Adding Frequency Support for Windows in Level 0 Sysman

Change-Id: I8dbf67b0a6f88379a3da304e01a8f102e2027dd1
This commit is contained in:
Daniel Enriquez
2020-09-17 03:14:58 -07:00
committed by sys_ocldev
parent b7852303e8
commit f0907361ff
16 changed files with 1819 additions and 67 deletions

View File

@@ -244,14 +244,14 @@ ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcGetFrequencyTarget(
zes_freq_handle_t hFrequency,
double *pCurrentOcFrequency) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcGetFrequencyTarget(pCurrentOcFrequency);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcSetFrequencyTarget(
zes_freq_handle_t hFrequency,
double currentOcFrequency) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcSetFrequencyTarget(currentOcFrequency);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
@@ -259,7 +259,7 @@ zesFrequencyOcGetVoltageTarget(
zes_freq_handle_t hFrequency,
double *pCurrentVoltageTarget,
double *pCurrentVoltageOffset) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcGetVoltageTarget(pCurrentVoltageTarget, pCurrentVoltageOffset);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
@@ -267,56 +267,56 @@ zesFrequencyOcSetVoltageTarget(
zes_freq_handle_t hFrequency,
double currentVoltageTarget,
double currentVoltageOffset) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcSetVoltageTarget(currentVoltageTarget, currentVoltageOffset);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcSetMode(
zes_freq_handle_t hFrequency,
zes_oc_mode_t currentOcMode) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcSetMode(currentOcMode);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcGetMode(
zes_freq_handle_t hFrequency,
zes_oc_mode_t *pCurrentOcMode) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcGetMode(pCurrentOcMode);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcGetCapabilities(
zes_freq_handle_t hFrequency,
zes_oc_capabilities_t *pOcCapabilities) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcGetCapabilities(pOcCapabilities);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcGetIccMax(
zes_freq_handle_t hFrequency,
double *pOcIccMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcGetIccMax(pOcIccMax);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcSetIccMax(
zes_freq_handle_t hFrequency,
double ocIccMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcSetIccMax(ocIccMax);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcGetTjMax(
zes_freq_handle_t hFrequency,
double *pOcTjMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcGeTjMax(pOcTjMax);
}
ZE_APIEXPORT ze_result_t ZE_APICALL
zesFrequencyOcSetTjMax(
zes_freq_handle_t hFrequency,
double ocTjMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return L0::Frequency::fromHandle(hFrequency)->frequencyOcSetTjMax(ocTjMax);
}
ZE_APIEXPORT ze_result_t ZE_APICALL

View File

@@ -20,16 +20,17 @@ FrequencyHandleContext::~FrequencyHandleContext() {
}
}
void FrequencyHandleContext::createHandle(ze_device_handle_t deviceHandle, uint16_t frequencyDomain) {
void FrequencyHandleContext::createHandle(ze_device_handle_t deviceHandle, zes_freq_domain_t frequencyDomain) {
Frequency *pFrequency = new FrequencyImp(pOsSysman, deviceHandle, frequencyDomain);
handleList.push_back(pFrequency);
}
ze_result_t FrequencyHandleContext::init(std::vector<ze_device_handle_t> deviceHandles) {
for (auto deviceHandle : deviceHandles) {
auto totalDomains = OsFrequency::getHardwareBlockCount(deviceHandle);
for (uint16_t frequencyDomain = 0; frequencyDomain < totalDomains; frequencyDomain++) {
createHandle(deviceHandle, frequencyDomain);
auto totalDomains = OsFrequency::getNumberOfFreqDoainsSupported(pOsSysman);
UNRECOVERABLE_IF(totalDomains > 2);
for (uint32_t frequencyDomain = 0; frequencyDomain < totalDomains; frequencyDomain++) {
createHandle(deviceHandle, static_cast<zes_freq_domain_t>(frequencyDomain));
}
}
return ZE_RESULT_SUCCESS;

