fix: Merge Prelim & Nonprelim code for Legacy Sysman Memory module

Related-To: NEO-14004

Signed-off-by: Pratik Bari <pratik.bari@intel.com>
This commit is contained in:
Pratik Bari
2025-02-10 06:33:35 +00:00
committed by Compute-Runtime-Automation
parent b987877712
commit e91480c673
13 changed files with 1911 additions and 2597 deletions

View File

@@ -1,5 +1,5 @@
/*
* Copyright (C) 2022-2023 Intel Corporation
* Copyright (C) 2022-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
@@ -13,7 +13,7 @@
#include "level_zero/tools/source/sysman/events/events_imp.h"
#include "level_zero/tools/source/sysman/linux/os_sysman_driver_imp.h"
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"
#include "level_zero/tools/source/sysman/memory/linux/os_memory_imp_prelim.h"
#include "level_zero/tools/source/sysman/memory/linux/os_memory_imp.h"
#include <sys/stat.h>

View File

@@ -1,5 +1,5 @@
#
# Copyright (C) 2020-2024 Intel Corporation
# Copyright (C) 2020-2025 Intel Corporation
#
# SPDX-License-Identifier: MIT
#
@@ -8,26 +8,7 @@ if(UNIX)
target_sources(${L0_STATIC_LIB_NAME}
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp.cpp
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp.h
)
if(NEO_ENABLE_I915_PRELIM_DETECTION)
target_sources(${L0_STATIC_LIB_NAME}
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp_prelim.cpp
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp_prelim.h
)
elseif(SUPPORT_DG1 AND "${BRANCH_TYPE}" STREQUAL "")
target_sources(${L0_STATIC_LIB_NAME}
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp.h
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp_dg1.cpp
)
else()
target_sources(${L0_STATIC_LIB_NAME}
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp.h
${CMAKE_CURRENT_SOURCE_DIR}/os_memory_imp.cpp
)
endif()
endif()

