performance: introduce staging reads from image

Related-To: NEO-12968

Signed-off-by: Szymon Morek <szymon.morek@intel.com>
This commit is contained in:
Szymon Morek
2024-12-05 13:56:30 +00:00
committed by Compute-Runtime-Automation
parent f2725f217e
commit 6c4eb322b1
16 changed files with 702 additions and 241 deletions

View File

@@ -13,7 +13,6 @@
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/utilities/heap_allocator.h"
namespace NEO {
StagingBuffer::StagingBuffer(void *baseAddress, size_t size) : baseAddress(baseAddress) {
@@ -24,6 +23,14 @@ StagingBuffer::StagingBuffer(StagingBuffer &&other) : baseAddress(other.baseAddr
this->allocator.reset(other.allocator.release());
}
bool StagingBufferTracker::isReady() const {
return csr->testTaskCountReady(csr->getTagAddress(), taskCountToWait);
}
void StagingBufferTracker::freeChunk() const {
allocator->free(chunkAddress, size);
}
StagingBufferManager::StagingBufferManager(SVMAllocsManager *svmAllocsManager, const RootDeviceIndicesContainer &rootDeviceIndices, const std::map<uint32_t, DeviceBitfield> &deviceBitfields) : svmAllocsManager(svmAllocsManager), rootDeviceIndices(rootDeviceIndices), deviceBitfields(deviceBitfields) {
if (debugManager.flags.StagingBufferSize.get() != -1) {
chunkSize = debugManager.flags.StagingBufferSize.get() * MemoryConstants::kiloByte;
@@ -37,22 +44,45 @@ StagingBufferManager::~StagingBufferManager() {
}
/*
* This method performs 4 steps for single chunk transfer
* 1. Get existing chunk of staging buffer, if can't - allocate new one,
* 2. Perform actual transfer,
* 3. Store used buffer to tracking container (with current task count)
* 4. Update tag if required to reuse this buffer in next chunk copies
* This method performs single chunk transfer. If transfer is a read operation, it will fetch oldest staging
* buffer from the queue, otherwise it allocates or reuses buffer from the pool.
* After transfer is submitted to GPU, it stores used buffer to either queue in case of reads,
* or tracking container for further reusage.
*/
template <class Func, class... Args>
int32_t StagingBufferManager::performChunkTransfer(CommandStreamReceiver *csr, size_t size, Func &func, Args... args) {
auto allocatedSize = size;
auto [allocator, stagingBuffer] = requestStagingBuffer(allocatedSize);
auto ret = func(addrToPtr(stagingBuffer), size, args...);
trackChunk({allocator, stagingBuffer, allocatedSize, csr, csr->peekTaskCount()});
StagingTransferStatus StagingBufferManager::performChunkTransfer(bool isRead, void *userPtr, size_t size, StagingQueue &currentStagingBuffers, CommandStreamReceiver *csr, Func &func, Args... args) {
StagingTransferStatus result{};
StagingBufferTracker tracker{};
if (currentStagingBuffers.size() > 1) {
if (fetchHead(currentStagingBuffers, tracker) == WaitStatus::gpuHang) {
result.waitStatus = WaitStatus::gpuHang;
return result;
}
} else {
auto allocatedSize = size;
auto [allocator, stagingBuffer] = requestStagingBuffer(allocatedSize);
tracker = StagingBufferTracker{allocator, stagingBuffer, allocatedSize, csr};
}
auto stagingBuffer = addrToPtr(tracker.chunkAddress);
if (!isRead) {
memcpy(stagingBuffer, userPtr, size);
}
result.chunkCopyStatus = func(stagingBuffer, args...);
tracker.taskCountToWait = csr->peekTaskCount();
if (isRead) {
UserDstData dstData{userPtr, size};
currentStagingBuffers.push({dstData, tracker});
} else {
trackChunk(tracker);
}
if (csr->isAnyDirectSubmissionEnabled()) {
csr->flushTagUpdate();
}
return ret;
return result;
}
/*
@@ -60,38 +90,40 @@ int32_t StagingBufferManager::performChunkTransfer(CommandStreamReceiver *csr, s
* Each chunk copy contains staging buffer which should be used instead of non-usm memory during transfers on GPU.
* Caller provides actual function to transfer data for single chunk.
