Partial support for XE_HP_SDV

Signed-off-by: Bartosz Dunajski <bartosz.dunajski@intel.com>
This commit is contained in:
Bartosz Dunajski
2021-04-23 16:43:48 +00:00
committed by Compute-Runtime-Automation
parent e0a50d3143
commit 96d14967ac
151 changed files with 15140 additions and 41 deletions

View File

@@ -13,8 +13,18 @@ set(NEO_CORE_COMMAND_CONTAINER
${CMAKE_CURRENT_SOURCE_DIR}/command_encoder_bdw_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/encode_compute_mode_bdw_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/encode_compute_mode_tgllp_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/implicit_scaling.cpp
${CMAKE_CURRENT_SOURCE_DIR}/implicit_scaling.h
)
if(SUPPORT_XEHP_PLUS)
list(APPEND NEO_CORE_COMMAND_CONTAINER
${CMAKE_CURRENT_SOURCE_DIR}/command_encoder_xehp_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/implicit_scaling_xehp_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/walker_partition_xehp_plus.h
)
endif()
set_property(GLOBAL PROPERTY NEO_CORE_COMMAND_CONTAINER ${NEO_CORE_COMMAND_CONTAINER})
add_subdirectories()

View File

@@ -0,0 +1,649 @@
/*
* Copyright (C) 2020-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/command_container/command_encoder.h"
#include "shared/source/command_container/implicit_scaling.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/command_stream/linear_stream.h"
#include "shared/source/command_stream/preemption.h"
#include "shared/source/command_stream/stream_properties.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/constants.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/pipeline_select_helper.h"
#include "shared/source/helpers/simd_helper.h"
#include "shared/source/helpers/state_base_address.h"
#include "shared/source/kernel/dispatch_kernel_encoder_interface.h"
#include "shared/source/kernel/kernel_descriptor.h"
#include "gmm_client_context.h"
#include "pipe_control_args.h"
#include <algorithm>
namespace NEO {
constexpr size_t TimestampDestinationAddressAlignment = 16;
template <typename Family>
void EncodeDispatchKernel<Family>::encode(CommandContainer &container,
const void *pThreadGroupDimensions, bool isIndirect, bool isPredicate, DispatchKernelEncoderI *dispatchInterface,
uint64_t eventAddress, bool isTimestampEvent, bool L3FlushEnable, Device *device, PreemptionMode preemptionMode,
bool &requiresUncachedMocs, bool useGlobalAtomics, uint32_t &partitionCount, bool isInternal) {
using SHARED_LOCAL_MEMORY_SIZE = typename Family::INTERFACE_DESCRIPTOR_DATA::SHARED_LOCAL_MEMORY_SIZE;
using STATE_BASE_ADDRESS = typename Family::STATE_BASE_ADDRESS;
using MI_BATCH_BUFFER_END = typename Family::MI_BATCH_BUFFER_END;
using INLINE_DATA = typename Family::INLINE_DATA;
const HardwareInfo &hwInfo = device->getHardwareInfo();
const auto &kernelDescriptor = dispatchInterface->getKernelDescriptor();
auto sizeCrossThreadData = dispatchInterface->getCrossThreadDataSize();
auto sizePerThreadDataForWholeGroup = dispatchInterface->getPerThreadDataSizeForWholeThreadGroup();
LinearStream *listCmdBufferStream = container.getCommandStream();
size_t sshOffset = 0;
auto threadDims = static_cast<const uint32_t *>(pThreadGroupDimensions);
const Vec3<size_t> threadStartVec{0, 0, 0};
Vec3<size_t> threadDimsVec{0, 0, 0};
if (!isIndirect) {
threadDimsVec = {threadDims[0], threadDims[1], threadDims[2]};
}
size_t estimatedSizeRequired = estimateEncodeDispatchKernelCmdsSize(device, threadStartVec, threadDimsVec, isInternal);
if (container.getCommandStream()->getAvailableSpace() < estimatedSizeRequired) {
auto bbEnd = listCmdBufferStream->getSpaceForCmd<MI_BATCH_BUFFER_END>();
*bbEnd = Family::cmdInitBatchBufferEnd;
container.allocateNextCommandBuffer();
}
if (kernelDescriptor.extendedInfo) {
bool specialModeRequired = kernelDescriptor.extendedInfo->specialPipelineSelectModeRequired();
if (container.lastPipelineSelectModeRequired != specialModeRequired) {
container.lastPipelineSelectModeRequired = specialModeRequired;
EncodeComputeMode<Family>::adjustPipelineSelect(container, kernelDescriptor);
}
}
WALKER_TYPE walkerCmd = Family::cmdInitGpgpuWalker;
auto &idd = walkerCmd.getInterfaceDescriptor();
bool localIdsGenerationByRuntime = dispatchInterface->requiresGenerationOfLocalIdsByRuntime();
bool inlineDataProgramming = EncodeDispatchKernel<Family>::inlineDataProgrammingRequired(kernelDescriptor);
{
auto alloc = dispatchInterface->getIsaAllocation();
UNRECOVERABLE_IF(nullptr == alloc);
auto offset = alloc->getGpuAddressToPatch();
if (!localIdsGenerationByRuntime) {
offset += kernelDescriptor.entryPoints.skipPerThreadDataLoad;
}
idd.setKernelStartPointer(offset);
idd.setKernelStartPointerHigh(0u);
}
auto threadsPerThreadGroup = dispatchInterface->getNumThreadsPerThreadGroup();
idd.setNumberOfThreadsInGpgpuThreadGroup(threadsPerThreadGroup);
EncodeDispatchKernel<Family>::programBarrierEnable(idd,
kernelDescriptor.kernelAttributes.barrierCount,
hwInfo);
auto slmSize = static_cast<SHARED_LOCAL_MEMORY_SIZE>(
HwHelperHw<Family>::get().computeSlmValues(hwInfo, dispatchInterface->getSlmTotalSize()));
if (DebugManager.flags.OverrideSlmAllocationSize.get() != -1) {
slmSize = static_cast<SHARED_LOCAL_MEMORY_SIZE>(DebugManager.flags.OverrideSlmAllocationSize.get());
}
idd.setSharedLocalMemorySize(slmSize);
auto bindingTableStateCount = kernelDescriptor.payloadMappings.bindingTable.numEntries;
uint32_t bindingTablePointer = 0u;
if (kernelDescriptor.kernelAttributes.bufferAddressingMode == KernelDescriptor::BindfulAndStateless) {
container.prepareBindfulSsh();
if (bindingTableStateCount > 0u) {
auto ssh = container.getHeapWithRequiredSizeAndAlignment(HeapType::SURFACE_STATE, dispatchInterface->getSurfaceStateHeapDataSize(), BINDING_TABLE_STATE::SURFACESTATEPOINTER_ALIGN_SIZE);
sshOffset = ssh->getUsed();
bindingTablePointer = static_cast<uint32_t>(EncodeSurfaceState<Family>::pushBindingTableAndSurfaceStates(
*ssh, bindingTableStateCount,
dispatchInterface->getSurfaceStateHeapData(),
dispatchInterface->getSurfaceStateHeapDataSize(), bindingTableStateCount,
kernelDescriptor.payloadMappings.bindingTable.tableOffset));
}
}
idd.setBindingTablePointer(bindingTablePointer);
PreemptionHelper::programInterfaceDescriptorDataPreemption<Family>(&idd, preemptionMode);
auto heap = ApiSpecificConfig::getBindlessConfiguration() ? device->getBindlessHeapsHelper()->getHeap(BindlessHeapsHelper::GLOBAL_DSH) : container.getIndirectHeap(HeapType::DYNAMIC_STATE);
UNRECOVERABLE_IF(!heap);
uint32_t samplerStateOffset = 0;
uint32_t samplerCount = 0;
if (kernelDescriptor.payloadMappings.samplerTable.numSamplers > 0) {
samplerCount = kernelDescriptor.payloadMappings.samplerTable.numSamplers;
samplerStateOffset = EncodeStates<Family>::copySamplerState(
heap, kernelDescriptor.payloadMappings.samplerTable.tableOffset,
kernelDescriptor.payloadMappings.samplerTable.numSamplers, kernelDescriptor.payloadMappings.samplerTable.borderColor,
dispatchInterface->getDynamicStateHeapData(),
device->getBindlessHeapsHelper());
if (ApiSpecificConfig::getBindlessConfiguration()) {
container.getResidencyContainer().push_back(device->getBindlessHeapsHelper()->getHeap(NEO::BindlessHeapsHelper::BindlesHeapType::GLOBAL_DSH)->getGraphicsAllocation());
}
}
idd.setSamplerStatePointer(samplerStateOffset);
EncodeDispatchKernel<Family>::adjustBindingTablePrefetch(idd, samplerCount, bindingTableStateCount);
uint64_t offsetThreadData = 0u;
const uint32_t inlineDataSize = sizeof(INLINE_DATA);
auto crossThreadData = dispatchInterface->getCrossThreadData();
if (inlineDataProgramming) {
auto copySize = std::min(inlineDataSize, sizeCrossThreadData);
auto dest = reinterpret_cast<char *>(walkerCmd.getInlineDataPointer());
memcpy_s(dest, copySize, crossThreadData, copySize);
auto offset = std::min(inlineDataSize, sizeCrossThreadData);
sizeCrossThreadData -= copySize;
crossThreadData = ptrOffset(crossThreadData, offset);
inlineDataProgramming = copySize != 0;
}
uint32_t sizeThreadData = sizePerThreadDataForWholeGroup + sizeCrossThreadData;
{
auto heap = container.getIndirectHeap(HeapType::INDIRECT_OBJECT);
UNRECOVERABLE_IF(!heap);
heap->align(WALKER_TYPE::INDIRECTDATASTARTADDRESS_ALIGN_SIZE);
auto ptr = container.getHeapSpaceAllowGrow(HeapType::INDIRECT_OBJECT, sizeThreadData);
UNRECOVERABLE_IF(!ptr);
offsetThreadData = (is64bit ? heap->getHeapGpuStartOffset() : heap->getHeapGpuBase()) + static_cast<uint64_t>(heap->getUsed() - sizeThreadData);
if (sizeCrossThreadData > 0) {
memcpy_s(ptr, sizeCrossThreadData,
crossThreadData, sizeCrossThreadData);
}
if (isIndirect) {
void *gpuPtr = reinterpret_cast<void *>(heap->getHeapGpuBase() + heap->getUsed() - sizeThreadData);
EncodeIndirectParams<Family>::setGroupCountIndirect(container, kernelDescriptor.payloadMappings.dispatchTraits.numWorkGroups, gpuPtr);
EncodeIndirectParams<Family>::setGlobalWorkSizeIndirect(container, kernelDescriptor.payloadMappings.dispatchTraits.globalWorkSize, gpuPtr, dispatchInterface->getGroupSize());
}
auto perThreadDataPtr = dispatchInterface->getPerThreadData();