View File

@@ -1,5 +1,5 @@
/*
* Copyright (C) 2020-2023 Intel Corporation
* Copyright (C) 2022-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
@@ -7,38 +7,368 @@
#include "level_zero/tools/source/sysman/memory/linux/os_memory_imp.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/memory_manager/memory_banks.h"
#include "shared/source/os_interface/linux/ioctl_helper.h"
#include "shared/source/os_interface/linux/memory_info.h"
#include "shared/source/os_interface/linux/system_info.h"
#include "level_zero/core/source/driver/driver_handle.h"
#include "level_zero/tools/source/sysman/firmware_util/firmware_util.h"
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"
#include "level_zero/tools/source/sysman/sysman_const.h"
#include "igfxfmid.h"
namespace L0 {
LinuxMemoryImp::LinuxMemoryImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pDevice = pLinuxSysmanImp->getDeviceHandle();
const std::string LinuxMemoryImp::deviceMemoryHealth("device_memory_health");
void memoryGetTimeStamp(uint64_t &timestamp) {
std::chrono::time_point<std::chrono::steady_clock> ts = std::chrono::steady_clock::now();
timestamp = std::chrono::duration_cast<std::chrono::microseconds>(ts.time_since_epoch()).count();
}
void LinuxMemoryImp::init() {
if (isSubdevice) {
const std::string baseDir = "gt/gt" + std::to_string(subdeviceId) + "/";
physicalSizeFile = baseDir + "addr_range";
}
}
LinuxMemoryImp::LinuxMemoryImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pDrm = &pLinuxSysmanImp->getDrm();
pDevice = pLinuxSysmanImp->getDeviceHandle();
pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
pPmt = pLinuxSysmanImp->getPlatformMonitoringTechAccess(subdeviceId);
init();
}
bool LinuxMemoryImp::isMemoryModuleSupported() {
return pDevice->getDriverHandle()->getMemoryManager()->isLocalMemorySupported(pDevice->getRootDeviceIndex());
}
ze_result_t LinuxMemoryImp::getProperties(zes_mem_properties_t *pProperties) {
pProperties->type = ZES_MEM_TYPE_DDR;
pProperties->numChannels = -1;
if (pDrm->querySystemInfo()) {
auto memSystemInfo = pDrm->getSystemInfo();
if (memSystemInfo != nullptr) {
pProperties->numChannels = memSystemInfo->getMaxMemoryChannels();
auto memType = memSystemInfo->getMemoryType();
switch (memType) {
case NEO::DeviceBlobConstants::MemoryType::hbm2e:
case NEO::DeviceBlobConstants::MemoryType::hbm2:
pProperties->type = ZES_MEM_TYPE_HBM;
break;
case NEO::DeviceBlobConstants::MemoryType::lpddr4:
pProperties->type = ZES_MEM_TYPE_LPDDR4;
break;
case NEO::DeviceBlobConstants::MemoryType::lpddr5:
pProperties->type = ZES_MEM_TYPE_LPDDR5;
break;
default:
pProperties->type = ZES_MEM_TYPE_DDR;
break;
}
}
}
pProperties->location = ZES_MEM_LOC_DEVICE;
pProperties->onSubdevice = isSubdevice;
pProperties->subdeviceId = subdeviceId;
pProperties->busWidth = -1;
pProperties->numChannels = -1;
pProperties->busWidth = memoryBusWidth; // Hardcode
pProperties->physicalSize = 0;
if (isSubdevice) {
std::string memval;
ze_result_t result = pSysfsAccess->read(physicalSizeFile, memval);
uint64_t intval = strtoull(memval.c_str(), nullptr, 16);
if (ZE_RESULT_SUCCESS != result) {
pProperties->physicalSize = 0u;
} else {
pProperties->physicalSize = intval;
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxMemoryImp::getVFIDString(std::string &vfID) {
uint32_t vf0VfIdVal = 0;
std::string key = "VF0_VFID";
auto result = pPmt->readValue(key, vf0VfIdVal);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for VF0_VFID is returning error:0x%x \n", __FUNCTION__, result);
return result;
}
uint32_t vf1VfIdVal = 0;
key = "VF1_VFID";
result = pPmt->readValue(key, vf1VfIdVal);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for VF1_VFID is returning error:0x%x \n", __FUNCTION__, result);
return result;
}
// At any point of time only one VF(virtual function) could be active and thus would
// read greater than zero val. If both VF0 and VF1 are reading 0 or both are reading
// greater than 0, then we would be confused in taking the decision of correct VF.
// Lets assume and report this as a error condition
if (((vf0VfIdVal == 0) && (vf1VfIdVal == 0)) ||
((vf0VfIdVal > 0) && (vf1VfIdVal > 0))) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s() VF0 returning 0x%x and VF1 returning 0x%x as both should not be the same \n", __FUNCTION__, vf0VfIdVal, vf1VfIdVal);
return ZE_RESULT_ERROR_UNKNOWN;
}
if (vf0VfIdVal > 0) {
vfID = "VF0";
}
if (vf1VfIdVal > 0) {
vfID = "VF1";
}
return result;
}
ze_result_t LinuxMemoryImp::readMcChannelCounters(uint64_t &readCounters, uint64_t &writeCounters) {
// For DG2 there are 8 memory instances each memory instance has 2 channels there are total 16 MC Channels
uint32_t numMcChannels = 16u;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
std::vector<std::string> nameOfCounters{"IDI_READS", "IDI_WRITES", "DISPLAY_VC1_READS"};
std::vector<uint64_t> counterValues(3, 0); // Will store the values of counters metioned in nameOfCounters
for (uint64_t counterIndex = 0; counterIndex < nameOfCounters.size(); counterIndex++) {
for (uint32_t mcChannelIndex = 0; mcChannelIndex < numMcChannels; mcChannelIndex++) {
uint64_t val = 0;
std::string readCounterKey = nameOfCounters[counterIndex] + "[" + std::to_string(mcChannelIndex) + "]";
result = pPmt->readValue(readCounterKey, val);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterKey returning error:0x%x \n", __FUNCTION__, result);
return result;
}
counterValues[counterIndex] += val;
}
}
// PMT counters returns number of transactions that have occured and each tranaction is of 64 bytes
// Multiplying 32(tranaction size) with number of transactions gives the total reads or writes in bytes
constexpr uint64_t transactionSize = 32;
readCounters = (counterValues[0] + counterValues[2]) * transactionSize; // Read counters are summation of total IDI_READS and DISPLAY_VC1_READS
writeCounters = (counterValues[1]) * transactionSize; // Write counters are summation of IDI_WRITES
return result;
}
void LinuxMemoryImp::getHbmFrequency(PRODUCT_FAMILY productFamily, unsigned short stepping, uint64_t &hbmFrequency) {
hbmFrequency = 0;
if (productFamily == IGFX_PVC) {
if (stepping >= REVISION_B) {
const std::string baseDir = "gt/gt" + std::to_string(subdeviceId) + "/";
// Calculating bandwidth based on HBM max frequency
const std::string hbmRP0FreqFile = baseDir + "mem_RP0_freq_mhz";
uint64_t hbmFreqValue = 0;
ze_result_t result = pSysfsAccess->read(hbmRP0FreqFile, hbmFreqValue);
if (ZE_RESULT_SUCCESS == result) {
hbmFrequency = hbmFreqValue * 1000 * 1000; // Converting MHz value to Hz
return;
}
} else if (stepping == REVISION_A0) {
// For IGFX_PVC REV A0 HBM frequency would be 3.2 GT/s = 3.2 * 1000 * 1000 * 1000 T/s = 3200000000 T/s
hbmFrequency = 3.2 * gigaUnitTransferToUnitTransfer;
}
}
}
ze_result_t LinuxMemoryImp::getBandwidthForDg2(zes_mem_bandwidth_t *pBandwidth) {
pBandwidth->readCounter = 0;
pBandwidth->writeCounter = 0;
pBandwidth->timestamp = 0;
pBandwidth->maxBandwidth = 0;