*/
int32_t StagingBufferManager::performCopy(void *dstPtr, const void *srcPtr, size_t size, ChunkCopyFunction &chunkCopyFunc, CommandStreamReceiver *csr) {
StagingTransferStatus StagingBufferManager::performCopy(void *dstPtr, const void *srcPtr, size_t size, ChunkCopyFunction &chunkCopyFunc, CommandStreamReceiver *csr) {
StagingQueue stagingQueue;
auto copiesNum = size / chunkSize;
auto remainder = size % chunkSize;
StagingTransferStatus result{};
for (auto i = 0u; i < copiesNum; i++) {
auto chunkDst = ptrOffset(dstPtr, i * chunkSize);
auto chunkSrc = ptrOffset(srcPtr, i * chunkSize);
auto ret = performChunkTransfer(csr, chunkSize, chunkCopyFunc, chunkDst, chunkSrc);
if (ret) {
return ret;
result = performChunkTransfer(false, const_cast<void *>(chunkSrc), chunkSize, stagingQueue, csr, chunkCopyFunc, chunkDst, chunkSize);
if (result.chunkCopyStatus != 0) {
return result;
}
}
if (remainder != 0) {
auto chunkDst = ptrOffset(dstPtr, copiesNum * chunkSize);
auto chunkSrc = ptrOffset(srcPtr, copiesNum * chunkSize);
auto ret = performChunkTransfer(csr, remainder, chunkCopyFunc, chunkDst, chunkSrc);
if (ret) {
return ret;
auto result = performChunkTransfer(false, const_cast<void *>(chunkSrc), remainder, stagingQueue, csr, chunkCopyFunc, chunkDst, remainder);
if (result.chunkCopyStatus != 0) {
return result;
}
}
return 0;
return result;
}
/*
* This method orchestrates write operation for images with given origin and region.
* This method orchestrates transfer operation for images with given origin and region.
* Transfer is splitted into chunks, each chunk represents sub-region to transfer.
* Each chunk contains staging buffer which should be used instead of non-usm memory during transfers on GPU.
* Several rows are packed into single chunk unless size of single row exceeds maximum chunk size (2MB).
* Caller provides actual function to enqueue write operation for single chunk.
* Caller provides actual function to enqueue read/write operation for single chunk.
*/
int32_t StagingBufferManager::performImageWrite(const void *ptr, const size_t *globalOrigin, const size_t *globalRegion, size_t rowPitch, ChunkWriteImageFunc &chunkWriteImageFunc, CommandStreamReceiver *csr) {
StagingTransferStatus StagingBufferManager::performImageTransfer(const void *ptr, const size_t *globalOrigin, const size_t *globalRegion, size_t rowPitch, ChunkTransferImageFunc &chunkTransferImageFunc, CommandStreamReceiver *csr, bool isRead) {
StagingQueue stagingQueue;
size_t origin[3] = {};
size_t region[3] = {};
origin[0] = globalOrigin[0];
@@ -102,15 +134,16 @@ int32_t StagingBufferManager::performImageWrite(const void *ptr, const size_t *g
rowsPerChunk = std::min<size_t>(rowsPerChunk, globalRegion[1]);
auto numOfChunks = globalRegion[1] / rowsPerChunk;
auto remainder = globalRegion[1] % (rowsPerChunk * numOfChunks);
StagingTransferStatus result{};
for (auto i = 0u; i < numOfChunks; i++) {
origin[1] = globalOrigin[1] + i * rowsPerChunk;
region[1] = rowsPerChunk;
auto size = region[1] * rowPitch;
auto chunkPtr = ptrOffset(ptr, i * rowsPerChunk * rowPitch);
auto ret = performChunkTransfer(csr, size, chunkWriteImageFunc, chunkPtr, origin, region);
if (ret) {
return ret;
result = performChunkTransfer(isRead, const_cast<void *>(chunkPtr), size, stagingQueue, csr, chunkTransferImageFunc, origin, region);
if (result.chunkCopyStatus != 0 || result.waitStatus == WaitStatus::gpuHang) {
return result;
}
}
@@ -119,12 +152,50 @@ int32_t StagingBufferManager::performImageWrite(const void *ptr, const size_t *g
region[1] = remainder;
auto size = region[1] * rowPitch;
auto chunkPtr = ptrOffset(ptr, numOfChunks * rowsPerChunk * rowPitch);
auto ret = performChunkTransfer(csr, size, chunkWriteImageFunc, chunkPtr, origin, region);
if (ret) {
return ret;
result = performChunkTransfer(isRead, const_cast<void *>(chunkPtr), size, stagingQueue, csr, chunkTransferImageFunc, origin, region);
if (result.chunkCopyStatus != 0 || result.waitStatus == WaitStatus::gpuHang) {
return result;
}
}
return 0;
result.waitStatus = drainAndReleaseStagingQueue(stagingQueue);
return result;
}
/*
* This method is used for read transfers. It waits for oldest transfer to finish
* and copies data associated with that transfer to host allocation.