if (perThreadDataPtr != nullptr) {
ptr = ptrOffset(ptr, sizeCrossThreadData);
memcpy_s(ptr, sizePerThreadDataForWholeGroup,
perThreadDataPtr, sizePerThreadDataForWholeGroup);
}
}
bool requiresGlobalAtomicsUpdate = false;
if (ImplicitScalingHelper::isImplicitScalingEnabled(container.getDevice()->getDeviceBitfield(), true)) {
requiresGlobalAtomicsUpdate = container.lastSentUseGlobalAtomics != useGlobalAtomics;
container.lastSentUseGlobalAtomics = useGlobalAtomics;
}
if (container.isAnyHeapDirty() || requiresUncachedMocs || requiresGlobalAtomicsUpdate) {
PipeControlArgs args(true);
MemorySynchronizationCommands<Family>::addPipeControl(*container.getCommandStream(), args);
STATE_BASE_ADDRESS sbaCmd;
auto gmmHelper = container.getDevice()->getGmmHelper();
uint32_t statelessMocsIndex =
requiresUncachedMocs ? (gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CACHELINE_MISALIGNED) >> 1) : (gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER) >> 1);
EncodeStateBaseAddress<Family>::encode(container, sbaCmd, statelessMocsIndex, useGlobalAtomics);
container.setDirtyStateForAllHeaps(false);
requiresUncachedMocs = false;
}
walkerCmd.setIndirectDataStartAddress(static_cast<uint32_t>(offsetThreadData));
walkerCmd.setIndirectDataLength(sizeThreadData);
EncodeDispatchKernel<Family>::encodeThreadData(walkerCmd,
nullptr,
threadDims,
dispatchInterface->getGroupSize(),
kernelDescriptor.kernelAttributes.simdSize,
kernelDescriptor.kernelAttributes.numLocalIdChannels,
dispatchInterface->getNumThreadsPerThreadGroup(),
dispatchInterface->getThreadExecutionMask(),
localIdsGenerationByRuntime,
inlineDataProgramming,
isIndirect,
dispatchInterface->getRequiredWorkgroupOrder());
using POSTSYNC_DATA = typename Family::POSTSYNC_DATA;
auto &postSync = walkerCmd.getPostSync();
if (eventAddress != 0) {
postSync.setDataportPipelineFlush(true);
postSync.setL3Flush(L3FlushEnable);
if (isTimestampEvent) {
postSync.setOperation(POSTSYNC_DATA::OPERATION_WRITE_TIMESTAMP);
} else {
uint32_t STATE_SIGNALED = 0u;
postSync.setOperation(POSTSYNC_DATA::OPERATION_WRITE_IMMEDIATE_DATA);
postSync.setImmediateData(STATE_SIGNALED);
}
UNRECOVERABLE_IF(!(isAligned<TimestampDestinationAddressAlignment>(eventAddress)));
postSync.setDestinationAddress(eventAddress);
auto gmmHelper = device->getRootDeviceEnvironment().getGmmHelper();
postSync.setMocs(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CACHELINE_MISALIGNED));
EncodeDispatchKernel<Family>::adjustTimestampPacket(walkerCmd, hwInfo);
}
walkerCmd.setPredicateEnable(isPredicate);
EncodeDispatchKernel<Family>::adjustInterfaceDescriptorData(idd, hwInfo);
EncodeDispatchKernel<Family>::appendAdditionalIDDFields(&idd, hwInfo, threadsPerThreadGroup,
dispatchInterface->getSlmTotalSize(),
dispatchInterface->getSlmPolicy());
EncodeDispatchKernel<Family>::encodeAdditionalWalkerFields(hwInfo, walkerCmd);
PreemptionHelper::applyPreemptionWaCmdsBegin<Family>(listCmdBufferStream, *device);
if (ImplicitScalingHelper::isImplicitScalingEnabled(device->getDeviceBitfield(), true) &&
!isInternal) {
const uint64_t workPartitionAllocationGpuVa = device->getDefaultEngine().commandStreamReceiver->getWorkPartitionAllocationGpuAddress();
ImplicitScalingDispatch<Family>::dispatchCommands(*listCmdBufferStream,
walkerCmd,
device->getDeviceBitfield(),
partitionCount,
true,
true,
false,
workPartitionAllocationGpuVa);
} else {
partitionCount = 1;
auto buffer = listCmdBufferStream->getSpace(sizeof(walkerCmd));
*(decltype(walkerCmd) *)buffer = walkerCmd;
}
PreemptionHelper::applyPreemptionWaCmdsEnd<Family>(listCmdBufferStream, *device);
}
template <typename Family>
inline void EncodeDispatchKernel<Family>::encodeAdditionalWalkerFields(const HardwareInfo &hwInfo, WALKER_TYPE &walkerCmd) {
}
template <typename Family>
bool EncodeDispatchKernel<Family>::isRuntimeLocalIdsGenerationRequired(uint32_t activeChannels,
size_t *lws,
std::array<uint8_t, 3> walkOrder,
bool requireInputWalkOrder,
uint32_t &requiredWalkOrder,
uint32_t simd) {
if (simd == 1) {
return true;
}
bool hwGenerationOfLocalIdsEnabled = true;
if (DebugManager.flags.EnableHwGenerationLocalIds.get() != -1) {
hwGenerationOfLocalIdsEnabled = !!DebugManager.flags.EnableHwGenerationLocalIds.get();
}
if (hwGenerationOfLocalIdsEnabled) {
if (activeChannels == 0) {
return false;
}
size_t totalLwsSize = 1u;
for (auto dimension = 0u; dimension < activeChannels; dimension++) {
totalLwsSize *= lws[dimension];
}
if (totalLwsSize > 1024u) {
return true;
}
//make sure table below matches Hardware Spec
constexpr uint32_t walkOrderPossibilties = 6u;
constexpr uint8_t possibleWalkOrders[walkOrderPossibilties][3] = {{0, 1, 2},
{0, 2, 1},
{1, 0, 2},
{2, 0, 1},
{1, 2, 0},
{2, 1, 0}};
//check if we need to follow kernel requirements
if (requireInputWalkOrder) {
for (uint32_t dimension = 0; dimension < activeChannels - 1; dimension++) {
if (!Math::isPow2<size_t>(lws[walkOrder[dimension]])) {
return true;
}
}
auto index = 0u;
while (index < walkOrderPossibilties) {
if (walkOrder[0] == possibleWalkOrders[index][0] &&
walkOrder[1] == possibleWalkOrders[index][1]) {
break;
};
index++;
}
DEBUG_BREAK_IF(index >= walkOrderPossibilties);
requiredWalkOrder = index;
return false;
}
//kernel doesn't specify any walk order requirements, check if we have any compatible
for (uint32_t walkOrder = 0; walkOrder < walkOrderPossibilties; walkOrder++) {
bool allDimensionsCompatible = true;
for (uint32_t dimension = 0; dimension < activeChannels - 1; dimension++) {
if (!Math::isPow2<size_t>(lws[possibleWalkOrders[walkOrder][dimension]])) {
allDimensionsCompatible = false;
break;
}
}
if (allDimensionsCompatible) {
requiredWalkOrder = walkOrder;
return false;
}
}
}
return true;
}
template <typename Family>
void EncodeDispatchKernel<Family>::encodeThreadData(WALKER_TYPE &walkerCmd,
const uint32_t *startWorkGroup,
const uint32_t *numWorkGroups,
const uint32_t *workGroupSizes,
uint32_t simd,
uint32_t localIdDimensions,
uint32_t threadsPerThreadGroup,
uint32_t threadExecutionMask,
bool localIdsGenerationByRuntime,
bool inlineDataProgrammingRequired,
bool isIndirect,
uint32_t requiredWorkGroupOrder) {
if (isIndirect) {
walkerCmd.setIndirectParameterEnable(true);
} else {
walkerCmd.setThreadGroupIdXDimension(static_cast<uint32_t>(numWorkGroups[0]));
walkerCmd.setThreadGroupIdYDimension(static_cast<uint32_t>(numWorkGroups[1]));
walkerCmd.setThreadGroupIdZDimension(static_cast<uint32_t>(numWorkGroups[2]));
}
if (startWorkGroup) {
walkerCmd.setThreadGroupIdStartingX(static_cast<uint32_t>(startWorkGroup[0]));
walkerCmd.setThreadGroupIdStartingY(static_cast<uint32_t>(startWorkGroup[1]));
walkerCmd.setThreadGroupIdStartingZ(static_cast<uint32_t>(startWorkGroup[2]));
}
uint64_t executionMask = threadExecutionMask;
if (executionMask == 0) {
auto workGroupSize = workGroupSizes[0] * workGroupSizes[1] * workGroupSizes[2];
auto remainderSimdLanes = workGroupSize & (simd - 1);
executionMask = maxNBitValue(remainderSimdLanes);
if (!executionMask) {
executionMask = maxNBitValue((simd == 1) ? 32 : simd);
}
}
walkerCmd.setExecutionMask(static_cast<uint32_t>(executionMask));
walkerCmd.setSimdSize(getSimdConfig<WALKER_TYPE>(simd));
walkerCmd.setMessageSimd(walkerCmd.getSimdSize());
//1) cross-thread inline data will be put into R1, but if kernel uses local ids, then cross-thread should be put further back
//so whenever local ids are driver or hw generated, reserve space by setting right values for emitLocalIds
//2) Auto-generation of local ids should be possible, when in fact local ids are used
if (!localIdsGenerationByRuntime && localIdDimensions > 0) {
UNRECOVERABLE_IF(localIdDimensions != 3);
uint32_t emitLocalIdsForDim = (1 << 0) | (1 << 1) | (1 << 2);
walkerCmd.setEmitLocalId(emitLocalIdsForDim);
walkerCmd.setLocalXMaximum(static_cast<uint32_t>(workGroupSizes[0] - 1));
walkerCmd.setLocalYMaximum(static_cast<uint32_t>(workGroupSizes[1] - 1));
walkerCmd.setLocalZMaximum(static_cast<uint32_t>(workGroupSizes[2] - 1));
walkerCmd.setGenerateLocalId(1);
walkerCmd.setWalkOrder(requiredWorkGroupOrder);
}
if (inlineDataProgrammingRequired == true) {
walkerCmd.setEmitInlineParameter(1);
}
}
template <typename Family>
size_t EncodeDispatchKernel<Family>::estimateEncodeDispatchKernelCmdsSize(Device *device, Vec3<size_t> groupStart, Vec3<size_t> groupCount,
bool isInternal) {
size_t totalSize = sizeof(WALKER_TYPE);
totalSize += PreemptionHelper::getPreemptionWaCsSize<Family>(*device);
totalSize += EncodeStates<Family>::getAdjustStateComputeModeSize();
totalSize += EncodeIndirectParams<Family>::getCmdsSizeForIndirectParams();
totalSize += EncodeIndirectParams<Family>::getCmdsSizeForSetGroupCountIndirect();
totalSize += EncodeIndirectParams<Family>::getCmdsSizeForSetGroupSizeIndirect();
if (ImplicitScalingHelper::isImplicitScalingEnabled(device->getDeviceBitfield(), true) &&
!isInternal) {
const bool staticPartitioning = device->getDefaultEngine().commandStreamReceiver->isStaticWorkPartitioningEnabled();