ze_result_t result = readMcChannelCounters(pBandwidth->readCounter, pBandwidth->writeCounter);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readMcChannelCounters returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->maxBandwidth = 0u;
const std::string maxBwFile = "prelim_lmem_max_bw_Mbps";
uint64_t maxBw = 0;
result = pSysfsAccess->read(maxBwFile, maxBw);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():pSysfsAccess->read returning error:0x%x \n", __FUNCTION__, result);
}
pBandwidth->maxBandwidth = maxBw * mbpsToBytesPerSecond;
pBandwidth->timestamp = SysmanDevice::getSysmanTimestamp();
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxMemoryImp::getHbmBandwidth(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth) {
pBandwidth->readCounter = 0;
pBandwidth->writeCounter = 0;
pBandwidth->timestamp = 0;
pBandwidth->maxBandwidth = 0;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
std::string vfId = "";
result = getVFIDString(vfId);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():getVFIDString returning error:0x%x while retriving VFID string \n", __FUNCTION__, result);
return result;
}
auto &hwInfo = pDevice->getNEODevice()->getHardwareInfo();
auto productFamily = hwInfo.platform.eProductFamily;
auto &productHelper = pDevice->getNEODevice()->getProductHelper();
auto stepping = productHelper.getSteppingFromHwRevId(hwInfo);
for (auto hbmModuleIndex = 0u; hbmModuleIndex < numHbmModules; hbmModuleIndex++) {
uint32_t counterValue = 0;
// To read counters from VFID 0 and HBM module 0, key would be: VF0_HBM0_READ
std::string readCounterKey = vfId + "_HBM" + std::to_string(hbmModuleIndex) + "_READ";
result = pPmt->readValue(readCounterKey, counterValue);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterKey returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->readCounter += counterValue;
counterValue = 0;
// To write counters to VFID 0 and HBM module 0, key would be: VF0_HBM0_Write
std::string writeCounterKey = vfId + "_HBM" + std::to_string(hbmModuleIndex) + "_WRITE";
result = pPmt->readValue(writeCounterKey, counterValue);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for writeCounterKey returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->writeCounter += counterValue;
}
constexpr uint64_t transactionSize = 32;
pBandwidth->readCounter = pBandwidth->readCounter * transactionSize;
pBandwidth->writeCounter = pBandwidth->writeCounter * transactionSize;
pBandwidth->timestamp = SysmanDevice::getSysmanTimestamp();
uint64_t hbmFrequency = 0;
getHbmFrequency(productFamily, stepping, hbmFrequency);
pBandwidth->maxBandwidth = memoryBusWidth * hbmFrequency * numHbmModules; // Value in bytes/secs
return result;
}
ze_result_t LinuxMemoryImp::getHbmBandwidthPVC(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth) {
std::string guid = pPmt->getGuid();
if (guid != guid64BitMemoryCounters) {
return getHbmBandwidth(numHbmModules, pBandwidth);
}
pBandwidth->readCounter = 0;
pBandwidth->writeCounter = 0;
pBandwidth->timestamp = 0;
pBandwidth->maxBandwidth = 0;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
std::string vfId = "";
result = getVFIDString(vfId);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():getVFIDString returning error:0x%x while retriving VFID string \n", __FUNCTION__, result);
return result;
}
auto &hwInfo = pDevice->getNEODevice()->getHardwareInfo();
auto productFamily = hwInfo.platform.eProductFamily;
auto &productHelper = pDevice->getNEODevice()->getProductHelper();
auto stepping = productHelper.getSteppingFromHwRevId(hwInfo);
uint32_t readCounterL = 0;
std::string readCounterKey = vfId + "_HBM_READ_L";
result = pPmt->readValue(readCounterKey, readCounterL);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterL returning error:0x%x \n", __FUNCTION__, result);
return result;
}
uint32_t readCounterH = 0;
readCounterKey = vfId + "_HBM_READ_H";
result = pPmt->readValue(readCounterKey, readCounterH);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterH returning error:0x%x \n", __FUNCTION__, result);
return result;
}
constexpr uint64_t transactionSize = 32;
pBandwidth->readCounter = readCounterH;
pBandwidth->readCounter = (pBandwidth->readCounter << 32) | static_cast<uint64_t>(readCounterL);
pBandwidth->readCounter = (pBandwidth->readCounter * transactionSize);
uint32_t writeCounterL = 0;
std::string writeCounterKey = vfId + "_HBM_WRITE_L";
result = pPmt->readValue(writeCounterKey, writeCounterL);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for writeCounterL returning error:0x%x \n", __FUNCTION__, result);
return result;
}
uint32_t writeCounterH = 0;
writeCounterKey = vfId + "_HBM_WRITE_H";
result = pPmt->readValue(writeCounterKey, writeCounterH);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for writeCounterH returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->writeCounter = writeCounterH;
pBandwidth->writeCounter = (pBandwidth->writeCounter << 32) | static_cast<uint64_t>(writeCounterL);
pBandwidth->writeCounter = (pBandwidth->writeCounter * transactionSize);
uint64_t timeStampVal = 0;
memoryGetTimeStamp(timeStampVal);
pBandwidth->timestamp = timeStampVal;
uint64_t hbmFrequency = 0;
getHbmFrequency(productFamily, stepping, hbmFrequency);
pBandwidth->maxBandwidth = memoryBusWidth * hbmFrequency * numHbmModules; // Value in bytes/secs
return result;
}
ze_result_t LinuxMemoryImp::getBandwidth(zes_mem_bandwidth_t *pBandwidth) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
if (pPmt == nullptr) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
auto &hwInfo = pDevice->getNEODevice()->getHardwareInfo();
auto productFamily = hwInfo.platform.eProductFamily;
uint32_t numHbmModules = 0u;
switch (productFamily) {
case IGFX_DG2:
result = getBandwidthForDg2(pBandwidth);
break;
case IGFX_PVC:
numHbmModules = 4u;
result = getHbmBandwidthPVC(numHbmModules, pBandwidth);
break;
default:
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
break;
}
return result;
}
ze_result_t LinuxMemoryImp::getState(zes_mem_state_t *pState) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
ze_result_t status = ZE_RESULT_SUCCESS;
pState->health = ZES_MEM_HEALTH_UNKNOWN;
FirmwareUtil *pFwInterface = pLinuxSysmanImp->getFwUtilInterface();
auto productFamily = SysmanDeviceImp::getProductFamily(pDevice);
if ((pFwInterface != nullptr) && (IGFX_PVC == productFamily)) {
pFwInterface->fwGetMemoryHealthIndicator(&pState->health);
}
auto memoryInfo = pDrm->getIoctlHelper()->createMemoryInfo();
if (memoryInfo != nullptr) {
auto region = memoryInfo->getMemoryRegion(MemoryBanks::getBankForLocalMemory(subdeviceId));
pState->free = region.unallocatedSize;
pState->size = region.probedSize;
} else {
pState->free = 0;
pState->size = 0;
status = ZE_RESULT_ERROR_UNKNOWN;
if (errno == ENODEV) {
status = ZE_RESULT_ERROR_DEVICE_LOST;
}
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr,
"Error@ %s():createMemoryInfo failed errno:%d \n", __FUNCTION__, errno);
}
return status;
}
std::unique_ptr<OsMemory> OsMemory::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {

View File

@@ -1,5 +1,5 @@
/*
* Copyright (C) 2020-2023 Intel Corporation
* Copyright (C) 2022-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
@@ -11,11 +11,14 @@
#include "level_zero/tools/source/sysman/memory/os_memory.h"
#include <map>
namespace L0 {
class SysfsAccess;
struct Device;
class PlatformMonitoringTech;
class LinuxSysmanImp;
class LinuxMemoryImp : public OsMemory, NEO::NonCopyableOrMovableClass {
public:
ze_result_t getProperties(zes_mem_properties_t *pProperties) override;
@@ -28,11 +31,25 @@ class LinuxMemoryImp : public OsMemory, NEO::NonCopyableOrMovableClass {
~LinuxMemoryImp() override = default;
protected:
L0::LinuxSysmanImp *pLinuxSysmanImp = nullptr;
SysfsAccess *pSysfsAccess = nullptr;
NEO::Drm *pDrm = nullptr;
Device *pDevice = nullptr;
PlatformMonitoringTech *pPmt = nullptr;
void getHbmFrequency(PRODUCT_FAMILY productFamily, unsigned short stepping, uint64_t &hbmFrequency);
private:
ze_result_t readMcChannelCounters(uint64_t &readCounters, uint64_t &writeCounters);
ze_result_t getVFIDString(std::string &vfID);
ze_result_t getBandwidthForDg2(zes_mem_bandwidth_t *pBandwidth);
ze_result_t getHbmBandwidth(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth);
ze_result_t getHbmBandwidthPVC(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth);
ze_result_t getHbmBandwidthEx(uint32_t numHbmModules, uint32_t counterMaxValue, uint64_t *pReadCounters, uint64_t *pWriteCounters, uint64_t *pMaxBandwidth, uint64_t timeout);
void init();
static const std::string deviceMemoryHealth;
bool isSubdevice = false;
uint32_t subdeviceId = 0;
std::string physicalSizeFile;
};
} // namespace L0

