Adding Frequency Support for Windows in Level 0 Sysman

Change-Id: I8dbf67b0a6f88379a3da304e01a8f102e2027dd1
This commit is contained in:
Daniel Enriquez
2020-09-17 03:14:58 -07:00
committed by sys_ocldev
parent b7852303e8
commit f0907361ff
16 changed files with 1819 additions and 67 deletions

View File

@@ -1,11 +1,11 @@
#
# Copyright (C) 2019-2020 Intel Corporation
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
#
set(L0_SRCS_TOOLS_SYSMAN_FREQUENCY_WINDOWS
${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt
${CMAKE_CURRENT_SOURCE_DIR}/os_frequency_imp.h
${CMAKE_CURRENT_SOURCE_DIR}/os_frequency_imp.cpp
)

View File

@@ -5,46 +5,656 @@
*
*/
#include "level_zero/tools/source/sysman/frequency/os_frequency.h"
#include "level_zero/tools/source/sysman/frequency/windows/os_frequency_imp.h"
namespace L0 {
class WddmFrequencyImp : public OsFrequency {
public:
ze_result_t osFrequencyGetProperties(zes_freq_properties_t &properties) override;
ze_result_t osFrequencyGetRange(zes_freq_range_t *pLimits) override;
ze_result_t osFrequencySetRange(const zes_freq_range_t *pLimits) override;
ze_result_t osFrequencyGetState(zes_freq_state_t *pState) override;
ze_result_t osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) override;
};
ze_result_t WddmFrequencyImp::osFrequencyGetProperties(zes_freq_properties_t &properties) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
readOverclockingInfo();
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::FrequencyThrottledEventSupported;
request.paramInfo = static_cast<uint32_t>(frequencyDomainNumber);
properties.isThrottleEventSupported = false;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
properties.isThrottleEventSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::FrequencyRangeMinDefault;
request.paramInfo = static_cast<uint32_t>(frequencyDomainNumber);
properties.min = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
value = 0;
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
properties.min = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::FrequencyRangeMaxDefault;
request.paramInfo = static_cast<uint32_t>(frequencyDomainNumber);
properties.max = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
value = 0;
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
properties.max = static_cast<double>(value);
}
properties.onSubdevice = false;
properties.subdeviceId = 0;
properties.type = frequencyDomainNumber;
properties.canControl = canControl();
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::osFrequencyGetRange(zes_freq_range_t *pLimits) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return getRange(&pLimits->min, &pLimits->max);
}
ze_result_t WddmFrequencyImp::osFrequencySetRange(const zes_freq_range_t *pLimits) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return setRange(pLimits->min, pLimits->max);
}
ze_result_t WddmFrequencyImp::osFrequencyGetState(zes_freq_state_t *pState) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentRequestedFrequency;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
pState->request = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->request = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentTdpFrequency;
pState->tdp = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->tdp = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentResolvedFrequency;
pState->actual = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->actual = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentEfficientFrequency;
pState->efficient = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->efficient = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltage;
pState->currentVoltage = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->currentVoltage = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentThrottleReasons;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
KmdThrottleReasons value = {0};
pState->throttleReasons = {0};
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
if (value.powerlimit1) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP;
}
if (value.powerlimit2) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP;
}
if (value.powerlimit4) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT;
}
if (value.thermal) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT;
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
OsFrequency *OsFrequency::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {
WddmFrequencyImp *pWddmFrequencyImp = new WddmFrequencyImp();
bool WddmFrequencyImp::canControl() {
double minF = 0.0, maxF = 0.0;
if (getRange(&minF, &maxF) != ZE_RESULT_SUCCESS) {
return false;
}
return (setRange(minF, maxF) == ZE_RESULT_SUCCESS);
}
ze_result_t WddmFrequencyImp::getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) {
*pOcCapabilities = ocCapabilities;
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcFrequencyTarget(double *pCurrentOcFrequency) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyTarget;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pCurrentOcFrequency = currentFrequencyTarget = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcFrequencyTarget(double currentOcFrequency) {
if (currentFrequencyTarget != currentOcFrequency) {
currentFrequencyTarget = currentOcFrequency;
return applyOcSettings();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageTarget;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pCurrentVoltageTarget = currentVoltageTarget = static_cast<double>(value);
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageOffset;
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pCurrentVoltageOffset = currentVoltageOffset = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) {
if (this->currentVoltageTarget != currentVoltageTarget || this->currentVoltageOffset != currentVoltageOffset) {
this->currentVoltageTarget = currentVoltageTarget;
this->currentVoltageOffset = currentVoltageOffset;
return applyOcSettings();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcMode(zes_oc_mode_t *pCurrentOcMode) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFixedMode;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentFixedMode = value ? ZES_OC_MODE_FIXED : ZES_OC_MODE_OFF;
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageMode;
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageMode = value ? ZES_OC_MODE_OVERRIDE : ZES_OC_MODE_INTERPOLATIVE;
if (currentFixedMode == ZES_OC_MODE_FIXED) {
currentOcMode = ZES_OC_MODE_FIXED;
} else {
currentOcMode = currentVoltageMode;
}
*pCurrentOcMode = currentOcMode;
return status;
}
ze_result_t WddmFrequencyImp::setOcMode(zes_oc_mode_t currentOcMode) {
if (currentOcMode == ZES_OC_MODE_OFF) {
this->currentFrequencyTarget = ocCapabilities.maxFactoryDefaultFrequency;
this->currentVoltageTarget = ocCapabilities.maxFactoryDefaultVoltage;
this->currentVoltageOffset = 0;
this->currentFixedMode = ZES_OC_MODE_OFF;
this->currentVoltageMode = ZES_OC_MODE_INTERPOLATIVE;
this->currentOcMode = ZES_OC_MODE_OFF;
return applyOcSettings();
}
if (currentOcMode == ZES_OC_MODE_FIXED) {
this->currentOcMode = ZES_OC_MODE_FIXED;
