Revert "Two commits related to pStart feature"

Related-To: NEO-15156, GSD-9939

Revert "test: fix minor errors"

This reverts commit 712dc8221e.

Revert "feature: Support for pStart"

This reverts commit 47caeda487.

Signed-off-by: Chandio, Bibrak Qamar <bibrak.qamar.chandio@intel.com>
This commit is contained in:
Chandio, Bibrak Qamar
2025-08-13 00:35:28 +00:00
committed by Compute-Runtime-Automation
parent fed9d1c0a5
commit 6acfcb83b9
26 changed files with 182 additions and 1257 deletions

View File

@@ -111,26 +111,24 @@ void GfxPartition::Heap::init(uint64_t base, uint64_t size, size_t allocationAli
heapGranularity = GfxPartition::heapGranularity2MB;
}
// Exclude very first and very last page from GPU address range allocation
// Exclude very first and very last 64K from GPU address range allocation
if (size > 2 * heapGranularity) {
size -= 2 * heapGranularity;
}
alloc = std::make_unique<HeapAllocator>(base + heapGranularity, size, allocationAlignment);
initialized = true;
}
void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size, size_t allocationAlignment) {
void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
size -= GfxPartition::heapGranularity;
alloc = std::make_unique<HeapAllocator>(base, size, allocationAlignment, 0u);
initialized = true;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize, size_t allocationAlignment) {
void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize) {
this->base = base;
this->size = size;
@@ -138,38 +136,24 @@ void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint6
size -= GfxPartition::heapGranularity;
size -= frontWindowSize;
alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size, allocationAlignment);
initialized = true;
alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size, MemoryConstants::pageSize);
}
void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size, size_t allocationAlignment) {
void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
alloc = std::make_unique<HeapAllocator>(base, size, allocationAlignment, 0u);
initialized = true;
}
size_t GfxPartition::Heap::getAllocAlignment() const {
return alloc->getAllocationAlignment();
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
uint64_t GfxPartition::Heap::allocate(size_t &size) {
return alloc->allocate(size);
}
uint64_t GfxPartition::Heap::allocateWithStartAddressHint(const uint64_t requiredStartAddress, size_t &size) {
return alloc->allocateWithStartAddressHint(requiredStartAddress, size);
}
uint64_t GfxPartition::Heap::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
return alloc->allocateWithCustomAlignment(sizeToAllocate, alignment);
}
uint64_t GfxPartition::Heap::allocateWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, size_t &sizeToAllocate, size_t alignment) {
return alloc->allocateWithCustomAlignmentWithStartAddressHint(requiredStartAddress, sizeToAllocate, alignment);
}
void GfxPartition::Heap::free(uint64_t ptr, size_t size) {
alloc->free(ptr, size);
}
@@ -264,7 +248,7 @@ bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToRe
auto cpuVirtualAddressSize = CpuInfo::getInstance().getVirtualAddressSize();
if (cpuVirtualAddressSize == 48 && gpuAddressSpace == maxNBitValue(48)) {
gfxBase = maxNBitValue(48 - 1) + 1;
heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0ull, gfxBase, MemoryConstants::pageSize2M);
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
} else if (gpuAddressSpace == maxNBitValue(47)) {
if (reservedCpuAddressRangeForHeapSvm.alignedPtr == nullptr) {
if (cpuAddressRangeSizeToReserve == 0) {
@@ -280,10 +264,10 @@ bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToRe
}
gfxBase = reinterpret_cast<uint64_t>(reservedCpuAddressRangeForHeapSvm.alignedPtr);
gfxTop = gfxBase + cpuAddressRangeSizeToReserve;
heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0ull, gpuAddressSpace + 1, MemoryConstants::pageSize2M);
heapInit(HeapIndex::heapSvm, 0ull, gpuAddressSpace + 1);
} else if (gpuAddressSpace < maxNBitValue(47)) {
gfxBase = 0ull;
heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0ull, 0ull, MemoryConstants::pageSize2M);
heapInit(HeapIndex::heapSvm, 0ull, 0ull);
} else {
if (!initAdditionalRange(cpuVirtualAddressSize, gpuAddressSpace, gfxBase, gfxTop, rootDeviceIndex, systemMemorySize)) {
return false;
@@ -293,14 +277,14 @@ bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToRe
for (auto heap : GfxPartition::heap32Names) {
if (useExternalFrontWindowPool && HeapAssigner::heapTypeExternalWithFrontWindowPool(heap)) {
heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size, MemoryConstants::pageSize);
heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size);
size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
auto allocation = heapAllocate(heap, externalFrontWindowSize);
heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), allocation,
externalFrontWindowSize, MemoryConstants::pageSize);
externalFrontWindowSize);
} else if (HeapAssigner::isInternalHeap(heap)) {
heapInitWithFrontWindow(heap, gfxBase, gfxHeap32Size, GfxPartition::internalFrontWindowPoolSize, MemoryConstants::pageSize);
heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize, MemoryConstants::pageSize);
heapInitWithFrontWindow(heap, gfxBase, gfxHeap32Size, GfxPartition::internalFrontWindowPoolSize);
heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize);
} else {
heapInit(heap, gfxBase, gfxHeap32Size);
}
@@ -384,9 +368,9 @@ bool GfxPartition::initAdditionalRange(uint32_t cpuVirtualAddressSize, uint64_t
gfxBase = castToUint64(reservedCpuAddressRangeForHeapSvm.alignedPtr);
gfxTop = gfxBase + reservedCpuAddressRangeForHeapSvm.sizeToReserve;
if (gpuAddressSpace == maxNBitValue(57)) {
heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0ull, maxNBitValue(57 - 1) + 1, MemoryConstants::pageSize2M);
heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(57 - 1) + 1);
} else {
heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0ull, maxNBitValue(48) + 1, MemoryConstants::pageSize2M);
heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(48) + 1);
}
if (gpuAddressSpace == maxNBitValue(57)) {
@@ -400,7 +384,7 @@ bool GfxPartition::initAdditionalRange(uint32_t cpuVirtualAddressSize, uint64_t
// On 48 bit CPU this range is reserved for OS usage, do not reserve
gfxBase = maxNBitValue(48 - 1) + 1; // 0x800000000000
gfxTop = maxNBitValue(48) + 1; // 0x1000000000000
heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0ull, gfxBase, MemoryConstants::pageSize2M);
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
}
// Init HEAP_EXTENDED only for 57 bit GPU