View File

@@ -1,70 +0,0 @@
/*
* Copyright (C) 2020-2023 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/os_interface/linux/i915.h"
#include "shared/source/os_interface/linux/memory_info.h"
#include "level_zero/core/source/driver/driver_handle_imp.h"
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"
#include "level_zero/tools/source/sysman/memory/linux/os_memory_imp.h"
namespace L0 {
LinuxMemoryImp::LinuxMemoryImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pDrm = &pLinuxSysmanImp->getDrm();
pDevice = pLinuxSysmanImp->getDeviceHandle();
}
bool LinuxMemoryImp::isMemoryModuleSupported() {
return pDevice->getDriverHandle()->getMemoryManager()->isLocalMemorySupported(pDevice->getRootDeviceIndex());
}
ze_result_t LinuxMemoryImp::getProperties(zes_mem_properties_t *pProperties) {
pProperties->location = ZES_MEM_LOC_DEVICE;
pProperties->type = ZES_MEM_TYPE_DDR;
pProperties->onSubdevice = isSubdevice;
pProperties->subdeviceId = subdeviceId;
pProperties->busWidth = -1;
pProperties->numChannels = -1;
pProperties->physicalSize = 0;
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxMemoryImp::getBandwidth(zes_mem_bandwidth_t *pBandwidth) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxMemoryImp::getState(zes_mem_state_t *pState) {
std::vector<NEO::MemoryRegion> deviceRegions;
if (pDrm->queryMemoryInfo() == false) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
auto memoryInfo = pDrm->getMemoryInfo();
if (!memoryInfo) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
for (auto region : memoryInfo->getDrmRegionInfos()) {
if (region.region.memoryClass == drm_i915_gem_memory_class::I915_MEMORY_CLASS_DEVICE) {
deviceRegions.push_back(region);
}
}
pState->free = deviceRegions[subdeviceId].unallocatedSize;
pState->size = deviceRegions[subdeviceId].probedSize;
pState->health = ZES_MEM_HEALTH_OK;
return ZE_RESULT_SUCCESS;
}
std::unique_ptr<OsMemory> OsMemory::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {
std::unique_ptr<LinuxMemoryImp> pLinuxMemoryImp = std::make_unique<LinuxMemoryImp>(pOsSysman, onSubdevice, subdeviceId);
return pLinuxMemoryImp;
}
} // namespace L0

