal, state.throttleReasons);
|
||||
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, invalidReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptThermal, state.throttleReasons);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsStatusforMissingPL4StatusFile) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadPL4Error = true;
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t invalidReason = 0;
|
||||
uint32_t setAllThrottleReasonsExceptPL4 =
|
||||
(ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP);
|
||||
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, validReason);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptPL4, state.throttleReasons);
|
||||
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, invalidReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptPL4, state.throttleReasons);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsStatusforMissingPL1StatusFile) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadPL1Error = true;
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t invalidReason = 0;
|
||||
uint32_t setAllThrottleReasonsExceptPL1 =
|
||||
(ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP);
|
||||
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, validReason);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptPL1, state.throttleReasons);
|
||||
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, invalidReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptPL1, state.throttleReasons);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyzesFrequencyThrottleReasonsStatusforMissingPL2StatusFile) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadPL2Error = true;
|
||||
zes_freq_state_t state;
|
||||
uint32_t validReason = 1;
|
||||
uint32_t invalidReason = 0;
|
||||
uint32_t setAllThrottleReasonsExceptPL2 =
|
||||
(ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT |
|
||||
ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP);
|
||||
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
pSysfsAccess->setValU32(throttleReasonStatusFile, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL1File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonPL4File, validReason);
|
||||
pSysfsAccess->setValU32(throttleReasonThermalFile, validReason);
|
||||
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptPL2, state.throttleReasons);
|
||||
|
||||
pSysfsAccess->setValU32(throttleReasonPL2File, invalidReason);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetState(&state));
|
||||
EXPECT_EQ(setAllThrottleReasonsExceptPL2, state.throttleReasons);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidStatePointerWhenValidatingfrequencyGetStateWhenOneOfTheFrequencyStateThenNegativeValueIsReturned) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyImp = std::make_unique<L0::Sysman::FrequencyImp>(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU);
|
||||
zes_freq_state_t state = {};
|
||||
pSysfsAccess->mockReadRequestResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetState(&state));
|
||||
EXPECT_EQ(-1, state.request);
|
||||
|
||||
pSysfsAccess->mockReadRequestResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetState(&state));
|
||||
EXPECT_EQ(-1, state.request);
|
||||
|
||||
pSysfsAccess->mockReadEfficientResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetState(&state));
|
||||
EXPECT_EQ(-1, state.efficient);
|
||||
|
||||
pSysfsAccess->mockReadEfficientResult = ZE_RESULT_SUCCESS;
|
||||
pSysfsAccess->mockReadActualResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetState(&state));
|
||||
EXPECT_EQ(-1, state.actual);
|
||||
|
||||
pSysfsAccess->mockReadActualResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, pFrequencyImp->frequencyGetState(&state));
|
||||
EXPECT_EQ(-1, state.actual);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenThrottleTimeStructPointerWhenCallingfrequencyGetThrottleTimeThenUnsupportedIsReturned) {
|
||||
auto subDeviceCount = pLinuxSysmanImp->getSubDeviceCount();
|
||||
ze_bool_t onSubdevice = (subDeviceCount == 0) ? false : true;
|
||||
uint32_t subdeviceId = 0;
|
||||
auto pFrequencyImp = std::make_unique<L0::Sysman::FrequencyImp>(pOsSysman, onSubdevice, subdeviceId, ZES_FREQ_DOMAIN_GPU);
|
||||
zes_freq_throttle_time_t throttleTime = {};
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, pFrequencyImp->frequencyGetThrottleTime(&throttleTime));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivengetMinFunctionReturnsErrorWhenValidatinggetMinFailuresThenAPIReturnsErrorAccordingly) {
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
double min = 0;
|
||||
pSysfsAccess->mockReadDoubleValResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, linuxFrequencyImp.getMin(min));
|
||||
|
||||
pSysfsAccess->mockReadDoubleValResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNKNOWN, linuxFrequencyImp.getMin(min));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivengetMinValFunctionReturnsErrorWhenValidatinggetMinValFailuresThenAPIReturnsErrorAccordingly) {
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
double val = 0;
|
||||
pSysfsAccess->mockReadMinValResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, linuxFrequencyImp.getMinVal(val));
|
||||
|
||||
pSysfsAccess->mockReadMinValResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNKNOWN, linuxFrequencyImp.getMinVal(val));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivengetMaxValFunctionReturnsErrorWhenValidatinggetMaxValFailuresThenAPIReturnsErrorAccordingly) {
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
double val = 0;
|
||||