totalSize += ImplicitScalingDispatch<Family>::getSize(true, staticPartitioning, device->getDeviceBitfield(), groupStart, groupCount);
}
return totalSize;
}
template <typename Family>
void EncodeStateBaseAddress<Family>::encode(CommandContainer &container, STATE_BASE_ADDRESS &sbaCmd) {
auto gmmHelper = container.getDevice()->getRootDeviceEnvironment().getGmmHelper();
uint32_t statelessMocsIndex = (gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER) >> 1);
EncodeStateBaseAddress<Family>::encode(container, sbaCmd, statelessMocsIndex, false);
}
template <typename Family>
void EncodeStateBaseAddress<Family>::encode(CommandContainer &container, STATE_BASE_ADDRESS &sbaCmd, uint32_t statelessMocsIndex, bool useGlobalAtomics) {
auto gmmHelper = container.getDevice()->getRootDeviceEnvironment().getGmmHelper();
bool multiOsContextCapable =
ImplicitScalingHelper::isImplicitScalingEnabled(container.getDevice()->getDeviceBitfield(), true);
StateBaseAddressHelper<Family>::programStateBaseAddress(
&sbaCmd,
container.isHeapDirty(HeapType::DYNAMIC_STATE) ? container.getIndirectHeap(HeapType::DYNAMIC_STATE) : nullptr,
container.isHeapDirty(HeapType::INDIRECT_OBJECT) ? container.getIndirectHeap(HeapType::INDIRECT_OBJECT) : nullptr,
container.isHeapDirty(HeapType::SURFACE_STATE) ? container.getIndirectHeap(HeapType::SURFACE_STATE) : nullptr,
0,
true,
statelessMocsIndex,
container.getIndirectObjectHeapBaseAddress(),
container.getInstructionHeapBaseAddress(),
0,
true,
false,
gmmHelper,
multiOsContextCapable,
MemoryCompressionState::NotApplicable,
useGlobalAtomics,
1u);
auto pCmd = reinterpret_cast<STATE_BASE_ADDRESS *>(container.getCommandStream()->getSpace(sizeof(STATE_BASE_ADDRESS)));
*pCmd = sbaCmd;
if (container.isHeapDirty(HeapType::SURFACE_STATE)) {
auto heap = container.getIndirectHeap(HeapType::SURFACE_STATE);
auto cmd = Family::cmdInitStateBindingTablePoolAlloc;
cmd.setBindingTablePoolBaseAddress(heap->getHeapGpuBase());
cmd.setBindingTablePoolBufferSize(heap->getHeapSizeInPages());
cmd.setSurfaceObjectControlStateIndexToMocsTables(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_STATE_HEAP_BUFFER));
auto buffer = container.getCommandStream()->getSpace(sizeof(cmd));
*(typename Family::_3DSTATE_BINDING_TABLE_POOL_ALLOC *)buffer = cmd;
}
}
template <typename Family>
void EncodeComputeMode<Family>::adjustComputeMode(LinearStream &csr, void *const stateComputeModePtr, StateComputeModeProperties &properties) {
using STATE_COMPUTE_MODE = typename Family::STATE_COMPUTE_MODE;
using FORCE_NON_COHERENT = typename STATE_COMPUTE_MODE::FORCE_NON_COHERENT;
STATE_COMPUTE_MODE stateComputeMode = (stateComputeModePtr != nullptr) ? *(static_cast<STATE_COMPUTE_MODE *>(stateComputeModePtr)) : Family::cmdInitStateComputeMode;
auto maskBits = stateComputeMode.getMaskBits();
if (properties.isCoherencyRequired.isDirty) {
FORCE_NON_COHERENT coherencyValue = !properties.isCoherencyRequired.value ? FORCE_NON_COHERENT::FORCE_NON_COHERENT_FORCE_GPU_NON_COHERENT
: FORCE_NON_COHERENT::FORCE_NON_COHERENT_FORCE_DISABLED;
stateComputeMode.setForceNonCoherent(coherencyValue);
maskBits |= Family::stateComputeModeForceNonCoherentMask;
}
if (properties.largeGrfMode.isDirty) {
stateComputeMode.setLargeGrfMode(properties.largeGrfMode.value);
maskBits |= Family::stateComputeModeLargeGrfModeMask;
}
stateComputeMode.setMaskBits(maskBits);
auto buffer = csr.getSpaceForCmd<STATE_COMPUTE_MODE>();
*buffer = stateComputeMode;
}
template <typename Family>
void EncodeComputeMode<Family>::adjustPipelineSelect(CommandContainer &container, const NEO::KernelDescriptor &kernelDescriptor) {
using PIPELINE_SELECT = typename Family::PIPELINE_SELECT;
auto pipelineSelectCmd = Family::cmdInitPipelineSelect;
if (kernelDescriptor.extendedInfo && kernelDescriptor.extendedInfo->specialPipelineSelectModeRequired()) {
pipelineSelectCmd.setSystolicModeEnable(true);
} else {
pipelineSelectCmd.setSystolicModeEnable(false);
}
if (DebugManager.flags.OverrideSystolicPipelineSelect.get() != -1) {
pipelineSelectCmd.setSystolicModeEnable(DebugManager.flags.OverrideSystolicPipelineSelect.get());
}
pipelineSelectCmd.setMaskBits(pipelineSelectSystolicModeEnableMaskBits);
pipelineSelectCmd.setPipelineSelection(PIPELINE_SELECT::PIPELINE_SELECTION_GPGPU);
auto buffer = container.getCommandStream()->getSpace(sizeof(pipelineSelectCmd));
*(decltype(pipelineSelectCmd) *)buffer = pipelineSelectCmd;
}
template <typename Family>
inline void EncodeMediaInterfaceDescriptorLoad<Family>::encode(CommandContainer &container) {
}
template <typename Family>
void EncodeMiFlushDW<Family>::appendMiFlushDw(MI_FLUSH_DW *miFlushDwCmd) {
miFlushDwCmd->setFlushCcs(1);
miFlushDwCmd->setFlushLlc(1);
}
template <typename Family>
void EncodeMiFlushDW<Family>::programMiFlushDwWA(LinearStream &commandStream) {
auto miFlushDwCmd = commandStream.getSpaceForCmd<MI_FLUSH_DW>();
*miFlushDwCmd = Family::cmdInitMiFlushDw;
}
template <typename Family>
size_t EncodeMiFlushDW<Family>::getMiFlushDwWaSize() {
return sizeof(typename Family::MI_FLUSH_DW);
}
template <typename Family>
bool EncodeSurfaceState<Family>::doBindingTablePrefetch() {
return false;
}
template <typename GfxFamily>
void EncodeSurfaceState<GfxFamily>::encodeExtraBufferParams(R_SURFACE_STATE *surfaceState, GraphicsAllocation *allocation, GmmHelper *gmmHelper,
bool isReadOnly, uint32_t numAvailableDevices, bool useGlobalAtomics, bool areMultipleSubDevicesInContext) {
Gmm *gmm = allocation ? allocation->getDefaultGmm() : nullptr;
uint32_t compressionFormat = 0;
bool setConstCachePolicy = false;
if (allocation && allocation->getAllocationType() == GraphicsAllocation::AllocationType::CONSTANT_SURFACE) {
setConstCachePolicy = true;
}
if (surfaceState->getMemoryObjectControlState() == gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER) &&
DebugManager.flags.ForceL1Caching.get() != 0) {
setConstCachePolicy = true;
}
if (setConstCachePolicy == true) {
surfaceState->setMemoryObjectControlState(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CONST));
}
encodeExtraCacheSettings(surfaceState, *gmmHelper->getHardwareInfo());
DeviceBitfield deviceBitfield{static_cast<uint32_t>(maxNBitValue(numAvailableDevices))};
bool implicitScaling = ImplicitScalingHelper::isImplicitScalingEnabled(deviceBitfield, true);
bool enablePartialWrites = implicitScaling;
bool enableMultiGpuAtomics = enablePartialWrites;
if (DebugManager.flags.EnableMultiGpuAtomicsOptimization.get()) {
enableMultiGpuAtomics = useGlobalAtomics && (enablePartialWrites || areMultipleSubDevicesInContext);
}
surfaceState->setDisableSupportForMultiGpuAtomics(!enableMultiGpuAtomics);
surfaceState->setDisableSupportForMultiGpuPartialWrites(!enablePartialWrites);
if (DebugManager.flags.ForceMultiGpuAtomics.get() != -1) {
surfaceState->setDisableSupportForMultiGpuAtomics(!!DebugManager.flags.ForceMultiGpuAtomics.get());
}
if (DebugManager.flags.ForceMultiGpuPartialWrites.get() != -1) {
surfaceState->setDisableSupportForMultiGpuPartialWrites(!!DebugManager.flags.ForceMultiGpuPartialWrites.get());
}
if (EncodeSurfaceState<GfxFamily>::isAuxModeEnabled(surfaceState, gmm)) {
auto resourceFormat = gmm->gmmResourceInfo->getResourceFormat();
compressionFormat = gmmHelper->getClientContext()->getSurfaceStateCompressionFormat(resourceFormat);
if (DebugManager.flags.ForceBufferCompressionFormat.get() != -1) {
compressionFormat = DebugManager.flags.ForceBufferCompressionFormat.get();
}
}
if (DebugManager.flags.EnableStatelessCompressionWithUnifiedMemory.get()) {
if (allocation && !MemoryPool::isSystemMemoryPool(allocation->getMemoryPool())) {
setCoherencyType(surfaceState, R_SURFACE_STATE::COHERENCY_TYPE_GPU_COHERENT);
setBufferAuxParamsForCCS(surfaceState);
compressionFormat = DebugManager.flags.FormatForStatelessCompressionWithUnifiedMemory.get();
}
}
surfaceState->setCompressionFormat(compressionFormat);
}
template <typename Family>
inline void EncodeSurfaceState<Family>::setCoherencyType(R_SURFACE_STATE *surfaceState, COHERENCY_TYPE coherencyType) {
surfaceState->setCoherencyType(R_SURFACE_STATE::COHERENCY_TYPE_GPU_COHERENT);
}
template <typename Family>
void EncodeSempahore<Family>::programMiSemaphoreWait(MI_SEMAPHORE_WAIT *cmd,
uint64_t compareAddress,
uint32_t compareData,
COMPARE_OPERATION compareMode,
bool registerPollMode) {
MI_SEMAPHORE_WAIT localCmd = Family::cmdInitMiSemaphoreWait;
localCmd.setCompareOperation(compareMode);
localCmd.setSemaphoreDataDword(compareData);
localCmd.setSemaphoreGraphicsAddress(compareAddress);
localCmd.setWaitMode(MI_SEMAPHORE_WAIT::WAIT_MODE::WAIT_MODE_POLLING_MODE);
localCmd.setRegisterPollMode(registerPollMode ? MI_SEMAPHORE_WAIT::REGISTER_POLL_MODE::REGISTER_POLL_MODE_REGISTER_POLL : MI_SEMAPHORE_WAIT::REGISTER_POLL_MODE::REGISTER_POLL_MODE_MEMORY_POLL);
*cmd = localCmd;
}
template <typename Family>
inline void EncodeWA<Family>::encodeAdditionalPipelineSelect(Device &device, LinearStream &stream, bool is3DPipeline) {}
template <typename Family>
inline size_t EncodeWA<Family>::getAdditionalPipelineSelectSize(Device &device) {
return 0u;
}
} // namespace NEO