View File

@@ -1,381 +0,0 @@
/*
* Copyright (C) 2022-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/memory/linux/os_memory_imp_prelim.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/memory_manager/memory_banks.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/os_interface/linux/i915.h"
#include "shared/source/os_interface/linux/ioctl_helper.h"
#include "shared/source/os_interface/linux/memory_info.h"
#include "shared/source/os_interface/linux/system_info.h"
#include "level_zero/core/source/driver/driver_handle.h"
#include "level_zero/tools/source/sysman/firmware_util/firmware_util.h"
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"
#include "level_zero/tools/source/sysman/sysman_const.h"
#include "igfxfmid.h"
namespace L0 {
const std::string LinuxMemoryImp::deviceMemoryHealth("device_memory_health");
void memoryGetTimeStamp(uint64_t &timestamp) {
std::chrono::time_point<std::chrono::steady_clock> ts = std::chrono::steady_clock::now();
timestamp = std::chrono::duration_cast<std::chrono::microseconds>(ts.time_since_epoch()).count();
}
void LinuxMemoryImp::init() {
if (isSubdevice) {
const std::string baseDir = "gt/gt" + std::to_string(subdeviceId) + "/";
physicalSizeFile = baseDir + "addr_range";
}
}
LinuxMemoryImp::LinuxMemoryImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pDrm = &pLinuxSysmanImp->getDrm();
pDevice = pLinuxSysmanImp->getDeviceHandle();
pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
pPmt = pLinuxSysmanImp->getPlatformMonitoringTechAccess(subdeviceId);
init();
}
bool LinuxMemoryImp::isMemoryModuleSupported() {
return pDevice->getDriverHandle()->getMemoryManager()->isLocalMemorySupported(pDevice->getRootDeviceIndex());
}
ze_result_t LinuxMemoryImp::getProperties(zes_mem_properties_t *pProperties) {
pProperties->type = ZES_MEM_TYPE_DDR;
pProperties->numChannels = -1;
if (pDrm->querySystemInfo()) {
auto memSystemInfo = pDrm->getSystemInfo();
if (memSystemInfo != nullptr) {
pProperties->numChannels = memSystemInfo->getMaxMemoryChannels();
auto memType = memSystemInfo->getMemoryType();
switch (memType) {
case NEO::DeviceBlobConstants::MemoryType::hbm2e:
case NEO::DeviceBlobConstants::MemoryType::hbm2:
pProperties->type = ZES_MEM_TYPE_HBM;
break;
case NEO::DeviceBlobConstants::MemoryType::lpddr4:
pProperties->type = ZES_MEM_TYPE_LPDDR4;
break;
case NEO::DeviceBlobConstants::MemoryType::lpddr5:
pProperties->type = ZES_MEM_TYPE_LPDDR5;
break;
default:
pProperties->type = ZES_MEM_TYPE_DDR;
break;
}
}
}
pProperties->location = ZES_MEM_LOC_DEVICE;
pProperties->onSubdevice = isSubdevice;
pProperties->subdeviceId = subdeviceId;
pProperties->busWidth = memoryBusWidth; // Hardcode
pProperties->physicalSize = 0;
if (isSubdevice) {
std::string memval;
ze_result_t result = pSysfsAccess->read(physicalSizeFile, memval);
uint64_t intval = strtoull(memval.c_str(), nullptr, 16);
if (ZE_RESULT_SUCCESS != result) {
pProperties->physicalSize = 0u;
} else {
pProperties->physicalSize = intval;
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxMemoryImp::getVFIDString(std::string &vfID) {
uint32_t vf0VfIdVal = 0;
std::string key = "VF0_VFID";
auto result = pPmt->readValue(key, vf0VfIdVal);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for VF0_VFID is returning error:0x%x \n", __FUNCTION__, result);
return result;
}
uint32_t vf1VfIdVal = 0;
key = "VF1_VFID";
result = pPmt->readValue(key, vf1VfIdVal);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for VF1_VFID is returning error:0x%x \n", __FUNCTION__, result);
return result;
}
// At any point of time only one VF(virtual function) could be active and thus would
// read greater than zero val. If both VF0 and VF1 are reading 0 or both are reading
// greater than 0, then we would be confused in taking the decision of correct VF.
// Lets assume and report this as a error condition
if (((vf0VfIdVal == 0) && (vf1VfIdVal == 0)) ||
((vf0VfIdVal > 0) && (vf1VfIdVal > 0))) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s() VF0 returning 0x%x and VF1 returning 0x%x as both should not be the same \n", __FUNCTION__, vf0VfIdVal, vf1VfIdVal);
return ZE_RESULT_ERROR_UNKNOWN;
}
if (vf0VfIdVal > 0) {
vfID = "VF0";
}
if (vf1VfIdVal > 0) {
vfID = "VF1";
}
return result;
}
ze_result_t LinuxMemoryImp::readMcChannelCounters(uint64_t &readCounters, uint64_t &writeCounters) {
// For DG2 there are 8 memory instances each memory instance has 2 channels there are total 16 MC Channels
uint32_t numMcChannels = 16u;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
std::vector<std::string> nameOfCounters{"IDI_READS", "IDI_WRITES", "DISPLAY_VC1_READS"};
std::vector<uint64_t> counterValues(3, 0); // Will store the values of counters metioned in nameOfCounters
for (uint64_t counterIndex = 0; counterIndex < nameOfCounters.size(); counterIndex++) {
for (uint32_t mcChannelIndex = 0; mcChannelIndex < numMcChannels; mcChannelIndex++) {
uint64_t val = 0;
std::string readCounterKey = nameOfCounters[counterIndex] + "[" + std::to_string(mcChannelIndex) + "]";
result = pPmt->readValue(readCounterKey, val);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterKey returning error:0x%x \n", __FUNCTION__, result);
return result;
}
counterValues[counterIndex] += val;
}
}
// PMT counters returns number of transactions that have occured and each tranaction is of 64 bytes
// Multiplying 32(tranaction size) with number of transactions gives the total reads or writes in bytes
constexpr uint64_t transactionSize = 32;
readCounters = (counterValues[0] + counterValues[2]) * transactionSize; // Read counters are summation of total IDI_READS and DISPLAY_VC1_READS
writeCounters = (counterValues[1]) * transactionSize; // Write counters are summation of IDI_WRITES
return result;
}
void LinuxMemoryImp::getHbmFrequency(PRODUCT_FAMILY productFamily, unsigned short stepping, uint64_t &hbmFrequency) {
hbmFrequency = 0;
if (productFamily == IGFX_PVC) {
if (stepping >= REVISION_B) {
const std::string baseDir = "gt/gt" + std::to_string(subdeviceId) + "/";
// Calculating bandwidth based on HBM max frequency
const std::string hbmRP0FreqFile = baseDir + "mem_RP0_freq_mhz";
uint64_t hbmFreqValue = 0;
ze_result_t result = pSysfsAccess->read(hbmRP0FreqFile, hbmFreqValue);
if (ZE_RESULT_SUCCESS == result) {
hbmFrequency = hbmFreqValue * 1000 * 1000; // Converting MHz value to Hz
return;
}
} else if (stepping == REVISION_A0) {
// For IGFX_PVC REV A0 HBM frequency would be 3.2 GT/s = 3.2 * 1000 * 1000 * 1000 T/s = 3200000000 T/s
hbmFrequency = 3.2 * gigaUnitTransferToUnitTransfer;
}
}
}
ze_result_t LinuxMemoryImp::getBandwidthForDg2(zes_mem_bandwidth_t *pBandwidth) {
pBandwidth->readCounter = 0;
pBandwidth->writeCounter = 0;
pBandwidth->timestamp = 0;
pBandwidth->maxBandwidth = 0;
ze_result_t result = readMcChannelCounters(pBandwidth->readCounter, pBandwidth->writeCounter);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readMcChannelCounters returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->maxBandwidth = 0u;