View File

@@ -49,34 +49,26 @@ class GfxPartition {
getHeap(heapIndex).init(base, size, allocationAlignment);
}
void heapInitExternalWithFrontWindow(HeapIndex heapIndex, uint64_t base, uint64_t size, size_t allocationAlignment) {
getHeap(heapIndex).initExternalWithFrontWindow(base, size, allocationAlignment);
void heapInitExternalWithFrontWindow(HeapIndex heapIndex, uint64_t base, uint64_t size) {
getHeap(heapIndex).initExternalWithFrontWindow(base, size);
}
void heapInitWithFrontWindow(HeapIndex heapIndex, uint64_t base, uint64_t size, uint64_t frontWindowSize, size_t allocationAlignment) {
getHeap(heapIndex).initWithFrontWindow(base, size, frontWindowSize, allocationAlignment);
void heapInitWithFrontWindow(HeapIndex heapIndex, uint64_t base, uint64_t size, uint64_t frontWindowSize) {
getHeap(heapIndex).initWithFrontWindow(base, size, frontWindowSize);
}
void heapInitFrontWindow(HeapIndex heapIndex, uint64_t base, uint64_t size, size_t allocationAlignment) {
getHeap(heapIndex).initFrontWindow(base, size, allocationAlignment);
void heapInitFrontWindow(HeapIndex heapIndex, uint64_t base, uint64_t size) {
getHeap(heapIndex).initFrontWindow(base, size);
}
MOCKABLE_VIRTUAL uint64_t heapAllocate(HeapIndex heapIndex, size_t &size) {
return getHeap(heapIndex).allocate(size);
}
MOCKABLE_VIRTUAL uint64_t heapAllocateWithStartAddressHint(const uint64_t requiredStartAddress, HeapIndex heapIndex, size_t &size) {
return getHeap(heapIndex).allocateWithStartAddressHint(requiredStartAddress, size);
}
MOCKABLE_VIRTUAL uint64_t heapAllocateWithCustomAlignment(HeapIndex heapIndex, size_t &size, size_t alignment) {
return getHeap(heapIndex).allocateWithCustomAlignment(size, alignment);
}
MOCKABLE_VIRTUAL uint64_t heapAllocateWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, HeapIndex heapIndex, size_t &size, size_t alignment) {
return getHeap(heapIndex).allocateWithCustomAlignmentWithStartAddressHint(requiredStartAddress, size, alignment);
}
MOCKABLE_VIRTUAL void heapFree(HeapIndex heapIndex, uint64_t ptr, size_t size) {
getHeap(heapIndex).free(ptr, size);
}
@@ -91,31 +83,8 @@ class GfxPartition {
return getHeap(heapIndex).getLimit();
}
size_t getHeapAllocationAlignment(HeapIndex heapIndex) {
return getHeap(heapIndex).getAllocAlignment();
}
bool isHeapInitialized(HeapIndex heapIndex) {
return getHeap(heapIndex).isInitialized();
}
uint64_t getHeapMinimalAddress(HeapIndex heapIndex);
MOCKABLE_VIRTUAL bool getHeapIndexAndPageSizeBasedOnAddress(uint64_t ptr, HeapIndex &heapIndex, size_t &pageSize) {
for (size_t index = 0; index < heaps.size(); ++index) {
if (!isHeapInitialized(static_cast<HeapIndex>(index))) {
continue;
}
if (isAddressInHeapRange(static_cast<HeapIndex>(index), ptr)) {
heapIndex = static_cast<HeapIndex>(index);
pageSize = getHeapAllocationAlignment(heapIndex);
return true;
}
}
return false;
}
bool isLimitedRange() { return getHeap(HeapIndex::heapSvm).getSize() == 0ull; }
static bool isAnyHeap32(HeapIndex heapIndex) {
@@ -141,34 +110,25 @@ class GfxPartition {
public:
Heap() = default;
void init(uint64_t base, uint64_t size, size_t allocationAlignment);
void initExternalWithFrontWindow(uint64_t base, uint64_t size, size_t allocationAlignment);
void initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize, size_t allocationAlignment);
void initFrontWindow(uint64_t base, uint64_t size, size_t allocationAlignment);
void initExternalWithFrontWindow(uint64_t base, uint64_t size);
void initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize);
void initFrontWindow(uint64_t base, uint64_t size);
uint64_t getBase() const { return base; }
uint64_t getSize() const { return size; }
uint64_t getLimit() const { return size ? base + size - 1 : 0; }
size_t getAllocAlignment() const;
uint64_t allocate(size_t &size);
uint64_t allocateWithStartAddressHint(const uint64_t requiredStartAddress, size_t &size);
uint64_t allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment);
uint64_t allocateWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, size_t &sizeToAllocate, size_t alignment);
void free(uint64_t ptr, size_t size);
bool isInitialized() const { return initialized; }
protected:
uint64_t base = 0, size = 0;
std::unique_ptr<HeapAllocator> alloc;
bool initialized = false;
};
Heap &getHeap(HeapIndex heapIndex) {
return heaps[static_cast<uint32_t>(heapIndex)];
}
bool isAddressInHeapRange(HeapIndex heapIndex, uint64_t ptr) {
return (ptr >= getHeap(heapIndex).getBase()) && (ptr <= getHeap(heapIndex).getLimit());
}
std::array<Heap, static_cast<uint32_t>(HeapIndex::totalHeaps)> heaps;
OSMemory::ReservedCpuAddressRange &reservedCpuAddressRangeForHeapSvm;

View File

@@ -262,7 +262,6 @@ class MemoryManager {
virtual AddressRange reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) = 0;
virtual AddressRange reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) = 0;
virtual size_t selectAlignmentAndHeap(size_t size, HeapIndex *heap) = 0;
virtual size_t selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) = 0;
virtual void freeGpuAddress(AddressRange addressRange, uint32_t rootDeviceIndex) = 0;
virtual AddressRange reserveCpuAddress(const uint64_t requiredStartAddress, size_t size) = 0;
AddressRange reserveCpuAddressWithZeroBaseRetry(const uint64_t requiredStartAddress, size_t size);