View File

@@ -8,6 +8,7 @@ set(NEO_CORE_COMMAND_CONTAINER_IMAGE_SURFACE_STATE
${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt
${CMAKE_CURRENT_SOURCE_DIR}/compression_params_bdw_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/compression_params_tgllp_plus.inl
${CMAKE_CURRENT_SOURCE_DIR}/compression_params_xehp_plus.inl
)
set_property(GLOBAL APPEND PROPERTY NEO_CORE_COMMAND_CONTAINER ${NEO_CORE_COMMAND_CONTAINER_IMAGE_SURFACE_STATE})

View File

@@ -0,0 +1,36 @@
/*
* Copyright (C) 2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/gmm_helper/resource_info.h"
#include "gmm_client_context.h"
namespace NEO {
template <typename Family>
void EncodeSurfaceState<Family>::appendImageCompressionParams(R_SURFACE_STATE *surfaceState, GraphicsAllocation *allocation, GmmHelper *gmmHelper, bool imageFromBuffer) {
const auto ccsMode = R_SURFACE_STATE::AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_CCS_E;
if ((ccsMode == surfaceState->getAuxiliarySurfaceMode() || surfaceState->getMemoryCompressionEnable())) {
uint8_t compressionFormat;
auto gmmResourceInfo = allocation->getDefaultGmm()->gmmResourceInfo.get();
if (gmmResourceInfo->getResourceFlags()->Info.MediaCompressed) {
compressionFormat = gmmHelper->getClientContext()->getMediaSurfaceStateCompressionFormat(gmmResourceInfo->getResourceFormat());
} else {
compressionFormat = gmmHelper->getClientContext()->getSurfaceStateCompressionFormat(gmmResourceInfo->getResourceFormat());
}
if (imageFromBuffer) {
if (DebugManager.flags.ForceBufferCompressionFormat.get() != -1) {
compressionFormat = DebugManager.flags.ForceBufferCompressionFormat.get();
}
appendParamsForImageFromBuffer(surfaceState);
}
surfaceState->setCompressionFormat(compressionFormat);
}
}
} // namespace NEO

View File

@@ -0,0 +1,37 @@
/*
* Copyright (C) 2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/command_container/implicit_scaling.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/os_interface/os_interface.h"
namespace NEO {
bool ImplicitScalingHelper::isImplicitScalingEnabled(const DeviceBitfield &devices, bool preCondition) {
bool partitionWalker = (devices.count() > 1u) &&
preCondition &&
ImplicitScaling::apiSupport;
if (DebugManager.flags.EnableWalkerPartition.get() != -1) {
partitionWalker = !!DebugManager.flags.EnableWalkerPartition.get();
}
//we can't do this without local memory
partitionWalker &= OSInterface::osEnableLocalMemory;
return partitionWalker;
}
bool ImplicitScalingHelper::isSynchronizeBeforeExecutionRequired() {
auto synchronizeBeforeExecution = false;
if (DebugManager.flags.SynchronizeWalkerInWparidMode.get() != -1) {
synchronizeBeforeExecution = static_cast<bool>(DebugManager.flags.SynchronizeWalkerInWparidMode.get());
}
return synchronizeBeforeExecution;
}
} // namespace NEO

View File

@@ -0,0 +1,44 @@
/*
* Copyright (C) 2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/helpers/common_types.h"
#include "shared/source/helpers/vec.h"
namespace NEO {
class LinearStream;
namespace ImplicitScaling {
extern bool apiSupport;
}
struct ImplicitScalingHelper {
static bool isImplicitScalingEnabled(const DeviceBitfield &devices, bool preCondition);
static bool isSynchronizeBeforeExecutionRequired();
};
template <typename GfxFamily>
struct ImplicitScalingDispatch {
using WALKER_TYPE = typename GfxFamily::WALKER_TYPE;
static size_t getSize(bool nativeCrossTileAtomicSync,
bool preferStaticPartitioning,
const DeviceBitfield &devices,
Vec3<size_t> groupStart,
Vec3<size_t> groupCount);
static void dispatchCommands(LinearStream &commandStream,
WALKER_TYPE &walkerCmd,
const DeviceBitfield &devices,
uint32_t &partitionCount,
bool useSecondaryBatchBuffer,
bool nativeCrossTileAtomicSync,
bool usesImages,
uint64_t workPartitionAllocationGpuVa);
};
} // namespace NEO