pSysfsAccess->mockReadMaxValResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, linuxFrequencyImp.getMaxVal(val));
|
||||
|
||||
pSysfsAccess->mockReadMaxValResult = ZE_RESULT_ERROR_UNKNOWN;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNKNOWN, linuxFrequencyImp.getMaxVal(val));
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivengetMaxValFunctionReturnsErrorWhenValidatingosFrequencyGetPropertiesThenAPIBehavesAsExpected) {
|
||||
zes_freq_properties_t properties = {};
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadMaxValResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetProperties(properties));
|
||||
EXPECT_EQ(0, properties.canControl);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivengetMinValFunctionReturnsErrorWhenValidatingosFrequencyGetPropertiesThenAPIBehavesAsExpected) {
|
||||
zes_freq_properties_t properties = {};
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
pSysfsAccess->mockReadMinValResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetProperties(properties));
|
||||
EXPECT_EQ(0, properties.canControl);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenOnSubdeviceSetWhenValidatingAnyFrequencyAPIThenSuccessIsReturned) {
|
||||
zes_freq_properties_t properties = {};
|
||||
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 1, 0, ZES_FREQ_DOMAIN_GPU);
|
||||
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetProperties(properties));
|
||||
EXPECT_EQ(1, properties.canControl);
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencySetRangeAndIfgetMaxFailsThenVerifyzesFrequencySetRangeTestCallFail) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
const double startingMax = 600.0;
|
||||
const double newMin = 900.0;
|
||||
zes_freq_range_t limits;
|
||||
|
||||
pSysfsAccess->setVal(maxFreqFile, startingMax);
|
||||
// If the new Min value is greater than the old Max
|
||||
// value, the new Max must be set before the new Min
|
||||
limits.min = newMin;
|
||||
limits.max = maxFreq;
|
||||
pSysfsAccess->mockReadMaxResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencySetRange(handle, &limits));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencySetRangeAndIfsetMaxFailsThenVerifyzesFrequencySetRangeTestCallFail) {
|
||||
auto pSysfsAccess = pSysmanKmdInterface->pSysfsAccess.get();
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
const double startingMax = 600.0;
|
||||
const double newMin = 900.0;
|
||||
zes_freq_range_t limits;
|
||||
|
||||
pSysfsAccess->setVal(maxFreqFile, startingMax);
|
||||
// If the new Min value is greater than the old Max
|
||||
// value, the new Max must be set before the new Min
|
||||
limits.min = newMin;
|
||||
limits.max = maxFreq;
|
||||
pSysfsAccess->mockWriteMaxResult = ZE_RESULT_ERROR_NOT_AVAILABLE;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencySetRange(handle, &limits));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetFrequencyTargetThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double freqTarget = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetFrequencyTarget(handle, &freqTarget));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetFrequencyTargetThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double freqTarget = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetFrequencyTarget(handle, freqTarget));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetVoltageTargetThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double voltTarget = 0.0, voltOffset = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetVoltageTarget(handle, &voltTarget, &voltOffset));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetVoltageTargetThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double voltTarget = 0.0, voltOffset = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetVoltageTarget(handle, voltTarget, voltOffset));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetModeThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_oc_mode_t mode = ZES_OC_MODE_OFF;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetMode(handle, mode));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetModeThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_oc_mode_t mode = ZES_OC_MODE_OFF;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetMode(handle, &mode));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetCapabilitiesThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
zes_oc_capabilities_t caps = {};
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetCapabilities(handle, &caps));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetIccMaxThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double iccMax = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetIccMax(handle, &iccMax));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetIccMaxThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double iccMax = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetIccMax(handle, iccMax));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetTjMaxThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double tjMax = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetTjMax(handle, &tjMax));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(SysmanDeviceFrequencyFixtureXe, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetTjMaxThenVerifyTestCallFail) {
|
||||
auto handles = getFreqHandles(handleComponentCount);
|
||||
for (auto handle : handles) {
|
||||
double tjMax = 0.0;
|
||||
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetTjMax(handle, tjMax));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace ult
|
||||
} // namespace Sysman
|
||||
} // namespace L0
|
||||
Reference in New Issue
Block a user