* Returned tracker contains staging buffer ready for reuse.
*/
WaitStatus StagingBufferManager::fetchHead(StagingQueue &stagingQueue, StagingBufferTracker &tracker) const {
auto &head = stagingQueue.front();
auto status = head.second.csr->waitForTaskCount(head.second.taskCountToWait);
if (status == WaitStatus::gpuHang) {
return status;
}
auto &userData = head.first;
tracker = head.second;
auto stagingBuffer = addrToPtr(tracker.chunkAddress);
memcpy(userData.ptr, stagingBuffer, userData.size);
stagingQueue.pop();
return WaitStatus::ready;
}
/*
* Waits for all pending transfers to finish.
* Releases staging buffers back to pool for reuse.
*/
WaitStatus StagingBufferManager::drainAndReleaseStagingQueue(StagingQueue &stagingQueue) const {
StagingBufferTracker tracker{};
while (!stagingQueue.empty()) {
auto status = fetchHead(stagingQueue, tracker);
if (status == WaitStatus::gpuHang) {
return status;
}
tracker.freeChunk();
}
return WaitStatus::ready;
}
/*
@@ -196,7 +267,7 @@ bool StagingBufferManager::isValidForCopy(const Device &device, void *dstPtr, co
return stagingCopyEnabled && hostToUsmCopy && !hasDependencies && (isUsedByOsContext || size <= chunkSize);
}
bool StagingBufferManager::isValidForStagingWriteImage(const Device &device, const void *ptr, bool hasDependencies) const {
bool StagingBufferManager::isValidForStagingTransferImage(const Device &device, const void *ptr, bool hasDependencies) const {
auto stagingCopyEnabled = device.getProductHelper().isStagingBuffersEnabled();
if (debugManager.flags.EnableCopyWithStagingBuffers.get() != -1) {
stagingCopyEnabled = debugManager.flags.EnableCopyWithStagingBuffers.get();
@@ -207,9 +278,8 @@ bool StagingBufferManager::isValidForStagingWriteImage(const Device &device, con
void StagingBufferManager::clearTrackedChunks() {
for (auto iterator = trackers.begin(); iterator != trackers.end();) {
auto csr = iterator->csr;
if (csr->testTaskCountReady(csr->getTagAddress(), iterator->taskCountToWait)) {
iterator->allocator->free(iterator->chunkAddress, iterator->size);
if (iterator->isReady()) {
iterator->freeChunk();
iterator = trackers.erase(iterator);
} else {
break;

View File

@@ -7,6 +7,7 @@
#pragma once
#include "shared/source/command_stream/wait_status.h"
#include "shared/source/helpers/constants.h"
#include "shared/source/utilities/stackvec.h"
@@ -14,6 +15,7 @@
#include <map>
#include <memory>
#include <mutex>
#include <queue>
namespace NEO {
class SVMAllocsManager;
@@ -21,8 +23,8 @@ class CommandStreamReceiver;
class Device;
class HeapAllocator;
using ChunkCopyFunction = std::function<int32_t(void *, size_t, void *, const void *)>;
using ChunkWriteImageFunc = std::function<int32_t(void *, size_t, const void *, const size_t *, const size_t *)>;
using ChunkCopyFunction = std::function<int32_t(void *, void *, size_t)>;
using ChunkTransferImageFunc = std::function<int32_t(void *, const size_t *, const size_t *)>;
class StagingBuffer {
public:
@@ -50,8 +52,23 @@ struct StagingBufferTracker {
size_t size = 0;
CommandStreamReceiver *csr = nullptr;
uint64_t taskCountToWait = 0;
bool isReady() const;
void freeChunk() const;
};
struct UserDstData {
void *ptr;
size_t size;
};
struct StagingTransferStatus {
int32_t chunkCopyStatus = 0; // status from L0/OCL chunk copy
WaitStatus waitStatus = WaitStatus::ready;
};
using StagingQueue = std::queue<std::pair<UserDstData, StagingBufferTracker>>;
class StagingBufferManager {
public:
StagingBufferManager(SVMAllocsManager *svmAllocsManager, const RootDeviceIndicesContainer &rootDeviceIndices, const std::map<uint32_t, DeviceBitfield> &deviceBitfields);
@@ -62,10 +79,10 @@ class StagingBufferManager {