this->currentFixedMode = ZES_OC_MODE_FIXED;
this->currentVoltageMode = ZES_OC_MODE_OVERRIDE;
return applyOcSettings();
}
if (currentOcMode == ZES_OC_MODE_INTERPOLATIVE || currentOcMode == ZES_OC_MODE_OVERRIDE) {
this->currentVoltageMode = currentOcMode;
this->currentFixedMode = ZES_OC_MODE_OFF;
this->currentOcMode = currentOcMode;
return applyOcSettings();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcIccMax(double *pOcIccMax) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pOcIccMax = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcIccMax(double ocIccMax) {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = sizeof(uint32_t);
value = static_cast<uint32_t>(ocIccMax);
memcpy_s(request.dataBuffer, sizeof(uint32_t), &value, sizeof(uint32_t));
return pKmdSysManager->requestSingle(request, response);
}
ze_result_t WddmFrequencyImp::getOcTjMax(double *pOcTjMax) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentTjMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pOcTjMax = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcTjMax(double ocTjMax) {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = sizeof(uint32_t);
value = static_cast<uint32_t>(ocTjMax);
memcpy_s(request.dataBuffer, sizeof(uint32_t), &value, sizeof(uint32_t));
return pKmdSysManager->requestSingle(request, response);
}
ze_result_t WddmFrequencyImp::setRange(double min, double max) {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyRange;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = 2 * sizeof(uint32_t);
value = static_cast<uint32_t>(min);
memcpy_s(request.dataBuffer, sizeof(uint32_t), &value, sizeof(uint32_t));
value = static_cast<uint32_t>(max);
memcpy_s((request.dataBuffer + sizeof(uint32_t)), sizeof(uint32_t), &value, sizeof(uint32_t));
return pKmdSysManager->requestSingle(request, response);
}
ze_result_t WddmFrequencyImp::getRange(double *min, double *max) {
ze_result_t status = ZE_RESULT_SUCCESS;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyRange;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
uint32_t value = 0;
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*min = static_cast<double>(value);
memcpy_s(&value, sizeof(uint32_t), (response.dataBuffer + sizeof(uint32_t)), sizeof(uint32_t));
*max = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::applyOcSettings() {
ze_result_t status = ZE_RESULT_SUCCESS;
int32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFixedMode;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = sizeof(int32_t);
value = (currentFixedMode == ZES_OC_MODE_FIXED) ? 1 : 0;
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageMode;
value = (currentVoltageMode == ZES_OC_MODE_OVERRIDE) ? 1 : 0;
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageOffset;
value = static_cast<int32_t>(currentVoltageOffset);
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageTarget;
value = static_cast<int32_t>(currentVoltageTarget);
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyTarget;
value = static_cast<int32_t>(currentFrequencyTarget);
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
return pKmdSysManager->requestSingle(request, response);
}
void WddmFrequencyImp::readOverclockingInfo() {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::ExtendedOcSupported;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isExtendedModeSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::FixedModeSupported;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isFixedModeSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::HighVoltageModeSupported;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isHighVoltModeCapable = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::HighVoltageEnabled;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isHighVoltModeEnabled = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isIccMaxSupported = static_cast<ze_bool_t>(value > 0);
}
request.requestId = KmdSysman::Requests::Frequency::FrequencyOcSupported;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isOcSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentTjMax;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isTjMaxSupported = static_cast<ze_bool_t>(value > 0);
}
request.requestId = KmdSysman::Requests::Frequency::MaxNonOcFrequencyDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxFactoryDefaultFrequency = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::MaxNonOcVoltageDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxFactoryDefaultVoltage = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::MaxOcFrequencyDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxOcFrequency = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::MaxOcVoltageDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxOcVoltage = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentFixedMode;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentFixedMode = value ? ZES_OC_MODE_FIXED : ZES_OC_MODE_OFF;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyTarget;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentFrequencyTarget = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageTarget;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageTarget = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageOffset;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageOffset = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageMode;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageMode = value ? ZES_OC_MODE_OVERRIDE : ZES_OC_MODE_INTERPOLATIVE;
}
if (currentFrequencyTarget == 0.0 || currentVoltageTarget == 0.0) {
if (currentFrequencyTarget == 0.0) {
currentFrequencyTarget = ocCapabilities.maxFactoryDefaultFrequency;
}
if (currentVoltageTarget == 0.0) {
currentVoltageTarget = ocCapabilities.maxFactoryDefaultVoltage;
}
}
if (currentFixedMode == ZES_OC_MODE_FIXED) {
currentOcMode = ZES_OC_MODE_FIXED;
} else {
currentOcMode = currentVoltageMode;
}
}
WddmFrequencyImp::WddmFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber) {
WddmSysmanImp *pWddmSysmanImp = static_cast<WddmSysmanImp *>(pOsSysman);
this->frequencyDomainNumber = frequencyDomainNumber;
pKmdSysManager = &pWddmSysmanImp->getKmdSysManager();
}
OsFrequency *OsFrequency::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber) {
WddmFrequencyImp *pWddmFrequencyImp = new WddmFrequencyImp(pOsSysman, onSubdevice, subdeviceId, frequencyDomainNumber);
return static_cast<OsFrequency *>(pWddmFrequencyImp);
}
uint16_t OsFrequency::getHardwareBlockCount(ze_device_handle_t handle) {
return 1;
uint16_t OsFrequency::getNumberOfFreqDoainsSupported(OsSysman *pOsSysman) {
WddmSysmanImp *pWddmSysmanImp = static_cast<WddmSysmanImp *>(pOsSysman);
KmdSysManager *pKmdSysManager = &pWddmSysmanImp->getKmdSysManager();
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::NumFrequencyDomains;
ze_result_t status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return 0;
}
uint32_t maxNumEnginesSupported = 0;
memcpy_s(&maxNumEnginesSupported, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
return static_cast<uint16_t>(maxNumEnginesSupported);
}
} // namespace L0