View File

@@ -647,29 +647,12 @@ MemoryAllocation *OsAgnosticMemoryManager::createMemoryAllocation(AllocationType
}
size_t OsAgnosticMemoryManager::selectAlignmentAndHeap(size_t size, HeapIndex *heap) {
return selectAlignmentAndHeap(0ULL, size, heap);
}
size_t OsAgnosticMemoryManager::selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) {
// Always default to HEAP STANDARD 2MB.
*heap = HeapIndex::heapStandard2MB;
size_t pageSizeAlignment = MemoryConstants::pageSize2M;
// If the user provides a start address, we try to find the heap and page size alignment based on that address.
if (requiredStartAddress != 0ULL) {
auto rootDeviceIndex = 0u;
auto gfxPartition = getGfxPartition(rootDeviceIndex);
if (gfxPartition->getHeapIndexAndPageSizeBasedOnAddress(requiredStartAddress, *heap, pageSizeAlignment)) {
return pageSizeAlignment;
}
}
return pageSizeAlignment;
*heap = HeapIndex::heapStandard;
return MemoryConstants::pageSize64k;
}
AddressRange OsAgnosticMemoryManager::reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) {
return reserveGpuAddressOnHeap(requiredStartAddress, size, rootDeviceIndices, reservedOnRootDeviceIndex, HeapIndex::heapStandard2MB, MemoryConstants::pageSize2M);
return reserveGpuAddressOnHeap(requiredStartAddress, size, rootDeviceIndices, reservedOnRootDeviceIndex, HeapIndex::heapStandard, MemoryConstants::pageSize64k);
}
AddressRange OsAgnosticMemoryManager::reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) {
@@ -678,7 +661,7 @@ AddressRange OsAgnosticMemoryManager::reserveGpuAddressOnHeap(const uint64_t req
for (auto rootDeviceIndex : rootDeviceIndices) {
auto gfxPartition = getGfxPartition(rootDeviceIndex);
auto gmmHelper = getGmmHelper(rootDeviceIndex);
gpuVa = requiredStartAddress == 0 ? gmmHelper->canonize(gfxPartition->heapAllocateWithCustomAlignment(heap, size, alignment)) : gmmHelper->canonize(gfxPartition->heapAllocateWithCustomAlignmentWithStartAddressHint(gmmHelper->decanonize(requiredStartAddress), heap, size, alignment));
gpuVa = gmmHelper->canonize(gfxPartition->heapAllocate(heap, size));
if (gpuVa != 0u) {
*reservedOnRootDeviceIndex = rootDeviceIndex;
break;

View File

@@ -47,7 +47,6 @@ class OsAgnosticMemoryManager : public MemoryManager {
AddressRange reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) override;
AddressRange reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) override;
size_t selectAlignmentAndHeap(size_t size, HeapIndex *heap) override;
size_t selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) override;
void freeGpuAddress(AddressRange addressRange, uint32_t rootDeviceIndex) override;
AddressRange reserveCpuAddress(const uint64_t requiredStartAddress, size_t size) override;
void freeCpuAddress(AddressRange addressRange) override;