StagingBufferManager &operator=(const StagingBufferManager &other) = delete;
bool isValidForCopy(const Device &device, void *dstPtr, const void *srcPtr, size_t size, bool hasDependencies, uint32_t osContextId) const;
bool isValidForStagingWriteImage(const Device &device, const void *ptr, bool hasDependencies) const;
bool isValidForStagingTransferImage(const Device &device, const void *ptr, bool hasDependencies) const;
int32_t performCopy(void *dstPtr, const void *srcPtr, size_t size, ChunkCopyFunction &chunkCopyFunc, CommandStreamReceiver *csr);
int32_t performImageWrite(const void *ptr, const size_t *globalOrigin, const size_t *globalRegion, size_t rowPitch, ChunkWriteImageFunc &chunkWriteImageFunc, CommandStreamReceiver *csr);
StagingTransferStatus performCopy(void *dstPtr, const void *srcPtr, size_t size, ChunkCopyFunction &chunkCopyFunc, CommandStreamReceiver *csr);
StagingTransferStatus performImageTransfer(const void *ptr, const size_t *globalOrigin, const size_t *globalRegion, size_t rowPitch, ChunkTransferImageFunc &chunkTransferImageFunc, CommandStreamReceiver *csr, bool isRead);
std::pair<HeapAllocator *, uint64_t> requestStagingBuffer(size_t &size);
void trackChunk(const StagingBufferTracker &tracker);
@@ -76,7 +93,10 @@ class StagingBufferManager {
void clearTrackedChunks();
template <class Func, class... Args>
int32_t performChunkTransfer(CommandStreamReceiver *csr, size_t size, Func &chunkCopyFunc, Args... args);
StagingTransferStatus performChunkTransfer(bool isRead, void *userPtr, size_t size, StagingQueue &currentStagingBuffers, CommandStreamReceiver *csr, Func &func, Args... args);
WaitStatus fetchHead(StagingQueue &stagingQueue, StagingBufferTracker &tracker) const;
WaitStatus drainAndReleaseStagingQueue(StagingQueue &stagingQueue) const;
size_t chunkSize = MemoryConstants::pageSize2M;
std::mutex mtx;

View File

@@ -323,6 +323,13 @@ class UltCommandStreamReceiver : public CommandStreamReceiverHw<GfxFamily>, publ
return BaseClass::waitForTaskCountWithKmdNotifyFallback(taskCountToWait, flushStampToWait, useQuickKmdSleep, throttle);
}
WaitStatus waitForTaskCount(TaskCountType requiredTaskCount) override {
if (waitForTaskCountReturnValue.has_value()) {
return *waitForTaskCountReturnValue;
}
return BaseClass::waitForTaskCount(requiredTaskCount);
}
void overrideCsrSizeReqFlags(CsrSizeRequestFlags &flags) { this->csrSizeRequestFlags = flags; }
GraphicsAllocation *getPreemptionAllocation() const { return this->preemptionAllocation; }
@@ -585,6 +592,7 @@ class UltCommandStreamReceiver : public CommandStreamReceiverHw<GfxFamily>, publ
uint32_t createAllocationForHostSurfaceCalled = 0;
WaitStatus returnWaitForCompletionWithTimeout = WaitStatus::ready;
std::optional<WaitStatus> waitForTaskCountWithKmdNotifyFallbackReturnValue{};
std::optional<WaitStatus> waitForTaskCountReturnValue{};
std::optional<SubmissionStatus> flushReturnValue{};
CommandStreamReceiverType commandStreamReceiverType = CommandStreamReceiverType::hardware;
std::atomic<uint32_t> downloadAllocationsCalledCount = 0;

View File

@@ -55,10 +55,9 @@ class StagingBufferManagerFixture : public DeviceFixture {
memset(usmBuffer, 0, copySize);
memset(nonUsmBuffer, 0xFF, copySize);
ChunkCopyFunction chunkCopy = [&](void *stagingBuffer, size_t chunkSize, void *chunkDst, const void *chunkSrc) {
ChunkCopyFunction chunkCopy = [&](void *chunkSrc, void *chunkDst, size_t chunkSize) {
chunkCounter++;
memcpy(stagingBuffer, chunkSrc, chunkSize);
memcpy(chunkDst, stagingBuffer, chunkSize);
memcpy(chunkDst, chunkSrc, chunkSize);
reinterpret_cast<MockCommandStreamReceiver *>(csr)->taskCount++;
return 0;
};