View File

@@ -0,0 +1,80 @@
/*
* Copyright (C) 2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/helpers/non_copyable_or_moveable.h"
#include "sysman/frequency/os_frequency.h"
#include "sysman/windows/os_sysman_imp.h"
#define KMD_BIT_RANGE(endbit, startbit) ((endbit) - (startbit) + 1)
namespace L0 {
struct KmdThrottleReasons {
union {
uint32_t bitfield;
struct {
uint32_t reserved1 : KMD_BIT_RANGE(16, 0);
uint32_t thermal : KMD_BIT_RANGE(17, 17);
uint32_t reserved2 : KMD_BIT_RANGE(23, 18);
uint32_t powerlimit4 : KMD_BIT_RANGE(24, 24);
uint32_t reserved3 : KMD_BIT_RANGE(25, 25);
uint32_t powerlimit1 : KMD_BIT_RANGE(26, 26);
uint32_t powerlimit2 : KMD_BIT_RANGE(27, 27);
uint32_t reserved4 : KMD_BIT_RANGE(31, 28);
};
};
};
class KmdSysManager;
class WddmFrequencyImp : public OsFrequency, NEO::NonCopyableOrMovableClass {
public:
ze_result_t osFrequencyGetProperties(zes_freq_properties_t &properties) override;
ze_result_t osFrequencyGetRange(zes_freq_range_t *pLimits) override;
ze_result_t osFrequencySetRange(const zes_freq_range_t *pLimits) override;
ze_result_t osFrequencyGetState(zes_freq_state_t *pState) override;
ze_result_t osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) override;
ze_result_t getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) override;
ze_result_t getOcFrequencyTarget(double *pCurrentOcFrequency) override;
ze_result_t setOcFrequencyTarget(double currentOcFrequency) override;
ze_result_t getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) override;
ze_result_t setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) override;
ze_result_t getOcMode(zes_oc_mode_t *pCurrentOcMode) override;
ze_result_t setOcMode(zes_oc_mode_t currentOcMode) override;
ze_result_t getOcIccMax(double *pOcIccMax) override;
ze_result_t setOcIccMax(double ocIccMax) override;
ze_result_t getOcTjMax(double *pOcTjMax) override;
ze_result_t setOcTjMax(double ocTjMax) override;
WddmFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t type);
WddmFrequencyImp() = default;
~WddmFrequencyImp() override = default;
private:
ze_result_t setRange(double min, double max);
ze_result_t getRange(double *min, double *max);
void readOverclockingInfo();
bool canControl();
ze_result_t applyOcSettings();
double minRangeFreq = -1.0;
double maxRangeFreq = -1.0;
zes_oc_capabilities_t ocCapabilities = {};
zes_oc_mode_t currentOcMode = ZES_OC_MODE_OFF;
zes_oc_mode_t currentFixedMode = ZES_OC_MODE_OFF;
zes_oc_mode_t currentVoltageMode = ZES_OC_MODE_OFF;
double currentFrequencyTarget = -1.0;
double currentVoltageTarget = -1.0;
double currentVoltageOffset = -1.0;
protected:
KmdSysManager *pKmdSysManager = nullptr;
zes_freq_domain_t frequencyDomainNumber = ZES_FREQ_DOMAIN_GPU;
};
} // namespace L0