View File

@@ -0,0 +1,83 @@
/*
* Copyright (C) 2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/command_container/implicit_scaling.h"
#include "shared/source/command_container/walker_partition_xehp_plus.h"
#include "shared/source/command_stream/linear_stream.h"
namespace NEO {
template <typename GfxFamily>
size_t ImplicitScalingDispatch<GfxFamily>::getSize(bool nativeCrossTileAtomicSync,
bool preferStaticPartitioning,
const DeviceBitfield &devices,
Vec3<size_t> groupStart,
Vec3<size_t> groupCount) {
typename GfxFamily::COMPUTE_WALKER::PARTITION_TYPE partitionType{};
bool staticPartitioning = false;
const uint32_t tileCount = static_cast<uint32_t>(devices.count());
const uint32_t partitionCount = WalkerPartition::computePartitionCountAndPartitionType<GfxFamily>(tileCount,
preferStaticPartitioning,
groupStart,
groupCount,
{},
&partitionType,
&staticPartitioning);
UNRECOVERABLE_IF(staticPartitioning && (tileCount != partitionCount));
auto synchronizeBeforeExecution = ImplicitScalingHelper::isSynchronizeBeforeExecutionRequired();
return static_cast<size_t>(WalkerPartition::estimateSpaceRequiredInCommandBuffer<GfxFamily>(
false, 16u, synchronizeBeforeExecution, nativeCrossTileAtomicSync, staticPartitioning));
}
template <typename GfxFamily>
void ImplicitScalingDispatch<GfxFamily>::dispatchCommands(LinearStream &commandStream,
WALKER_TYPE &walkerCmd,
const DeviceBitfield &devices,
uint32_t &partitionCount,
bool useSecondaryBatchBuffer,
bool nativeCrossTileAtomicSync,
bool usesImages,
uint64_t workPartitionAllocationGpuVa) {
uint32_t totalProgrammedSize = 0u;
const uint32_t tileCount = static_cast<uint32_t>(devices.count());
const bool preferStaticPartitioning = workPartitionAllocationGpuVa != 0u;
bool staticPartitioning = false;
partitionCount = WalkerPartition::computePartitionCountAndSetPartitionType<GfxFamily>(&walkerCmd, tileCount, preferStaticPartitioning, usesImages, &staticPartitioning);
const bool synchronizeBeforeExecution = ImplicitScalingHelper::isSynchronizeBeforeExecutionRequired();
if (staticPartitioning) {
UNRECOVERABLE_IF(tileCount != partitionCount);
WalkerPartition::constructStaticallyPartitionedCommandBuffer<GfxFamily>(commandStream.getSpace(0u),
commandStream.getGraphicsAllocation()->getGpuAddress() + commandStream.getUsed(),
&walkerCmd,
totalProgrammedSize,
partitionCount,
tileCount,
synchronizeBeforeExecution,
useSecondaryBatchBuffer,
nativeCrossTileAtomicSync,
workPartitionAllocationGpuVa);
} else {
if (DebugManager.flags.ExperimentalSetWalkerPartitionCount.get()) {
partitionCount = DebugManager.flags.ExperimentalSetWalkerPartitionCount.get();
if (partitionCount == 1u) {
walkerCmd.setPartitionType(GfxFamily::COMPUTE_WALKER::PARTITION_TYPE::PARTITION_TYPE_DISABLED);
}
}
WalkerPartition::constructDynamicallyPartitionedCommandBuffer<GfxFamily>(commandStream.getSpace(0u),
commandStream.getGraphicsAllocation()->getGpuAddress() + commandStream.getUsed(),
&walkerCmd, totalProgrammedSize,
partitionCount, tileCount,
false, synchronizeBeforeExecution, useSecondaryBatchBuffer,
nativeCrossTileAtomicSync);
}
commandStream.getSpace(totalProgrammedSize);
}
} // namespace NEO