const std::string maxBwFile = "prelim_lmem_max_bw_Mbps";
uint64_t maxBw = 0;
result = pSysfsAccess->read(maxBwFile, maxBw);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():pSysfsAccess->read returning error:0x%x \n", __FUNCTION__, result);
}
pBandwidth->maxBandwidth = maxBw * mbpsToBytesPerSecond;
pBandwidth->timestamp = SysmanDevice::getSysmanTimestamp();
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxMemoryImp::getHbmBandwidth(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth) {
pBandwidth->readCounter = 0;
pBandwidth->writeCounter = 0;
pBandwidth->timestamp = 0;
pBandwidth->maxBandwidth = 0;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
std::string vfId = "";
result = getVFIDString(vfId);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():getVFIDString returning error:0x%x while retriving VFID string \n", __FUNCTION__, result);
return result;
}
auto &hwInfo = pDevice->getNEODevice()->getHardwareInfo();
auto productFamily = hwInfo.platform.eProductFamily;
auto &productHelper = pDevice->getNEODevice()->getProductHelper();
auto stepping = productHelper.getSteppingFromHwRevId(hwInfo);
for (auto hbmModuleIndex = 0u; hbmModuleIndex < numHbmModules; hbmModuleIndex++) {
uint32_t counterValue = 0;
// To read counters from VFID 0 and HBM module 0, key would be: VF0_HBM0_READ
std::string readCounterKey = vfId + "_HBM" + std::to_string(hbmModuleIndex) + "_READ";
result = pPmt->readValue(readCounterKey, counterValue);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterKey returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->readCounter += counterValue;
counterValue = 0;
// To write counters to VFID 0 and HBM module 0, key would be: VF0_HBM0_Write
std::string writeCounterKey = vfId + "_HBM" + std::to_string(hbmModuleIndex) + "_WRITE";
result = pPmt->readValue(writeCounterKey, counterValue);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for writeCounterKey returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->writeCounter += counterValue;
}
constexpr uint64_t transactionSize = 32;
pBandwidth->readCounter = pBandwidth->readCounter * transactionSize;
pBandwidth->writeCounter = pBandwidth->writeCounter * transactionSize;
pBandwidth->timestamp = SysmanDevice::getSysmanTimestamp();
uint64_t hbmFrequency = 0;
getHbmFrequency(productFamily, stepping, hbmFrequency);
pBandwidth->maxBandwidth = memoryBusWidth * hbmFrequency * numHbmModules; // Value in bytes/secs
return result;
}
ze_result_t LinuxMemoryImp::getHbmBandwidthPVC(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth) {
std::string guid = pPmt->getGuid();
if (guid != guid64BitMemoryCounters) {
return getHbmBandwidth(numHbmModules, pBandwidth);
}
pBandwidth->readCounter = 0;
pBandwidth->writeCounter = 0;
pBandwidth->timestamp = 0;
pBandwidth->maxBandwidth = 0;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
std::string vfId = "";
result = getVFIDString(vfId);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():getVFIDString returning error:0x%x while retriving VFID string \n", __FUNCTION__, result);
return result;
}
auto &hwInfo = pDevice->getNEODevice()->getHardwareInfo();
auto productFamily = hwInfo.platform.eProductFamily;
auto &productHelper = pDevice->getNEODevice()->getProductHelper();
auto stepping = productHelper.getSteppingFromHwRevId(hwInfo);
uint32_t readCounterL = 0;
std::string readCounterKey = vfId + "_HBM_READ_L";
result = pPmt->readValue(readCounterKey, readCounterL);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterL returning error:0x%x \n", __FUNCTION__, result);
return result;
}
uint32_t readCounterH = 0;
readCounterKey = vfId + "_HBM_READ_H";
result = pPmt->readValue(readCounterKey, readCounterH);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for readCounterH returning error:0x%x \n", __FUNCTION__, result);
return result;
}
constexpr uint64_t transactionSize = 32;
pBandwidth->readCounter = readCounterH;
pBandwidth->readCounter = (pBandwidth->readCounter << 32) | static_cast<uint64_t>(readCounterL);
pBandwidth->readCounter = (pBandwidth->readCounter * transactionSize);
uint32_t writeCounterL = 0;
std::string writeCounterKey = vfId + "_HBM_WRITE_L";
result = pPmt->readValue(writeCounterKey, writeCounterL);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for writeCounterL returning error:0x%x \n", __FUNCTION__, result);
return result;
}
uint32_t writeCounterH = 0;
writeCounterKey = vfId + "_HBM_WRITE_H";
result = pPmt->readValue(writeCounterKey, writeCounterH);
if (result != ZE_RESULT_SUCCESS) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s():readValue for writeCounterH returning error:0x%x \n", __FUNCTION__, result);
return result;
}
pBandwidth->writeCounter = writeCounterH;
pBandwidth->writeCounter = (pBandwidth->writeCounter << 32) | static_cast<uint64_t>(writeCounterL);
pBandwidth->writeCounter = (pBandwidth->writeCounter * transactionSize);
uint64_t timeStampVal = 0;
memoryGetTimeStamp(timeStampVal);
pBandwidth->timestamp = timeStampVal;
uint64_t hbmFrequency = 0;
getHbmFrequency(productFamily, stepping, hbmFrequency);
pBandwidth->maxBandwidth = memoryBusWidth * hbmFrequency * numHbmModules; // Value in bytes/secs
return result;
}
ze_result_t LinuxMemoryImp::getBandwidth(zes_mem_bandwidth_t *pBandwidth) {
if (pPmt == nullptr) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
auto &hwInfo = pDevice->getNEODevice()->getHardwareInfo();
auto productFamily = hwInfo.platform.eProductFamily;
uint32_t numHbmModules = 0u;
switch (productFamily) {
case IGFX_DG2:
result = getBandwidthForDg2(pBandwidth);
break;
case IGFX_PVC:
numHbmModules = 4u;
result = getHbmBandwidthPVC(numHbmModules, pBandwidth);
break;
default:
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
break;
}
return result;
}
ze_result_t LinuxMemoryImp::getState(zes_mem_state_t *pState) {
ze_result_t status = ZE_RESULT_SUCCESS;
pState->health = ZES_MEM_HEALTH_UNKNOWN;
FirmwareUtil *pFwInterface = pLinuxSysmanImp->getFwUtilInterface();
auto productFamily = SysmanDeviceImp::getProductFamily(pDevice);
if ((pFwInterface != nullptr) && (IGFX_PVC == productFamily)) {
pFwInterface->fwGetMemoryHealthIndicator(&pState->health);
}
auto memoryInfo = pDrm->getIoctlHelper()->createMemoryInfo();
if (memoryInfo != nullptr) {
auto region = memoryInfo->getMemoryRegion(MemoryBanks::getBankForLocalMemory(subdeviceId));
pState->free = region.unallocatedSize;
pState->size = region.probedSize;
} else {
pState->free = 0;
pState->size = 0;
status = ZE_RESULT_ERROR_UNKNOWN;
if (errno == ENODEV) {
status = ZE_RESULT_ERROR_DEVICE_LOST;
}
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr,
"Error@ %s():createMemoryInfo failed errno:%d \n", __FUNCTION__, errno);
}
return status;
}
std::unique_ptr<OsMemory> OsMemory::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {
std::unique_ptr<LinuxMemoryImp> pLinuxMemoryImp = std::make_unique<LinuxMemoryImp>(pOsSysman, onSubdevice, subdeviceId);
return pLinuxMemoryImp;
}
} // namespace L0