View File

@@ -270,12 +270,6 @@ uint64_t DrmMemoryManager::acquireGpuRangeWithCustomAlignment(size_t &size, uint
return gmmHelper->canonize(gfxPartition->heapAllocateWithCustomAlignment(heapIndex, size, alignment));
}
uint64_t DrmMemoryManager::acquireGpuRangeWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, size_t &size, uint32_t rootDeviceIndex, HeapIndex heapIndex, size_t alignment) {
auto gfxPartition = getGfxPartition(rootDeviceIndex);
auto gmmHelper = getGmmHelper(rootDeviceIndex);
return gmmHelper->canonize(gfxPartition->heapAllocateWithCustomAlignmentWithStartAddressHint(gmmHelper->decanonize(requiredStartAddress), heapIndex, size, alignment));
}
void DrmMemoryManager::releaseGpuRange(void *address, size_t unmapSize, uint32_t rootDeviceIndex) {
uint64_t graphicsAddress = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(address));
auto gmmHelper = getGmmHelper(rootDeviceIndex);
@@ -1725,62 +1719,46 @@ uint32_t DrmMemoryManager::getRootDeviceIndex(const Drm *drm) {
}
size_t DrmMemoryManager::selectAlignmentAndHeap(size_t size, HeapIndex *heap) {
return selectAlignmentAndHeap(0ULL, size, heap);
}
size_t DrmMemoryManager::selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) {
// Always default to HEAP STANDARD 2MB.
*heap = HeapIndex::heapStandard2MB;
size_t pageSizeAlignment = MemoryConstants::pageSize2M;
// If the user provides a start address, we try to find the heap and page size alignment based on that address.
if (requiredStartAddress != 0ULL) {
auto rootDeviceIndex = 0u;
auto gfxPartition = getGfxPartition(rootDeviceIndex);
if (gfxPartition->getHeapIndexAndPageSizeBasedOnAddress(requiredStartAddress, *heap, pageSizeAlignment)) {
return pageSizeAlignment;
}
}
// If all devices can support HEAP EXTENDED, then that heap is used.
bool useExtendedHeap = true;
AlignmentSelector::CandidateAlignment alignmentBase = alignmentSelector.selectAlignment(size);
size_t pageSizeAlignment = alignmentBase.alignment;
auto rootDeviceCount = this->executionEnvironment.rootDeviceEnvironments.size();
// If all devices can support HEAP EXTENDED, then that heap is used, otherwise the HEAP based on the size is used.
for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceCount; rootDeviceIndex++) {
auto gfxPartition = getGfxPartition(rootDeviceIndex);
if (!(gfxPartition->getHeapLimit(HeapIndex::heapExtended) > 0)) {
useExtendedHeap = false;
if (gfxPartition->getHeapLimit(HeapIndex::heapExtended) > 0) {
auto alignSize = size >= 8 * MemoryConstants::gigaByte && Math::isPow2(size);
if (debugManager.flags.UseHighAlignmentForHeapExtended.get() != -1) {
alignSize = !!debugManager.flags.UseHighAlignmentForHeapExtended.get();
}
if (alignSize) {
pageSizeAlignment = Math::prevPowerOfTwo(size);
}
*heap = HeapIndex::heapExtended;
} else {
pageSizeAlignment = alignmentBase.alignment;
*heap = alignmentBase.heap;
break;
}
}
if (useExtendedHeap) {
auto alignSize = size >= 8 * MemoryConstants::gigaByte && Math::isPow2(size);
if (debugManager.flags.UseHighAlignmentForHeapExtended.get() != -1) {
alignSize = !!debugManager.flags.UseHighAlignmentForHeapExtended.get();
}
if (alignSize) {
pageSizeAlignment = Math::prevPowerOfTwo(size);
}
*heap = HeapIndex::heapExtended;
}
return pageSizeAlignment;
}
AddressRange DrmMemoryManager::reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) {
return reserveGpuAddressOnHeap(requiredStartAddress, size, rootDeviceIndices, reservedOnRootDeviceIndex, HeapIndex::heapStandard2MB, MemoryConstants::pageSize2M);
return reserveGpuAddressOnHeap(requiredStartAddress, size, rootDeviceIndices, reservedOnRootDeviceIndex, HeapIndex::heapStandard, MemoryConstants::pageSize64k);
}
AddressRange DrmMemoryManager::reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) {
uint64_t gpuVa = 0u;
*reservedOnRootDeviceIndex = 0;
for (auto rootDeviceIndex : rootDeviceIndices) {
gpuVa = requiredStartAddress == 0 ? acquireGpuRangeWithCustomAlignment(size, rootDeviceIndex, heap, alignment) : acquireGpuRangeWithCustomAlignmentWithStartAddressHint(requiredStartAddress, size, rootDeviceIndex, heap, alignment);
if (heap == HeapIndex::heapExtended) {
gpuVa = acquireGpuRangeWithCustomAlignment(size, rootDeviceIndex, heap, alignment);
} else {
gpuVa = acquireGpuRange(size, rootDeviceIndex, heap);
}
if (gpuVa != 0u) {
*reservedOnRootDeviceIndex = rootDeviceIndex;
break;