View File

@@ -0,0 +1,730 @@
/*
* Copyright (C) 2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/command_container/command_encoder.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/ptr_math.h"
#include <cassert>
#include <optional>
namespace WalkerPartition {
template <typename GfxFamily>
using COMPUTE_WALKER = typename GfxFamily::COMPUTE_WALKER;
template <typename GfxFamily>
using POSTSYNC_DATA = typename GfxFamily::POSTSYNC_DATA;
template <typename GfxFamily>
using BATCH_BUFFER_START = typename GfxFamily::MI_BATCH_BUFFER_START;
template <typename GfxFamily>
using BATCH_BUFFER_END = typename GfxFamily::MI_BATCH_BUFFER_END;
template <typename GfxFamily>
using LOAD_REGISTER_IMM = typename GfxFamily::MI_LOAD_REGISTER_IMM;
template <typename GfxFamily>
using LOAD_REGISTER_MEM = typename GfxFamily::MI_LOAD_REGISTER_MEM;
template <typename GfxFamily>
using MI_SET_PREDICATE = typename GfxFamily::MI_SET_PREDICATE;
template <typename GfxFamily>
using MI_SEMAPHORE_WAIT = typename GfxFamily::MI_SEMAPHORE_WAIT;
template <typename GfxFamily>
using MI_ATOMIC = typename GfxFamily::MI_ATOMIC;
template <typename GfxFamily>
using DATA_SIZE = typename GfxFamily::MI_ATOMIC::DATA_SIZE;
template <typename GfxFamily>
using LOAD_REGISTER_REG = typename GfxFamily::MI_LOAD_REGISTER_REG;
template <typename GfxFamily>
using PIPE_CONTROL = typename GfxFamily::PIPE_CONTROL;
template <typename GfxFamily>
using MI_STORE_DATA_IMM = typename GfxFamily::MI_STORE_DATA_IMM;
constexpr uint32_t wparidCCSOffset = 0x221C;
constexpr uint32_t addressOffsetCCSOffset = 0x23B4;
constexpr uint32_t predicationMaskCCSOffset = 0x21FC;
constexpr uint32_t generalPurposeRegister0 = 0x2600;
constexpr uint32_t generalPurposeRegister1 = 0x2608;
constexpr uint32_t generalPurposeRegister2 = 0x2610;
constexpr uint32_t generalPurposeRegister3 = 0x2618;
constexpr uint32_t generalPurposeRegister4 = 0x2620;
constexpr uint32_t generalPurposeRegister5 = 0x2628;
constexpr uint32_t generalPurposeRegister6 = 0x2630;
struct BatchBufferControlData {
uint32_t partitionCount = 0u;
uint32_t tileCount = 0u;
uint32_t inTileCount = 0u;
uint32_t finalSyncTileCount = 0u;
};
static constexpr inline size_t dynamicPartitioningFieldsForCleanupCount = sizeof(BatchBufferControlData) / sizeof(uint32_t) - 1;
template <typename Command>
Command *putCommand(void *&inputAddress, uint32_t &totalBytesProgrammed) {
totalBytesProgrammed += sizeof(Command);
auto commandToReturn = reinterpret_cast<Command *>(inputAddress);
inputAddress = ptrOffset(inputAddress, sizeof(Command));
return commandToReturn;
}
bool inline isSemaphoreProgrammingRequired() {
auto semaphoreProgrammingRequired = false;
if (NEO::DebugManager.flags.ExperimentalSynchronizeWithSemaphores.get() == 1) {
semaphoreProgrammingRequired = true;
}
return semaphoreProgrammingRequired;
}
bool inline isCrossTileAtomicRequired() {
auto crossTileAtomicSynchronization = true;
if (NEO::DebugManager.flags.ExperimentalForceCrossAtomicSynchronization.get() == 0) {
crossTileAtomicSynchronization = false;
}
return crossTileAtomicSynchronization;
}
template <typename GfxFamily>
uint32_t computePartitionCountAndPartitionType(uint32_t preferredMinimalPartitionCount,
bool preferStaticPartitioning,
Vec3<size_t> groupStart,
Vec3<size_t> groupCount,
std::optional<typename COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE> requestedPartitionType,
typename COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE *outSelectedPartitionType,
bool *outSelectStaticPartitioning) {
// For non uniform starting point, there is no support for partition in Hardware. Disable partitioning and select dynamic algorithm
if (groupStart.x || groupStart.y || groupStart.z) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_DISABLED;
*outSelectStaticPartitioning = false;
return 1u;
}
size_t workgroupCount = 0u;
bool disablePartitionForPartitionCountOne{};
if (NEO::DebugManager.flags.ExperimentalSetWalkerPartitionType.get() != -1) {
requestedPartitionType = static_cast<typename COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE>(NEO::DebugManager.flags.ExperimentalSetWalkerPartitionType.get());
}
if (requestedPartitionType.has_value()) {
switch (requestedPartitionType.value()) {
case COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_X:
workgroupCount = groupCount.x;
break;
case COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Y:
workgroupCount = groupCount.y;
break;
case COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Z:
workgroupCount = groupCount.z;
break;
default:
UNRECOVERABLE_IF(true);
}
*outSelectedPartitionType = requestedPartitionType.value();
disablePartitionForPartitionCountOne = false;
} else {
const size_t maxDimension = std::max({groupCount.z, groupCount.y, groupCount.x});
auto goWithMaxAlgorithm = !preferStaticPartitioning;
if (NEO::DebugManager.flags.WalkerPartitionPreferHighestDimension.get() != -1) {
goWithMaxAlgorithm = !!!NEO::DebugManager.flags.WalkerPartitionPreferHighestDimension.get();
}
//compute misaligned %, accept imbalance below threshold in favor of Z/Y/X distribution.
const float minimalThreshold = 0.05f;
float zImbalance = static_cast<float>(groupCount.z - alignDown(groupCount.z, preferredMinimalPartitionCount)) / static_cast<float>(groupCount.z);
float yImbalance = static_cast<float>(groupCount.y - alignDown(groupCount.y, preferredMinimalPartitionCount)) / static_cast<float>(groupCount.y);
//we first try with deepest dimension to see if we can partition there
if (groupCount.z > 1 && (zImbalance <= minimalThreshold)) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Z;
} else if (groupCount.y > 1 && (yImbalance < minimalThreshold)) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Y;
} else if (groupCount.x % preferredMinimalPartitionCount == 0) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_X;
}
//if we are here then there is no dimension that results in even distribution, choose max dimension to minimize impact
else {
goWithMaxAlgorithm = true;
}
if (goWithMaxAlgorithm) {
// default mode, select greatest dimension
if (maxDimension == groupCount.x) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_X;
} else if (maxDimension == groupCount.y) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Y;
} else {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Z;
}
}
workgroupCount = maxDimension;
disablePartitionForPartitionCountOne = true;
}
// Static partitioning - partition count == tile count
*outSelectStaticPartitioning = preferStaticPartitioning;
if (preferStaticPartitioning) {
return preferredMinimalPartitionCount;
}
// Dynamic partitioning - compute optimal partition count
size_t partitionCount = std::min(static_cast<size_t>(16u), workgroupCount);
partitionCount = Math::prevPowerOfTwo(partitionCount);
if (NEO::DebugManager.flags.SetMinimalPartitionSize.get() != 0) {
const auto workgroupPerPartitionThreshold = NEO::DebugManager.flags.SetMinimalPartitionSize.get() == -1
? 512u
: static_cast<unsigned>(NEO::DebugManager.flags.SetMinimalPartitionSize.get());
preferredMinimalPartitionCount = std::max(2u, preferredMinimalPartitionCount);
while (partitionCount > preferredMinimalPartitionCount) {
auto workgroupsPerPartition = workgroupCount / partitionCount;
if (workgroupsPerPartition >= workgroupPerPartitionThreshold) {
break;
}
partitionCount = partitionCount / 2;
}
}
if (partitionCount == 1u && disablePartitionForPartitionCountOne) {
*outSelectedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_DISABLED;
}
return static_cast<uint32_t>(partitionCount);
}
template <typename GfxFamily>
uint32_t computePartitionCountAndSetPartitionType(COMPUTE_WALKER<GfxFamily> *walker,
uint32_t preferredMinimalPartitionCount,
bool preferStaticPartitioning,
bool usesImages,
bool *outSelectStaticPartitioning) {
const Vec3<size_t> groupStart = {walker->getThreadGroupIdStartingX(), walker->getThreadGroupIdStartingY(), walker->getThreadGroupIdStartingZ()};
const Vec3<size_t> groupCount = {walker->getThreadGroupIdXDimension(), walker->getThreadGroupIdYDimension(), walker->getThreadGroupIdZDimension()};
std::optional<typename COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE> requestedPartitionType{};
if (usesImages) {
requestedPartitionType = COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_X;
}
typename COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE partitionType{};
const auto partitionCount = computePartitionCountAndPartitionType<GfxFamily>(preferredMinimalPartitionCount,
preferStaticPartitioning,
groupStart,
groupCount,
requestedPartitionType,
&partitionType,
outSelectStaticPartitioning);
walker->setPartitionType(partitionType);
return partitionCount;
}
template <typename GfxFamily>
void programRegisterWithValue(void *&inputAddress, uint32_t registerOffset, uint32_t &totalBytesProgrammed, uint32_t registerValue) {
auto loadRegisterImmediate = putCommand<LOAD_REGISTER_IMM<GfxFamily>>(inputAddress, totalBytesProgrammed);
LOAD_REGISTER_IMM<GfxFamily> cmd = GfxFamily::cmdInitLoadRegisterImm;
cmd.setRegisterOffset(registerOffset);
cmd.setDataDword(registerValue);
cmd.setMmioRemapEnable(true);
*loadRegisterImmediate = cmd;
}
template <typename GfxFamily>
void programWaitForSemaphore(void *&inputAddress, uint32_t &totalBytesProgrammed, uint64_t gpuAddress, uint32_t semaphoreCompareValue, typename MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION compareOperation) {
auto semaphoreWait = putCommand<MI_SEMAPHORE_WAIT<GfxFamily>>(inputAddress, totalBytesProgrammed);
MI_SEMAPHORE_WAIT<GfxFamily> cmd = GfxFamily::cmdInitMiSemaphoreWait;
cmd.setSemaphoreDataDword(semaphoreCompareValue);
cmd.setSemaphoreGraphicsAddress(gpuAddress);
cmd.setWaitMode(MI_SEMAPHORE_WAIT<GfxFamily>::WAIT_MODE::WAIT_MODE_POLLING_MODE);
cmd.setCompareOperation(compareOperation);
*semaphoreWait = cmd;
}
template <typename GfxFamily>
bool programWparidMask(void *&inputAddress, uint32_t &totalBytesProgrammed, uint32_t partitionCount) {
//currently only power of 2 values of partitionCount are being supported
if (!Math::isPow2(partitionCount) || partitionCount > 16) {
return false;
}
auto mask = 0xFFE0;
auto fillValue = 0x10;
auto count = partitionCount;
while (count < 16) {
fillValue |= (fillValue >> 1);
count *= 2;
}
mask |= (mask | fillValue);
programRegisterWithValue<GfxFamily>(inputAddress, predicationMaskCCSOffset, totalBytesProgrammed, mask);
return true;
}
template <typename GfxFamily>
void programWparidPredication(void *&inputAddress, uint32_t &totalBytesProgrammed, bool predicationEnabled) {
auto miSetPredicate = putCommand<MI_SET_PREDICATE<GfxFamily>>(inputAddress, totalBytesProgrammed);
MI_SET_PREDICATE<GfxFamily> cmd = GfxFamily::cmdInitSetPredicate;
if (predicationEnabled) {
cmd.setPredicateEnableWparid(MI_SET_PREDICATE<GfxFamily>::PREDICATE_ENABLE_WPARID::PREDICATE_ENABLE_WPARID_NOOP_ON_NON_ZERO_VALUE);
} else {