@@ -66,7 +65,8 @@ class StagingBufferManagerFixture : public DeviceFixture {
auto ret = stagingBufferManager->performCopy(usmBuffer, nonUsmBuffer, copySize, chunkCopy, csr);
auto newUsmAllocations = svmAllocsManager->svmAllocs.getNumAllocs() - initialNumOfUsmAllocations;
EXPECT_EQ(0, ret);
EXPECT_EQ(0, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::ready, ret.waitStatus);
EXPECT_EQ(0, memcmp(usmBuffer, nonUsmBuffer, copySize));
EXPECT_EQ(expectedChunks, chunkCounter);
EXPECT_EQ(expectedAllocations, newUsmAllocations);
@@ -74,17 +74,23 @@ class StagingBufferManagerFixture : public DeviceFixture {
delete[] nonUsmBuffer;
}
void imageWriteThroughStagingBuffers(size_t rowPitch, const size_t *globalOrigin, const size_t *globalRegion, size_t expectedChunks) {
auto ptr = new unsigned char[stagingBufferSize * expectedChunks];
void imageTransferThroughStagingBuffers(bool isRead, size_t rowPitch, const size_t *globalOrigin, const size_t *globalRegion, size_t expectedChunks) {
auto hostPtr = new unsigned char[stagingBufferSize * expectedChunks];
auto imageData = new unsigned char[stagingBufferSize * expectedChunks];
if (isRead) {
memset(hostPtr, 0, stagingBufferSize * expectedChunks);
memset(imageData, 0xFF, stagingBufferSize * expectedChunks);
} else {
memset(hostPtr, 0xFF, stagingBufferSize * expectedChunks);
memset(imageData, 0, stagingBufferSize * expectedChunks);
}
size_t chunkCounter = 0;
size_t expectedOrigin = globalOrigin[1];
auto expectedRowsPerChunk = std::min<size_t>(std::max<size_t>(1ul, stagingBufferSize / rowPitch), globalRegion[1]);
auto numOfChunks = globalRegion[1] / expectedRowsPerChunk;
auto remainder = globalRegion[1] % (expectedRowsPerChunk * numOfChunks);
ChunkWriteImageFunc chunkWrite = [&](void *stagingBuffer, size_t bufferSize, const void *chunkPtr, const size_t *origin, const size_t *region) -> int32_t {
ChunkTransferImageFunc chunkTransfer = [&](void *stagingBuffer, const size_t *origin, const size_t *region) -> int32_t {
EXPECT_NE(nullptr, stagingBuffer);
EXPECT_NE(nullptr, chunkPtr);
EXPECT_NE(nullptr, origin);
EXPECT_NE(nullptr, region);
@@ -97,19 +103,33 @@ class StagingBufferManagerFixture : public DeviceFixture {
} else {
EXPECT_EQ(expectedRowsPerChunk, region[1]);
}
auto offset = origin[1] - globalOrigin[1];
if (isRead) {
memcpy(stagingBuffer, imageData + rowPitch * offset, rowPitch * region[1]);
} else {
memcpy(imageData + rowPitch * offset, stagingBuffer, rowPitch * region[1]);
}
expectedOrigin += region[1];
chunkCounter++;
reinterpret_cast<MockCommandStreamReceiver *>(csr)->taskCount++;
return 0;
};
auto initialNumOfUsmAllocations = svmAllocsManager->svmAllocs.getNumAllocs();
auto ret = stagingBufferManager->performImageWrite(ptr, globalOrigin, globalRegion, rowPitch, chunkWrite, csr);
auto ret = stagingBufferManager->performImageTransfer(hostPtr, globalOrigin, globalRegion, rowPitch, chunkTransfer, csr, isRead);
auto newUsmAllocations = svmAllocsManager->svmAllocs.getNumAllocs() - initialNumOfUsmAllocations;
EXPECT_EQ(0, ret);
EXPECT_EQ(0, memcmp(hostPtr, imageData, rowPitch * (numOfChunks * expectedRowsPerChunk + remainder)));
EXPECT_EQ(0, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::ready, ret.waitStatus);
EXPECT_EQ(expectedChunks, chunkCounter);
EXPECT_EQ(1u, newUsmAllocations);
delete[] ptr;
auto expectedNewUsmAllocations = 1u;
if (isRead) {
expectedNewUsmAllocations = 2u;
}
EXPECT_EQ(expectedNewUsmAllocations, newUsmAllocations);
delete[] hostPtr;
delete[] imageData;
}
constexpr static size_t stagingBufferSize = MemoryConstants::megaByte * 2;
@@ -178,16 +198,16 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferEnabledWhenValidForImageWrite
{nonUsmBuffer, true, false},
};
for (auto i = 0; i < 4; i++) {
auto actualValid = stagingBufferManager->isValidForStagingWriteImage(*pDevice, copyParamsStruct[i].ptr, copyParamsStruct[i].hasDependencies);
auto actualValid = stagingBufferManager->isValidForStagingTransferImage(*pDevice, copyParamsStruct[i].ptr, copyParamsStruct[i].hasDependencies);
EXPECT_EQ(actualValid, copyParamsStruct[i].expectValid);
}
debugManager.flags.EnableCopyWithStagingBuffers.set(0);
EXPECT_FALSE(stagingBufferManager->isValidForStagingWriteImage(*pDevice, nonUsmBuffer, false));
EXPECT_FALSE(stagingBufferManager->isValidForStagingTransferImage(*pDevice, nonUsmBuffer, false));
debugManager.flags.EnableCopyWithStagingBuffers.set(-1);
auto isStaingBuffersEnabled = pDevice->getProductHelper().isStagingBuffersEnabled();
EXPECT_EQ(isStaingBuffersEnabled, stagingBufferManager->isValidForStagingWriteImage(*pDevice, nonUsmBuffer, false));
EXPECT_EQ(isStaingBuffersEnabled, stagingBufferManager->isValidForStagingTransferImage(*pDevice, nonUsmBuffer, false));
svmAllocsManager->freeSVMAlloc(usmBuffer);
}
@@ -256,17 +276,17 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferWhenFailedChunkCopyThenEarlyR
memset(usmBuffer, 0, totalCopySize);
memset(nonUsmBuffer, 0xFF, totalCopySize);
ChunkCopyFunction chunkCopy = [&](void *stagingBuffer, size_t chunkSize, void *chunkDst, const void *chunkSrc) {
ChunkCopyFunction chunkCopy = [&](void *chunkSrc, void *chunkDst, size_t chunkSize) {
chunkCounter++;
memcpy(stagingBuffer, chunkSrc, chunkSize);
memcpy(chunkDst, stagingBuffer, chunkSize);
memcpy(chunkDst, chunkSrc, chunkSize);
return expectedErrorCode;
};
auto initialNumOfUsmAllocations = svmAllocsManager->svmAllocs.getNumAllocs();
auto ret = stagingBufferManager->performCopy(usmBuffer, nonUsmBuffer, totalCopySize, chunkCopy, csr);
auto newUsmAllocations = svmAllocsManager->svmAllocs.getNumAllocs() - initialNumOfUsmAllocations;
EXPECT_EQ(expectedErrorCode, ret);
EXPECT_EQ(expectedErrorCode, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::ready, ret.waitStatus);
EXPECT_NE(0, memcmp(usmBuffer, nonUsmBuffer, totalCopySize));
EXPECT_EQ(1u, chunkCounter);
EXPECT_EQ(1u, newUsmAllocations);
@@ -286,10 +306,9 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferWhenFailedRemainderCopyThenRe
memset(usmBuffer, 0, totalCopySize);
memset(nonUsmBuffer, 0xFF, totalCopySize);
ChunkCopyFunction chunkCopy = [&](void *stagingBuffer, size_t chunkSize, void *chunkDst, const void *chunkSrc) {
ChunkCopyFunction chunkCopy = [&](void *chunkSrc, void *chunkDst, size_t chunkSize) {
chunkCounter++;
memcpy(stagingBuffer, chunkSrc, chunkSize);
memcpy(chunkDst, stagingBuffer, chunkSize);
memcpy(chunkDst, chunkSrc, chunkSize);
if (chunkCounter <= numOfChunkCopies) {
return 0;
} else {
@@ -300,7 +319,8 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferWhenFailedRemainderCopyThenRe
auto ret = stagingBufferManager->performCopy(usmBuffer, nonUsmBuffer, totalCopySize, chunkCopy, csr);
auto newUsmAllocations = svmAllocsManager->svmAllocs.getNumAllocs() - initialNumOfUsmAllocations;
EXPECT_EQ(expectedErrorCode, ret);
EXPECT_EQ(expectedErrorCode, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::ready, ret.waitStatus);
EXPECT_EQ(numOfChunkCopies + 1, chunkCounter);
EXPECT_EQ(1u, newUsmAllocations);
svmAllocsManager->freeSVMAlloc(usmBuffer);
@@ -331,7 +351,7 @@ HWTEST_F(StagingBufferManagerTest, givenStagingBufferWhenDirectSubmissionEnabled
auto nonUsmBuffer = new unsigned char[totalCopySize];
size_t flushTagsCalled = 0;
ChunkCopyFunction chunkCopy = [&](void *stagingBuffer, size_t chunkSize, void *chunkDst, const void *chunkSrc) {