View File

@@ -1,55 +0,0 @@
/*
* Copyright (C) 2022-2023 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/helpers/non_copyable_or_moveable.h"
#include "shared/source/os_interface/linux/drm_neo.h"
#include "level_zero/tools/source/sysman/memory/os_memory.h"
#include <map>
namespace L0 {
class SysfsAccess;
struct Device;
class PlatformMonitoringTech;
class LinuxSysmanImp;
class LinuxMemoryImp : public OsMemory, NEO::NonCopyableOrMovableClass {
public:
ze_result_t getProperties(zes_mem_properties_t *pProperties) override;
ze_result_t getBandwidth(zes_mem_bandwidth_t *pBandwidth) override;
ze_result_t getState(zes_mem_state_t *pState) override;
bool isMemoryModuleSupported() override;
LinuxMemoryImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId);
LinuxMemoryImp() = default;
~LinuxMemoryImp() override = default;
protected:
L0::LinuxSysmanImp *pLinuxSysmanImp = nullptr;
SysfsAccess *pSysfsAccess = nullptr;
NEO::Drm *pDrm = nullptr;
Device *pDevice = nullptr;
PlatformMonitoringTech *pPmt = nullptr;
void getHbmFrequency(PRODUCT_FAMILY productFamily, unsigned short stepping, uint64_t &hbmFrequency);
private:
ze_result_t readMcChannelCounters(uint64_t &readCounters, uint64_t &writeCounters);
ze_result_t getVFIDString(std::string &vfID);
ze_result_t getBandwidthForDg2(zes_mem_bandwidth_t *pBandwidth);
ze_result_t getHbmBandwidth(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth);
ze_result_t getHbmBandwidthPVC(uint32_t numHbmModules, zes_mem_bandwidth_t *pBandwidth);
ze_result_t getHbmBandwidthEx(uint32_t numHbmModules, uint32_t counterMaxValue, uint64_t *pReadCounters, uint64_t *pWriteCounters, uint64_t *pMaxBandwidth, uint64_t timeout);
void init();
static const std::string deviceMemoryHealth;
bool isSubdevice = false;
uint32_t subdeviceId = 0;
std::string physicalSizeFile;
};
} // namespace L0