cmd.setPredicateEnable(MI_SET_PREDICATE<GfxFamily>::PREDICATE_ENABLE::PREDICATE_ENABLE_PREDICATE_DISABLE);
}
*miSetPredicate = cmd;
}
template <typename GfxFamily>
void programMiAtomic(void *&inputAddress, uint32_t &totalBytesProgrammed, uint64_t gpuAddress, bool requireReturnValue, typename MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES atomicOpcode) {
auto miAtomic = putCommand<MI_ATOMIC<GfxFamily>>(inputAddress, totalBytesProgrammed);
NEO::EncodeAtomic<GfxFamily>::programMiAtomic(miAtomic, gpuAddress, atomicOpcode, DATA_SIZE<GfxFamily>::DATA_SIZE_DWORD,
requireReturnValue, requireReturnValue, 0x0u, 0x0u);
}
template <typename GfxFamily>
void programMiBatchBufferStart(void *&inputAddress, uint32_t &totalBytesProgrammed,
uint64_t gpuAddress, bool predicationEnabled, bool secondary) {
auto batchBufferStart = putCommand<BATCH_BUFFER_START<GfxFamily>>(inputAddress, totalBytesProgrammed);
BATCH_BUFFER_START<GfxFamily> cmd = GfxFamily::cmdInitBatchBufferStart;
cmd.setSecondLevelBatchBuffer(static_cast<typename BATCH_BUFFER_START<GfxFamily>::SECOND_LEVEL_BATCH_BUFFER>(secondary));
cmd.setAddressSpaceIndicator(BATCH_BUFFER_START<GfxFamily>::ADDRESS_SPACE_INDICATOR::ADDRESS_SPACE_INDICATOR_PPGTT);
cmd.setPredicationEnable(predicationEnabled);
cmd.setBatchBufferStartAddress(gpuAddress);
*batchBufferStart = cmd;
}
template <typename GfxFamily>
void programMiLoadRegisterReg(void *&inputAddress, uint32_t &totalBytesProgrammed, uint32_t sourceRegisterOffset, uint32_t destinationRegisterOffset) {
auto loadRegisterReg = putCommand<LOAD_REGISTER_REG<GfxFamily>>(inputAddress, totalBytesProgrammed);
LOAD_REGISTER_REG<GfxFamily> cmd = GfxFamily::cmdInitLoadRegisterReg;
cmd.setMmioRemapEnableSource(true);
cmd.setMmioRemapEnableDestination(true);
cmd.setSourceRegisterAddress(sourceRegisterOffset);
cmd.setDestinationRegisterAddress(destinationRegisterOffset);
*loadRegisterReg = cmd;
}
template <typename GfxFamily>
void programMiLoadRegisterMem(void *&inputAddress, uint32_t &totalBytesProgrammed, uint64_t gpuAddressToLoad, uint32_t destinationRegisterOffset) {
auto loadRegisterReg = putCommand<LOAD_REGISTER_MEM<GfxFamily>>(inputAddress, totalBytesProgrammed);
LOAD_REGISTER_MEM<GfxFamily> cmd = GfxFamily::cmdInitLoadRegisterMem;
cmd.setMmioRemapEnable(true);
cmd.setMemoryAddress(gpuAddressToLoad);
cmd.setRegisterAddress(destinationRegisterOffset);
*loadRegisterReg = cmd;
}
template <typename GfxFamily>
void programPipeControlCommand(void *&inputAddress, uint32_t &totalBytesProgrammed, bool dcFlush) {
auto pipeControl = putCommand<PIPE_CONTROL<GfxFamily>>(inputAddress, totalBytesProgrammed);
PIPE_CONTROL<GfxFamily> cmd = GfxFamily::cmdInitPipeControl;
if (NEO::MemorySynchronizationCommands<GfxFamily>::isDcFlushAllowed()) {
cmd.setDcFlushEnable(dcFlush);
}
if (NEO::DebugManager.flags.DoNotFlushCaches.get()) {
cmd.setDcFlushEnable(false);
}
*pipeControl = cmd;
}
template <typename GfxFamily>
void programStoreMemImmediateDword(void *&inputAddress, uint32_t &totalBytesProgrammed, uint64_t gpuAddress, uint32_t data) {
auto storeDataImmediate = putCommand<MI_STORE_DATA_IMM<GfxFamily>>(inputAddress, totalBytesProgrammed);
MI_STORE_DATA_IMM<GfxFamily> cmd = GfxFamily::cmdInitStoreDataImm;
cmd.setAddress(gpuAddress);
cmd.setStoreQword(false);
cmd.setDwordLength(MI_STORE_DATA_IMM<GfxFamily>::DWORD_LENGTH::DWORD_LENGTH_STORE_DWORD);
cmd.setDataDword0(static_cast<uint32_t>(data));
*storeDataImmediate = cmd;
}
template <typename GfxFamily>
void programNativeCrossTileSyncControl(void *&inputAddress,
uint32_t &totalBytesProgrammed,
uint64_t finalSyncTileCountField) {
programStoreMemImmediateDword<GfxFamily>(inputAddress,
totalBytesProgrammed,
finalSyncTileCountField,
0u);
}
template <typename GfxFamily>
void programNativeCrossTileSyncCleanup(void *&inputAddress,
uint32_t &totalBytesProgrammed,
uint64_t finalSyncTileCountAddress,
uint64_t baseAddressForCleanup,
size_t fieldsForCleanupCount,
uint32_t tileCount) {
// Synchronize tiles, so the fields are not cleared while still in use
programMiAtomic<GfxFamily>(inputAddress, totalBytesProgrammed, finalSyncTileCountAddress, false, MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES::ATOMIC_4B_INCREMENT);
programWaitForSemaphore<GfxFamily>(inputAddress, totalBytesProgrammed, finalSyncTileCountAddress, tileCount, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
for (auto fieldIndex = 0u; fieldIndex < fieldsForCleanupCount; fieldIndex++) {
const uint64_t addressForCleanup = baseAddressForCleanup + fieldIndex * sizeof(uint32_t);
programStoreMemImmediateDword<GfxFamily>(inputAddress,
totalBytesProgrammed,
addressForCleanup,
0u);
}
//this synchronization point ensures that all tiles finished zeroing and will fairly access control section atomic variables
programMiAtomic<GfxFamily>(inputAddress, totalBytesProgrammed, finalSyncTileCountAddress, false, MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES::ATOMIC_4B_INCREMENT);
programWaitForSemaphore<GfxFamily>(inputAddress, totalBytesProgrammed, finalSyncTileCountAddress, 2 * tileCount, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
template <typename GfxFamily>
void programTilesSynchronizationWithPostSyncs(void *&currentBatchBufferPointer,
uint32_t &totalBytesProgrammed,
COMPUTE_WALKER<GfxFamily> *inputWalker,
uint32_t partitionCount) {
const auto postSyncAddress = inputWalker->getPostSync().getDestinationAddress() + 8llu;
for (uint32_t partitionId = 0u; partitionId < partitionCount; partitionId++) {
programWaitForSemaphore<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, postSyncAddress + partitionId * 16llu, 1u, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_NOT_EQUAL_SDD);
}
}
template <typename GfxFamily>
void programTilesSynchronizationWithAtomics(void *&currentBatchBufferPointer,
uint32_t &totalBytesProgrammed,
uint64_t atomicAddress,
uint32_t tileCount) {
programMiAtomic<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, atomicAddress, false, MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES::ATOMIC_4B_INCREMENT);
programWaitForSemaphore<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, atomicAddress, tileCount, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
template <typename GfxFamily>
uint64_t computeWalkerSectionSize() {
return sizeof(BATCH_BUFFER_START<GfxFamily>) +
sizeof(COMPUTE_WALKER<GfxFamily>);
}
template <typename GfxFamily>
uint64_t computeNativeCrossTileSyncControlSectionSize() {
return sizeof(MI_STORE_DATA_IMM<GfxFamily>);
}
template <typename GfxFamily>
uint64_t computeNativeCrossTileSyncCleanupSectionSize(size_t fieldsForCleanupCount) {
return fieldsForCleanupCount * sizeof(MI_STORE_DATA_IMM<GfxFamily>) +
2 * sizeof(MI_ATOMIC<GfxFamily>) +
2 * sizeof(MI_SEMAPHORE_WAIT<GfxFamily>);
}
template <typename GfxFamily>
uint64_t computeControlSectionOffset(uint32_t partitionCount, bool synchronizeBeforeExecution, bool nativeCrossTileAtomicSync) {
auto synchronizationCount = (synchronizeBeforeExecution) ? 2u : 1u;
if (!isCrossTileAtomicRequired() && !nativeCrossTileAtomicSync) {
synchronizationCount--;
}
return sizeof(LOAD_REGISTER_IMM<GfxFamily>) +
sizeof(MI_ATOMIC<GfxFamily>) * (1u + synchronizationCount) +
sizeof(LOAD_REGISTER_REG<GfxFamily>) +
sizeof(MI_SET_PREDICATE<GfxFamily>) * 2 +
sizeof(BATCH_BUFFER_START<GfxFamily>) * 2 +
sizeof(PIPE_CONTROL<GfxFamily>) +
sizeof(MI_SEMAPHORE_WAIT<GfxFamily>) * synchronizationCount +
(isSemaphoreProgrammingRequired() ? sizeof(MI_SEMAPHORE_WAIT<GfxFamily>) * partitionCount : 0u) +
computeWalkerSectionSize<GfxFamily>() +
(nativeCrossTileAtomicSync ? computeNativeCrossTileSyncControlSectionSize<GfxFamily>() : 0u);
}
template <typename GfxFamily>
uint64_t computeWalkerSectionStart(uint32_t partitionCount,
bool synchronizeBeforeExecution,
bool nativeCrossTileAtomicSync) {
return computeControlSectionOffset<GfxFamily>(partitionCount, synchronizeBeforeExecution, nativeCrossTileAtomicSync) -
computeWalkerSectionSize<GfxFamily>();
}
template <typename GfxFamily>
void programPartitionedWalker(void *&inputAddress, uint32_t &totalBytesProgrammed,
COMPUTE_WALKER<GfxFamily> *inputWalker,
uint32_t partitionCount) {
auto computeWalker = putCommand<COMPUTE_WALKER<GfxFamily>>(inputAddress, totalBytesProgrammed);
COMPUTE_WALKER<GfxFamily> cmd = *inputWalker;
if (partitionCount > 1) {
auto partitionType = inputWalker->getPartitionType();
assert(inputWalker->getThreadGroupIdStartingX() == 0u);
assert(inputWalker->getThreadGroupIdStartingY() == 0u);
assert(inputWalker->getThreadGroupIdStartingZ() == 0u);
assert(partitionType != COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_DISABLED);
cmd.setWorkloadPartitionEnable(true);
auto workgroupCount = 0u;
if (partitionType == COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_X) {
workgroupCount = inputWalker->getThreadGroupIdXDimension();
} else if (partitionType == COMPUTE_WALKER<GfxFamily>::PARTITION_TYPE::PARTITION_TYPE_Y) {
workgroupCount = inputWalker->getThreadGroupIdYDimension();
} else {
workgroupCount = inputWalker->getThreadGroupIdZDimension();
}
cmd.setPartitionSize((workgroupCount + partitionCount - 1u) / partitionCount);
}
*computeWalker = cmd;
}
/* SAMPLE COMMAND BUFFER STRUCTURE, birds eye view for 16 partitions, 4 tiles
//inital setup section
1. MI_LOAD_REGISTER(PREDICATION_MASK, active partition mask )
//loop 1 - loop as long as there are partitions to be serviced
2. MI_ATOMIC_INC( ATOMIC LOCATION #31 within CMD buffer )
3. MI_LOAD_REGISTER_REG ( ATOMIC RESULT -> WPARID )
4. MI_SET_PREDICATE( WPARID MODE )
5. BATCH_BUFFER_START( LOCATION #28 ) // this will not be executed if partition outside of active virtual partitions
//loop 1 ends here, if we are here it means there are no more partitions
6. MI_SET_PREDICATE ( OFF )
//Walker synchronization section starts here, make sure that Walker is done
7, PIPE_CONTROL ( DC_FLUSH )
//wait for all post syncs to make sure whole work is done, caller needs to set them to 1.
//now epilogue starts synchro all engines prior to coming back to RING, this will be once per command buffer to make sure that all engines actually passed via cmd buffer.
//epilogue section, make sure every tile completed prior to continuing
//This is cross-tile synchronization
24. ATOMIC_INC( LOCATION #31)
25. WAIT_FOR_SEMAPHORE ( LOCATION #31, LOWER THEN 4 ) // wait till all tiles hit atomic
26. PIPE_CONTROL ( TAG UPDATE ) (not implemented)
27. BATCH_BUFFER_STAT (LOCATION #32) // go to the very end
//Walker section
28. COMPUTE_WALKER
29. BATCH BUFFER_START ( GO BACK TO #2)
//Batch Buffer Control Data section, there are no real commands here but we have memory here
//That will be updated via atomic operations.
30. uint32_t virtualPartitionID //atomic location
31. uint32_t completionTileID //all tiles needs to report completion
32. BATCH_BUFFER_END ( optional )
*/