ChunkCopyFunction chunkCopy = [&](void *chunkSrc, void *chunkDst, size_t chunkSize) {
if (ultCsr->flushTagUpdateCalled) {
flushTagsCalled++;
ultCsr->flushTagUpdateCalled = false;
@@ -362,28 +382,121 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageWriteThenWhol
size_t expectedChunks = 8;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, expectedChunks, 1};
imageWriteThroughStagingBuffers(stagingBufferSize, globalOrigin, globalRegion, expectedChunks);
imageTransferThroughStagingBuffers(false, stagingBufferSize, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageWriteWithOriginThenWholeRegionCovered) {
size_t expectedChunks = 8;
const size_t globalOrigin[3] = {4, 4, 0};
const size_t globalRegion[3] = {4, expectedChunks, 1};
imageWriteThroughStagingBuffers(stagingBufferSize, globalOrigin, globalRegion, expectedChunks);
imageTransferThroughStagingBuffers(false, stagingBufferSize, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageWriteWithMultipleRowsPerChunkThenWholeRegionCovered) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 8, 1};
imageWriteThroughStagingBuffers(MemoryConstants::megaByte, globalOrigin, globalRegion, expectedChunks);
imageTransferThroughStagingBuffers(false, MemoryConstants::megaByte, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageWriteWithRemainderThenWholeRegionCovered) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 7, 1};
imageWriteThroughStagingBuffers(MemoryConstants::megaByte, globalOrigin, globalRegion, expectedChunks);
imageTransferThroughStagingBuffers(false, MemoryConstants::megaByte, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageReadThenWholeRegionCovered) {
size_t expectedChunks = 8;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, expectedChunks, 1};
imageTransferThroughStagingBuffers(true, stagingBufferSize, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageReadWithOriginThenWholeRegionCovered) {
size_t expectedChunks = 8;
const size_t globalOrigin[3] = {4, 4, 0};
const size_t globalRegion[3] = {4, expectedChunks, 1};
imageTransferThroughStagingBuffers(true, stagingBufferSize, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageReadWithMultipleRowsPerChunkThenWholeRegionCovered) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 8, 1};
imageTransferThroughStagingBuffers(true, MemoryConstants::megaByte, globalOrigin, globalRegion, expectedChunks);
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenPerformImageReadWithRemainderThenWholeRegionCovered) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 7, 1};
imageTransferThroughStagingBuffers(true, MemoryConstants::megaByte, globalOrigin, globalRegion, expectedChunks);
}
HWTEST_F(StagingBufferManagerTest, givenStagingBufferWhenGpuHangDuringChunkReadFromImageThenReturnImmediatelyWithFailure) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 8, 1};
auto ptr = new unsigned char[stagingBufferSize * expectedChunks];
size_t chunkCounter = 0;
ChunkTransferImageFunc chunkWrite = [&](void *stagingBuffer, const size_t *origin, const size_t *region) -> int32_t {
++chunkCounter;
return 0;
};
auto ultCsr = reinterpret_cast<UltCommandStreamReceiver<FamilyType> *>(csr);
ultCsr->waitForTaskCountReturnValue = WaitStatus::gpuHang;
auto ret = stagingBufferManager->performImageTransfer(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr, true);
EXPECT_EQ(0, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::gpuHang, ret.waitStatus);
EXPECT_EQ(2u, chunkCounter);
delete[] ptr;
}
HWTEST_F(StagingBufferManagerTest, givenStagingBufferWhenGpuHangAfterChunkReadFromImageThenReturnWithFailure) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 8, 1};