View File

@@ -77,7 +77,6 @@ class DrmMemoryManager : public MemoryManager {
AddressRange reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) override;
AddressRange reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) override;
size_t selectAlignmentAndHeap(size_t size, HeapIndex *heap) override;
size_t selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) override;
void freeGpuAddress(AddressRange addressRange, uint32_t rootDeviceIndex) override;
AddressRange reserveCpuAddress(const uint64_t requiredStartAddress, size_t size) override;
void freeCpuAddress(AddressRange addressRange) override;
@@ -150,7 +149,6 @@ class DrmMemoryManager : public MemoryManager {
void pushSharedBufferObject(BufferObject *bo);
bool setDomainCpu(GraphicsAllocation &graphicsAllocation, bool writeEnable);
MOCKABLE_VIRTUAL uint64_t acquireGpuRangeWithCustomAlignment(size_t &size, uint32_t rootDeviceIndex, HeapIndex heapIndex, size_t alignment);
MOCKABLE_VIRTUAL uint64_t acquireGpuRangeWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, size_t &size, uint32_t rootDeviceIndex, HeapIndex heapIndex, size_t alignment);
void emitPinningRequest(BufferObject *bo, const AllocationData &allocationData) const;
uint32_t getDefaultDrmContextId(uint32_t rootDeviceIndex) const;
OsContextLinux *getDefaultOsContext(uint32_t rootDeviceIndex) const;

View File

@@ -1258,34 +1258,34 @@ bool Wddm::isGpuHangDetected(OsContext &osContext) {
void Wddm::initGfxPartition(GfxPartition &outGfxPartition, uint32_t rootDeviceIndex, size_t numRootDevices, bool useExternalFrontWindowPool) const {
if (gfxPartition.SVM.Limit != 0) {
outGfxPartition.heapInitWithAllocationAlignment(HeapIndex::heapSvm, gfxPartition.SVM.Base, gfxPartition.SVM.Limit - gfxPartition.SVM.Base + 1, MemoryConstants::pageSize64k);
outGfxPartition.heapInit(HeapIndex::heapSvm, gfxPartition.SVM.Base, gfxPartition.SVM.Limit - gfxPartition.SVM.Base + 1);
} else if (is32bit) {
outGfxPartition.heapInitWithAllocationAlignment(HeapIndex::heapSvm, 0x0ull, 4 * MemoryConstants::gigaByte, MemoryConstants::pageSize64k);
outGfxPartition.heapInit(HeapIndex::heapSvm, 0x0ull, 4 * MemoryConstants::gigaByte);
}
outGfxPartition.heapInitWithAllocationAlignment(HeapIndex::heapStandard, gfxPartition.Standard.Base, gfxPartition.Standard.Limit - gfxPartition.Standard.Base + 1, MemoryConstants::pageSize64k);
outGfxPartition.heapInit(HeapIndex::heapStandard, gfxPartition.Standard.Base, gfxPartition.Standard.Limit - gfxPartition.Standard.Base + 1);
// Split HEAP_STANDARD64K among root devices
auto gfxStandard64KBSize = alignDown((gfxPartition.Standard64KB.Limit - gfxPartition.Standard64KB.Base + 1) / numRootDevices, GfxPartition::heapGranularity);
outGfxPartition.heapInitWithAllocationAlignment(HeapIndex::heapStandard64KB, gfxPartition.Standard64KB.Base + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize, MemoryConstants::pageSize64k);
outGfxPartition.heapInit(HeapIndex::heapStandard64KB, gfxPartition.Standard64KB.Base + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize);
for (auto heap : GfxPartition::heap32Names) {
if (useExternalFrontWindowPool && HeapAssigner::heapTypeExternalWithFrontWindowPool(heap)) {
outGfxPartition.heapInitExternalWithFrontWindow(heap, gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base,
gfxPartition.Heap32[static_cast<uint32_t>(heap)].Limit - gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base + 1, MemoryConstants::pageSize64k);
gfxPartition.Heap32[static_cast<uint32_t>(heap)].Limit - gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base + 1);
size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
outGfxPartition.heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), outGfxPartition.heapAllocate(heap, externalFrontWindowSize),
externalFrontWindowSize, MemoryConstants::pageSize64k);
externalFrontWindowSize);
} else if (HeapAssigner::isInternalHeap(heap)) {
auto baseAddress = gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base >= minAddress ? gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base : minAddress;
outGfxPartition.heapInitWithFrontWindow(heap, baseAddress,
gfxPartition.Heap32[static_cast<uint32_t>(heap)].Limit - baseAddress + 1,
GfxPartition::internalFrontWindowPoolSize, MemoryConstants::pageSize64k);
outGfxPartition.heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), baseAddress, GfxPartition::internalFrontWindowPoolSize, MemoryConstants::pageSize64k);
GfxPartition::internalFrontWindowPoolSize);
outGfxPartition.heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), baseAddress, GfxPartition::internalFrontWindowPoolSize);
} else {
outGfxPartition.heapInitWithAllocationAlignment(heap, gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base,
gfxPartition.Heap32[static_cast<uint32_t>(heap)].Limit - gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base + 1, MemoryConstants::pageSize64k);
outGfxPartition.heapInit(heap, gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base,
gfxPartition.Heap32[static_cast<uint32_t>(heap)].Limit - gfxPartition.Heap32[static_cast<uint32_t>(heap)].Base + 1);
}
}
}