template <typename GfxFamily>
void constructDynamicallyPartitionedCommandBuffer(void *cpuPointer,
uint64_t gpuAddressOfAllocation,
COMPUTE_WALKER<GfxFamily> *inputWalker,
uint32_t &totalBytesProgrammed,
uint32_t partitionCount,
uint32_t tileCount,
bool emitBatchBufferEnd,
bool synchronizeBeforeExecution,
bool secondaryBatchBuffer,
bool nativeCrossTileAtomicSync) {
totalBytesProgrammed = 0u;
void *currentBatchBufferPointer = cpuPointer;
auto controlSectionOffset = computeControlSectionOffset<GfxFamily>(partitionCount, synchronizeBeforeExecution, nativeCrossTileAtomicSync);
if (synchronizeBeforeExecution) {
auto tileAtomicAddress = gpuAddressOfAllocation + controlSectionOffset + offsetof(BatchBufferControlData, inTileCount);
programMiAtomic<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, tileAtomicAddress, false, MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES::ATOMIC_4B_INCREMENT);
//if all tiles hit the atomic, it means we may go further
programWaitForSemaphore<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, tileAtomicAddress, tileCount, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
programWparidMask<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, partitionCount);
programMiAtomic<GfxFamily>(currentBatchBufferPointer,
totalBytesProgrammed,
gpuAddressOfAllocation + controlSectionOffset,
true,
MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES::ATOMIC_4B_INCREMENT);
//move atomic result to wparid
programMiLoadRegisterReg<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, generalPurposeRegister4, wparidCCSOffset);
//enable predication basing on wparid value
programWparidPredication<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, true);
programMiBatchBufferStart<GfxFamily>(currentBatchBufferPointer,
totalBytesProgrammed,
gpuAddressOfAllocation +
computeWalkerSectionStart<GfxFamily>(partitionCount,
synchronizeBeforeExecution,
nativeCrossTileAtomicSync),
true,
secondaryBatchBuffer);
//disable predication to not noop subsequent commands.
programWparidPredication<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, false);
if (nativeCrossTileAtomicSync) {
const auto finalSyncTileCountField = gpuAddressOfAllocation + controlSectionOffset + offsetof(BatchBufferControlData, finalSyncTileCount);
programNativeCrossTileSyncControl<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, finalSyncTileCountField);
}
programPipeControlCommand<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, true);
if (isSemaphoreProgrammingRequired()) {
auto postSyncAddress = inputWalker->getPostSync().getDestinationAddress() + 8llu;
for (uint32_t partitionId = 0u; partitionId < partitionCount; partitionId++) {
programWaitForSemaphore<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, postSyncAddress + partitionId * 16llu, 1u, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_NOT_EQUAL_SDD);
}
}
if (isCrossTileAtomicRequired() || nativeCrossTileAtomicSync) {
auto tileAtomicAddress = gpuAddressOfAllocation + controlSectionOffset + offsetof(BatchBufferControlData, tileCount);
programMiAtomic<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, tileAtomicAddress, false, MI_ATOMIC<GfxFamily>::ATOMIC_OPCODES::ATOMIC_4B_INCREMENT);
//if all tiles hit the atomic, it means we may go further
programWaitForSemaphore<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, tileAtomicAddress, tileCount, MI_SEMAPHORE_WAIT<GfxFamily>::COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
//this bb start goes to the end of partitioned command buffer
programMiBatchBufferStart<GfxFamily>(
currentBatchBufferPointer,
totalBytesProgrammed,
gpuAddressOfAllocation + controlSectionOffset + sizeof(BatchBufferControlData),
false,
secondaryBatchBuffer);
//Walker section
programPartitionedWalker<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, inputWalker, partitionCount);
programMiBatchBufferStart<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, gpuAddressOfAllocation, false, secondaryBatchBuffer);
auto controlSection = reinterpret_cast<BatchBufferControlData *>(ptrOffset(cpuPointer, static_cast<size_t>(controlSectionOffset)));
controlSection->partitionCount = 0u;
controlSection->tileCount = 0u;
controlSection->inTileCount = 0u;
controlSection->finalSyncTileCount = 0u;
totalBytesProgrammed += sizeof(BatchBufferControlData);
currentBatchBufferPointer = ptrOffset(currentBatchBufferPointer, sizeof(BatchBufferControlData));
if (nativeCrossTileAtomicSync) {
const auto finalSyncTileCountAddress = gpuAddressOfAllocation + controlSectionOffset + offsetof(BatchBufferControlData, finalSyncTileCount);
programNativeCrossTileSyncCleanup<GfxFamily>(currentBatchBufferPointer,
totalBytesProgrammed,
finalSyncTileCountAddress,
gpuAddressOfAllocation + controlSectionOffset,
dynamicPartitioningFieldsForCleanupCount,
tileCount);
}
if (emitBatchBufferEnd) {
auto batchBufferEnd = putCommand<BATCH_BUFFER_END<GfxFamily>>(currentBatchBufferPointer, totalBytesProgrammed);
*batchBufferEnd = GfxFamily::cmdInitBatchBufferEnd;
}
}
struct StaticPartitioningControlSection {
uint32_t synchronizeBeforeWalkerCounter = 0;
uint32_t synchronizeAfterWalkerCounter = 0;
uint32_t finalSyncTileCounter = 0;
};
static constexpr inline size_t staticPartitioningFieldsForCleanupCount = sizeof(StaticPartitioningControlSection) / sizeof(uint32_t) - 1;
template <typename GfxFamily>
uint64_t computeStaticPartitioningControlSectionOffset(uint32_t partitionCount, bool synchronizeBeforeExecution, bool nativeCrossTileAtomicSync) {
const auto beforeExecutionSyncAtomicSize = synchronizeBeforeExecution ? (sizeof(MI_SEMAPHORE_WAIT<GfxFamily>) + sizeof(MI_ATOMIC<GfxFamily>)) : 0u;
const auto afterExecutionSyncAtomicSize = (isCrossTileAtomicRequired() || nativeCrossTileAtomicSync) ? (sizeof(MI_SEMAPHORE_WAIT<GfxFamily>) + sizeof(MI_ATOMIC<GfxFamily>)) : 0u;
const auto afterExecutionSyncPostSyncSize = isSemaphoreProgrammingRequired() ? sizeof(MI_SEMAPHORE_WAIT<GfxFamily>) * partitionCount : 0u;
const auto nativeCrossTileSyncSize = nativeCrossTileAtomicSync ? sizeof(MI_STORE_DATA_IMM<GfxFamily>) : 0u;
return beforeExecutionSyncAtomicSize +
sizeof(LOAD_REGISTER_MEM<GfxFamily>) +
sizeof(PIPE_CONTROL<GfxFamily>) +
sizeof(COMPUTE_WALKER<GfxFamily>) +
nativeCrossTileSyncSize +
afterExecutionSyncAtomicSize +
afterExecutionSyncPostSyncSize +
sizeof(BATCH_BUFFER_START<GfxFamily>);
}
template <typename GfxFamily>
void constructStaticallyPartitionedCommandBuffer(void *cpuPointer,
uint64_t gpuAddressOfAllocation,
COMPUTE_WALKER<GfxFamily> *inputWalker,
uint32_t &totalBytesProgrammed,
uint32_t partitionCount,
uint32_t tileCount,
bool synchronizeBeforeExecution,
bool secondaryBatchBuffer,
bool nativeCrossTileAtomicSync,
uint64_t workPartitionAllocationGpuVa) {
totalBytesProgrammed = 0u;
void *currentBatchBufferPointer = cpuPointer;
// Get address of the control section
const auto controlSectionOffset = computeStaticPartitioningControlSectionOffset<GfxFamily>(partitionCount, synchronizeBeforeExecution, nativeCrossTileAtomicSync);
const auto afterControlSectionOffset = controlSectionOffset + sizeof(StaticPartitioningControlSection);
// Synchronize tiles before walker
if (synchronizeBeforeExecution) {
const auto atomicAddress = gpuAddressOfAllocation + controlSectionOffset + offsetof(StaticPartitioningControlSection, synchronizeBeforeWalkerCounter);
programTilesSynchronizationWithAtomics<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, atomicAddress, tileCount);
}
// Load partition ID to wparid register and execute walker
programMiLoadRegisterMem<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, workPartitionAllocationGpuVa, wparidCCSOffset);
programPartitionedWalker<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, inputWalker, partitionCount);
programPipeControlCommand<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, true); // flush L3 cache
// Prepare for cleanup section
if (nativeCrossTileAtomicSync) {
const auto finalSyncTileCountField = gpuAddressOfAllocation + controlSectionOffset + offsetof(StaticPartitioningControlSection, finalSyncTileCounter);
programNativeCrossTileSyncControl<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, finalSyncTileCountField);
}
// Synchronize tiles after walker
if (isSemaphoreProgrammingRequired()) {
programTilesSynchronizationWithPostSyncs<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, inputWalker, partitionCount);
}
if (isCrossTileAtomicRequired() || nativeCrossTileAtomicSync) {
const auto atomicAddress = gpuAddressOfAllocation + controlSectionOffset + offsetof(StaticPartitioningControlSection, synchronizeAfterWalkerCounter);
programTilesSynchronizationWithAtomics<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, atomicAddress, tileCount);
}
// Jump over the control section
programMiBatchBufferStart<GfxFamily>(currentBatchBufferPointer, totalBytesProgrammed, gpuAddressOfAllocation + afterControlSectionOffset, false, secondaryBatchBuffer);
// Control section
DEBUG_BREAK_IF(totalBytesProgrammed != controlSectionOffset);
StaticPartitioningControlSection *controlSection = putCommand<StaticPartitioningControlSection>(currentBatchBufferPointer, totalBytesProgrammed);
controlSection->synchronizeBeforeWalkerCounter = 0u;
controlSection->synchronizeAfterWalkerCounter = 0u;
controlSection->finalSyncTileCounter = 0u;
DEBUG_BREAK_IF(totalBytesProgrammed != afterControlSectionOffset);
// Cleanup section
if (nativeCrossTileAtomicSync) {
const auto finalSyncTileCountAddress = gpuAddressOfAllocation + controlSectionOffset + offsetof(StaticPartitioningControlSection, finalSyncTileCounter);
programNativeCrossTileSyncCleanup<GfxFamily>(currentBatchBufferPointer,
totalBytesProgrammed,
finalSyncTileCountAddress,
gpuAddressOfAllocation + controlSectionOffset,
staticPartitioningFieldsForCleanupCount,
tileCount);
}
}
template <typename GfxFamily>
uint64_t estimateSpaceRequiredInCommandBuffer(bool requiresBatchBufferEnd,
uint32_t partitionCount,
bool synchronizeBeforeExecution,
bool nativeCrossTileAtomicSync,
bool staticPartitioning) {
uint64_t size = {};
if (staticPartitioning) {
size += computeStaticPartitioningControlSectionOffset<GfxFamily>(partitionCount, synchronizeBeforeExecution, nativeCrossTileAtomicSync);
size += sizeof(StaticPartitioningControlSection);
size += nativeCrossTileAtomicSync ? computeNativeCrossTileSyncCleanupSectionSize<GfxFamily>(staticPartitioningFieldsForCleanupCount) : 0u;
} else {
size += computeControlSectionOffset<GfxFamily>(partitionCount, synchronizeBeforeExecution, nativeCrossTileAtomicSync);
size += sizeof(BatchBufferControlData);
size += requiresBatchBufferEnd ? sizeof(BATCH_BUFFER_END<GfxFamily>) : 0u;
size += nativeCrossTileAtomicSync ? computeNativeCrossTileSyncCleanupSectionSize<GfxFamily>(dynamicPartitioningFieldsForCleanupCount) : 0u;
}
return size;
}
} // namespace WalkerPartition