View File

@@ -17,6 +17,8 @@ struct _zes_freq_handle_t {
namespace L0 {
constexpr double unsupportedProperty = -1.0;
struct OsSysman;
class Frequency : _zes_freq_handle_t {
@@ -30,6 +32,19 @@ class Frequency : _zes_freq_handle_t {
virtual ze_result_t frequencyGetState(zes_freq_state_t *pState) = 0;
virtual ze_result_t frequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) = 0;
// Overclocking
virtual ze_result_t frequencyOcGetCapabilities(zes_oc_capabilities_t *pOcCapabilities) = 0;
virtual ze_result_t frequencyOcGetFrequencyTarget(double *pCurrentOcfrequency) = 0;
virtual ze_result_t frequencyOcSetFrequencyTarget(double currentOcfrequency) = 0;
virtual ze_result_t frequencyOcGetVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) = 0;
virtual ze_result_t frequencyOcSetVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) = 0;
virtual ze_result_t frequencyOcGetMode(zes_oc_mode_t *pCurrentOcMode) = 0;
virtual ze_result_t frequencyOcSetMode(zes_oc_mode_t currentOcMode) = 0;
virtual ze_result_t frequencyOcGetIccMax(double *pOcIccMax) = 0;
virtual ze_result_t frequencyOcSetIccMax(double ocIccMax) = 0;
virtual ze_result_t frequencyOcGeTjMax(double *pOcTjMax) = 0;
virtual ze_result_t frequencyOcSetTjMax(double ocTjMax) = 0;
static Frequency *fromHandle(zes_freq_handle_t handle) {
return static_cast<Frequency *>(handle);
}
@@ -48,7 +63,7 @@ struct FrequencyHandleContext {
std::vector<Frequency *> handleList = {};
private:
void createHandle(ze_device_handle_t deviceHandle, uint16_t frequencyDomain);
void createHandle(ze_device_handle_t deviceHandle, zes_freq_domain_t frequencyDomain);
};
} // namespace L0

View File

@@ -65,8 +65,51 @@ ze_result_t FrequencyImp::frequencyGetThrottleTime(zes_freq_throttle_time_t *pTh
return pOsFrequency->osFrequencyGetThrottleTime(pThrottleTime);
}
ze_result_t FrequencyImp::frequencyOcGetCapabilities(zes_oc_capabilities_t *pOcCapabilities) {
return pOsFrequency->getOcCapabilities(pOcCapabilities);
}
ze_result_t FrequencyImp::frequencyOcGetFrequencyTarget(double *pCurrentOcFrequency) {
return pOsFrequency->getOcFrequencyTarget(pCurrentOcFrequency);
}
ze_result_t FrequencyImp::frequencyOcSetFrequencyTarget(double currentOcFrequency) {
return pOsFrequency->setOcFrequencyTarget(currentOcFrequency);
}
ze_result_t FrequencyImp::frequencyOcGetVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) {
return pOsFrequency->getOcVoltageTarget(pCurrentVoltageTarget, pCurrentVoltageOffset);
}
ze_result_t FrequencyImp::frequencyOcSetVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) {
return pOsFrequency->setOcVoltageTarget(currentVoltageTarget, currentVoltageOffset);
}
ze_result_t FrequencyImp::frequencyOcGetMode(zes_oc_mode_t *pCurrentOcMode) {
return pOsFrequency->getOcMode(pCurrentOcMode);
}
ze_result_t FrequencyImp::frequencyOcSetMode(zes_oc_mode_t currentOcMode) {
return pOsFrequency->setOcMode(currentOcMode);
}
ze_result_t FrequencyImp::frequencyOcGetIccMax(double *pOcIccMax) {
return pOsFrequency->getOcIccMax(pOcIccMax);
}
ze_result_t FrequencyImp::frequencyOcSetIccMax(double ocIccMax) {
return pOsFrequency->setOcIccMax(ocIccMax);
}
ze_result_t FrequencyImp::frequencyOcGeTjMax(double *pOcTjMax) {
return pOsFrequency->getOcTjMax(pOcTjMax);
}
ze_result_t FrequencyImp::frequencyOcSetTjMax(double ocTjMax) {
return pOsFrequency->setOcTjMax(ocTjMax);
}
void FrequencyImp::init() {
zesFrequencyProperties.type = static_cast<zes_freq_domain_t>(frequencyDomain);
pOsFrequency->osFrequencyGetProperties(zesFrequencyProperties);
double freqRange = zesFrequencyProperties.max - zesFrequencyProperties.min;
numClocks = static_cast<uint32_t>(round(freqRange / step)) + 1;
@@ -76,10 +119,10 @@ void FrequencyImp::init() {
}
}
FrequencyImp::FrequencyImp(OsSysman *pOsSysman, ze_device_handle_t handle, uint16_t frequencyDomain) : deviceHandle(handle), frequencyDomain(frequencyDomain) {
FrequencyImp::FrequencyImp(OsSysman *pOsSysman, ze_device_handle_t handle, zes_freq_domain_t frequencyDomainNumber) : deviceHandle(handle) {
ze_device_properties_t deviceProperties = {};
Device::fromHandle(deviceHandle)->getProperties(&deviceProperties);
pOsFrequency = OsFrequency::create(pOsSysman, deviceProperties.flags & ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE, deviceProperties.subdeviceId);
pOsFrequency = OsFrequency::create(pOsSysman, deviceProperties.flags & ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE, deviceProperties.subdeviceId, frequencyDomainNumber);
UNRECOVERABLE_IF(nullptr == pOsFrequency);
init();