auto ptr = new unsigned char[stagingBufferSize * expectedChunks];
auto ultCsr = reinterpret_cast<UltCommandStreamReceiver<FamilyType> *>(csr);
size_t chunkCounter = 0;
ChunkTransferImageFunc chunkWrite = [&](void *stagingBuffer, const size_t *origin, const size_t *region) -> int32_t {
++chunkCounter;
if (chunkCounter == expectedChunks) {
ultCsr->waitForTaskCountReturnValue = WaitStatus::gpuHang;
}
return 0;
};
auto ret = stagingBufferManager->performImageTransfer(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr, true);
EXPECT_EQ(0, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::gpuHang, ret.waitStatus);
EXPECT_EQ(4u, chunkCounter);
delete[] ptr;
}
HWTEST_F(StagingBufferManagerTest, givenStagingBufferWhenGpuHangDuringRemainderChunkReadFromImageThenReturnImmediatelyWithFailure) {
size_t expectedChunks = 4;
const size_t globalOrigin[3] = {0, 0, 0};
const size_t globalRegion[3] = {4, 7, 1};
auto ptr = new unsigned char[stagingBufferSize * expectedChunks];
auto ultCsr = reinterpret_cast<UltCommandStreamReceiver<FamilyType> *>(csr);
size_t chunkCounter = 0;
size_t remainderCounter = 4;
ChunkTransferImageFunc chunkWrite = [&](void *stagingBuffer, const size_t *origin, const size_t *region) -> int32_t {
++chunkCounter;
if (chunkCounter == remainderCounter - 1) {
ultCsr->waitForTaskCountReturnValue = WaitStatus::gpuHang;
}
return 0;
};
auto ret = stagingBufferManager->performImageTransfer(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr, true);
EXPECT_EQ(0, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::gpuHang, ret.waitStatus);
EXPECT_EQ(remainderCounter - 1, chunkCounter);
delete[] ptr;
}
TEST_F(StagingBufferManagerTest, givenStagingBufferWhenFailedChunkImageWriteThenEarlyReturnWithFailure) {
@@ -394,13 +507,13 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferWhenFailedChunkImageWriteThen
auto ptr = new unsigned char[stagingBufferSize * expectedChunks];
size_t chunkCounter = 0;
ChunkWriteImageFunc chunkWrite = [&](void *stagingBuffer, size_t bufferSize, const void *chunkPtr, const size_t *origin, const size_t *region) -> int32_t {
ChunkTransferImageFunc chunkWrite = [&](void *stagingBuffer, const size_t *origin, const size_t *region) -> int32_t {
++chunkCounter;
return expectedErrorCode;
};
auto ret = stagingBufferManager->performImageWrite(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr);
EXPECT_EQ(expectedErrorCode, ret);
auto ret = stagingBufferManager->performImageTransfer(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr, false);
EXPECT_EQ(expectedErrorCode, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::ready, ret.waitStatus);
EXPECT_EQ(1u, chunkCounter);
delete[] ptr;
}
@@ -414,16 +527,16 @@ TEST_F(StagingBufferManagerTest, givenStagingBufferWhenFailedChunkImageWriteWith
size_t chunkCounter = 0;
size_t remainderCounter = 4;
ChunkWriteImageFunc chunkWrite = [&](void *stagingBuffer, size_t bufferSize, const void *chunkPtr, const size_t *origin, const size_t *region) -> int32_t {
ChunkTransferImageFunc chunkWrite = [&](void *stagingBuffer, const size_t *origin, const size_t *region) -> int32_t {
++chunkCounter;
if (chunkCounter == remainderCounter) {
return expectedErrorCode;
}
return 0;
};
auto ret = stagingBufferManager->performImageWrite(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr);
EXPECT_EQ(expectedErrorCode, ret);
auto ret = stagingBufferManager->performImageTransfer(ptr, globalOrigin, globalRegion, MemoryConstants::megaByte, chunkWrite, csr, false);
EXPECT_EQ(expectedErrorCode, ret.chunkCopyStatus);
EXPECT_EQ(WaitStatus::ready, ret.waitStatus);
EXPECT_EQ(remainderCounter, chunkCounter);
delete[] ptr;
}