View File

@@ -987,30 +987,13 @@ bool WddmMemoryManager::createWddmAllocation(WddmAllocation *allocation, void *r
}
size_t WddmMemoryManager::selectAlignmentAndHeap(size_t size, HeapIndex *heap) {
return selectAlignmentAndHeap(0ULL, size, heap);
}
size_t WddmMemoryManager::selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) {
// Always default to heapStandard64KB.
*heap = HeapIndex::heapStandard64KB;
// If the user provides a start address, we try to find the heap and page size alignment based on that address.
if (requiredStartAddress != 0ULL) {
auto rootDeviceIndex = 0u;
auto gfxPartition = getGfxPartition(rootDeviceIndex);
size_t pageSizeAlignment = 0;
if (gfxPartition->getHeapIndexAndPageSizeBasedOnAddress(requiredStartAddress, *heap, pageSizeAlignment)) {
return pageSizeAlignment;
}
}
AlignmentSelector::CandidateAlignment alignment = alignmentSelector.selectAlignment(size);
*heap = HeapIndex::heapStandard64KB;
return alignment.alignment;
}
AddressRange WddmMemoryManager::reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) {
return reserveGpuAddressOnHeap(requiredStartAddress, size, rootDeviceIndices, reservedOnRootDeviceIndex, HeapIndex::heapStandard64KB, MemoryConstants::pageSize2M);
return reserveGpuAddressOnHeap(requiredStartAddress, size, rootDeviceIndices, reservedOnRootDeviceIndex, HeapIndex::heapStandard64KB, MemoryConstants::pageSize64k);
}
AddressRange WddmMemoryManager::reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) {

View File

@@ -65,7 +65,6 @@ class WddmMemoryManager : public MemoryManager, NEO::NonCopyableAndNonMovableCla
AddressRange reserveGpuAddress(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex) override;
AddressRange reserveGpuAddressOnHeap(const uint64_t requiredStartAddress, size_t size, const RootDeviceIndicesContainer &rootDeviceIndices, uint32_t *reservedOnRootDeviceIndex, HeapIndex heap, size_t alignment) override;
size_t selectAlignmentAndHeap(size_t size, HeapIndex *heap) override;
size_t selectAlignmentAndHeap(const uint64_t requiredStartAddress, size_t size, HeapIndex *heap) override;
void freeGpuAddress(AddressRange addressRange, uint32_t rootDeviceIndex) override;
AddressRange reserveCpuAddress(const uint64_t requiredStartAddress, size_t size) override;
void freeCpuAddress(AddressRange addressRange) override;