View File

@@ -24,8 +24,21 @@ class FrequencyImp : public Frequency, NEO::NonCopyableOrMovableClass {
ze_result_t frequencyGetState(zes_freq_state_t *pState) override;
ze_result_t frequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) override;
// Overclocking
ze_result_t frequencyOcGetCapabilities(zes_oc_capabilities_t *pOcCapabilities) override;
ze_result_t frequencyOcGetFrequencyTarget(double *pCurrentOcFrequency) override;
ze_result_t frequencyOcSetFrequencyTarget(double currentOcFrequency) override;
ze_result_t frequencyOcGetVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) override;
ze_result_t frequencyOcSetVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) override;
ze_result_t frequencyOcGetMode(zes_oc_mode_t *pCurrentOcMode) override;
ze_result_t frequencyOcSetMode(zes_oc_mode_t currentOcMode) override;
ze_result_t frequencyOcGetIccMax(double *pOcIccMax) override;
ze_result_t frequencyOcSetIccMax(double ocIccMax) override;
ze_result_t frequencyOcGeTjMax(double *pOcTjMax) override;
ze_result_t frequencyOcSetTjMax(double ocTjMax) override;
FrequencyImp() = default;
FrequencyImp(OsSysman *pOsSysman, ze_device_handle_t handle, uint16_t frequencyDomain);
FrequencyImp(OsSysman *pOsSysman, ze_device_handle_t handle, zes_freq_domain_t frequencyDomainNumber);
~FrequencyImp() override;
OsFrequency *pOsFrequency = nullptr;
void init();
@@ -37,7 +50,6 @@ class FrequencyImp : public Frequency, NEO::NonCopyableOrMovableClass {
double *pClocks = nullptr;
uint32_t numClocks = 0;
ze_device_handle_t deviceHandle = nullptr;
uint16_t frequencyDomain = 0;
};
} // namespace L0

View File

@@ -16,6 +16,7 @@ const bool LinuxFrequencyImp::canControl = true; // canControl is true on i915 (
ze_result_t LinuxFrequencyImp::osFrequencyGetProperties(zes_freq_properties_t &properties) {
properties.pNext = nullptr;
properties.canControl = canControl;
properties.type = frequencyDomainNumber;
ze_result_t result1 = getMinVal(properties.min);
ze_result_t result2 = getMaxVal(properties.max);
// If can't figure out the valid range, then can't control it.
@@ -96,6 +97,50 @@ ze_result_t LinuxFrequencyImp::osFrequencyGetThrottleTime(zes_freq_throttle_time
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getOcFrequencyTarget(double *pCurrentOcFrequency) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::setOcFrequencyTarget(double currentOcFrequency) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getOcMode(zes_oc_mode_t *pCurrentOcMode) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::setOcMode(zes_oc_mode_t currentOcMode) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getOcIccMax(double *pOcIccMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::setOcIccMax(double ocIccMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getOcTjMax(double *pOcTjMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::setOcTjMax(double ocTjMax) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxFrequencyImp::getMin(double &min) {
double intval;
@@ -241,18 +286,18 @@ void LinuxFrequencyImp::init() {
minValFreqFile = "gt_RPn_freq_mhz";
}
LinuxFrequencyImp::LinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
LinuxFrequencyImp::LinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber) : isSubdevice(onSubdevice), subdeviceId(subdeviceId), frequencyDomainNumber(frequencyDomainNumber) {
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
init();
}
OsFrequency *OsFrequency::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {
LinuxFrequencyImp *pLinuxFrequencyImp = new LinuxFrequencyImp(pOsSysman, onSubdevice, subdeviceId);
OsFrequency *OsFrequency::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber) {
LinuxFrequencyImp *pLinuxFrequencyImp = new LinuxFrequencyImp(pOsSysman, onSubdevice, subdeviceId, frequencyDomainNumber);
return static_cast<OsFrequency *>(pLinuxFrequencyImp);
}
uint16_t OsFrequency::getHardwareBlockCount(ze_device_handle_t handle) {
uint16_t OsFrequency::getNumberOfFreqDoainsSupported(OsSysman *pOsSysman) {
return 1; // hardcode for now to support only ZES_FREQ_DOMAIN_GPU
}