View File

@@ -18,62 +18,6 @@ bool operator<(const HeapChunk &hc1, const HeapChunk &hc2) {
return hc1.ptr < hc2.ptr;
}
uint64_t HeapAllocator::allocateWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, size_t &sizeToAllocate, size_t alignment) {
if (alignment < this->allocationAlignment) {
alignment = this->allocationAlignment;
}
UNRECOVERABLE_IF(alignment % allocationAlignment != 0); // custom alignment have to be a multiple of allocator alignment
sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment);
uint64_t ptrReturn = 0llu;
{
std::lock_guard<std::mutex> lock(mtx);
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
if (availableSize < sizeToAllocate) {
return 0llu;
}
if (requiredStartAddress >= pLeftBound && requiredStartAddress <= pRightBound) {
const uint64_t misalignment = requiredStartAddress - pLeftBound;
if (pLeftBound + misalignment + sizeToAllocate <= pRightBound) {
if (misalignment) {
storeInFreedChunks(pLeftBound, static_cast<size_t>(misalignment), freedChunksBig);
pLeftBound += misalignment;
}
ptrReturn = pLeftBound;
pLeftBound += sizeToAllocate;
availableSize -= sizeToAllocate;
}
} else { // Try to find in freed chunks
defragment();
if (requiredStartAddress < this->pLeftBound) {
// If between baseAddress and pLeftBound, get from freedChunksBig
ptrReturn = getFromFreedChunksWithStartAddressHint(requiredStartAddress, sizeToAllocate, freedChunksBig);
} else {
// If between pRightBound and heapLimit, get from freedChunksSmall
ptrReturn = getFromFreedChunksWithStartAddressHint(requiredStartAddress, sizeToAllocate, freedChunksSmall);
}
if (ptrReturn != 0llu) {
availableSize -= sizeToAllocate;
}
}
}
if (ptrReturn == 0llu) {
return allocateWithCustomAlignment(sizeToAllocate, alignment);
}
UNRECOVERABLE_IF(!isAligned(ptrReturn, alignment));
return ptrReturn;
}
uint64_t HeapAllocator::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
if (alignment < this->allocationAlignment) {
alignment = this->allocationAlignment;
@@ -129,7 +73,7 @@ uint64_t HeapAllocator::allocateWithCustomAlignment(size_t &sizeToAllocate, size
} else {
availableSize -= sizeToAllocate;
}
UNRECOVERABLE_IF(!isAligned(ptrReturn, alignment));
DEBUG_BREAK_IF(!isAligned(ptrReturn, alignment));
return ptrReturn;
}
@@ -171,43 +115,6 @@ double HeapAllocator::getUsage() const {
return static_cast<double>(size - availableSize) / size;
}
uint64_t HeapAllocator::getFromFreedChunksWithStartAddressHint(const uint64_t requiredStartAddress, size_t size, std::vector<HeapChunk> &freedChunks) {
for (size_t i = 0; i < freedChunks.size(); i++) {
uint64_t chunkStart = freedChunks[i].ptr;
uint64_t chunkEnd = chunkStart + freedChunks[i].size;
if (requiredStartAddress >= chunkStart && requiredStartAddress + size <= chunkEnd) {
size_t leadingSize = static_cast<size_t>(requiredStartAddress - chunkStart);
size_t trailingSize = static_cast<size_t>(chunkEnd - (requiredStartAddress + size));
// Chunk splitting
if (leadingSize > 0) {
freedChunks[i].size = leadingSize;
if (trailingSize > 0) {
freedChunks.emplace_back(requiredStartAddress + size, trailingSize);
}
} else {
if (trailingSize > 0) {
freedChunks[i].ptr = requiredStartAddress + size;
freedChunks[i].size = trailingSize;
} else {
freedChunks.erase(freedChunks.begin() + i);
}
}
return requiredStartAddress;
}
}
return 0llu;
}
uint64_t HeapAllocator::getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk, size_t requiredAlignment) {
size_t elements = freedChunks.size();
size_t bestFitIndex = -1;

View File

@@ -44,11 +44,6 @@ class HeapAllocator {
return allocateWithCustomAlignment(sizeToAllocate, 0u);
}
uint64_t allocateWithStartAddressHint(const uint64_t requiredStartAddress, size_t &sizeToAllocate) {
return allocateWithCustomAlignmentWithStartAddressHint(requiredStartAddress, sizeToAllocate, 0u);
}
uint64_t allocateWithCustomAlignmentWithStartAddressHint(const uint64_t requiredStartAddress, size_t &sizeToAllocate, size_t alignment);
uint64_t allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment);
MOCKABLE_VIRTUAL void free(uint64_t ptr, size_t size);
@@ -67,10 +62,6 @@ class HeapAllocator {
return this->baseAddress;
}
size_t getAllocationAlignment() const {
return this->allocationAlignment;
}
protected:
const uint64_t baseAddress;
const uint64_t size;
@@ -85,7 +76,6 @@ class HeapAllocator {
std::mutex mtx;
uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk, size_t requiredAlignment);
MOCKABLE_VIRTUAL uint64_t getFromFreedChunksWithStartAddressHint(const uint64_t requiredStartAddress, size_t size, std::vector<HeapChunk> &freedChunks);
void storeInFreedChunks(uint64_t ptr, size_t size, std::vector<HeapChunk> &freedChunks) {
for (auto &freedChunk : freedChunks) {