View File

@@ -21,8 +21,19 @@ class LinuxFrequencyImp : public OsFrequency, NEO::NonCopyableOrMovableClass {
ze_result_t osFrequencySetRange(const zes_freq_range_t *pLimits) override;
ze_result_t osFrequencyGetState(zes_freq_state_t *pState) override;
ze_result_t osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) override;
ze_result_t getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) override;
ze_result_t getOcFrequencyTarget(double *pCurrentOcFrequency) override;
ze_result_t setOcFrequencyTarget(double currentOcFrequency) override;
ze_result_t getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) override;
ze_result_t setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) override;
ze_result_t getOcMode(zes_oc_mode_t *pCurrentOcMode) override;
ze_result_t setOcMode(zes_oc_mode_t currentOcMode) override;
ze_result_t getOcIccMax(double *pOcIccMax) override;
ze_result_t setOcIccMax(double ocIccMax) override;
ze_result_t getOcTjMax(double *pOcTjMax) override;
ze_result_t setOcTjMax(double ocTjMax) override;
LinuxFrequencyImp() = default;
LinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId);
LinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber);
~LinuxFrequencyImp() override = default;
protected:
@@ -50,6 +61,7 @@ class LinuxFrequencyImp : public OsFrequency, NEO::NonCopyableOrMovableClass {
static const bool canControl;
bool isSubdevice = false;
uint32_t subdeviceId = 0;
zes_freq_domain_t frequencyDomainNumber = ZES_FREQ_DOMAIN_GPU;
void init();
};

View File

@@ -18,9 +18,19 @@ class OsFrequency {
virtual ze_result_t osFrequencySetRange(const zes_freq_range_t *pLimits) = 0;
virtual ze_result_t osFrequencyGetState(zes_freq_state_t *pState) = 0;
virtual ze_result_t osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) = 0;
static OsFrequency *create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId);
static uint16_t getHardwareBlockCount(ze_device_handle_t handle);
virtual ze_result_t getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) = 0;
virtual ze_result_t getOcFrequencyTarget(double *pCurrentOcFrequency) = 0;
virtual ze_result_t setOcFrequencyTarget(double currentOcFrequency) = 0;
virtual ze_result_t getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) = 0;
virtual ze_result_t setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) = 0;
virtual ze_result_t getOcMode(zes_oc_mode_t *pCurrentOcMode) = 0;
virtual ze_result_t setOcMode(zes_oc_mode_t currentOcMode) = 0;
virtual ze_result_t getOcIccMax(double *pOcIccMax) = 0;
virtual ze_result_t setOcIccMax(double ocIccMax) = 0;
virtual ze_result_t getOcTjMax(double *pOcTjMax) = 0;
virtual ze_result_t setOcTjMax(double ocTjMax) = 0;
static OsFrequency *create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t type);
static uint16_t getNumberOfFreqDoainsSupported(OsSysman *pOsSysman);
virtual ~OsFrequency() {}
};

View File

@@ -1,11 +1,11 @@
#
# Copyright (C) 2019-2020 Intel Corporation
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
#
set(L0_SRCS_TOOLS_SYSMAN_FREQUENCY_WINDOWS
${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt
${CMAKE_CURRENT_SOURCE_DIR}/os_frequency_imp.h
${CMAKE_CURRENT_SOURCE_DIR}/os_frequency_imp.cpp
)

View File

@@ -5,46 +5,656 @@
*
*/
#include "level_zero/tools/source/sysman/frequency/os_frequency.h"
#include "level_zero/tools/source/sysman/frequency/windows/os_frequency_imp.h"
namespace L0 {
class WddmFrequencyImp : public OsFrequency {
public:
ze_result_t osFrequencyGetProperties(zes_freq_properties_t &properties) override;
ze_result_t osFrequencyGetRange(zes_freq_range_t *pLimits) override;
ze_result_t osFrequencySetRange(const zes_freq_range_t *pLimits) override;
ze_result_t osFrequencyGetState(zes_freq_state_t *pState) override;
ze_result_t osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) override;
};
ze_result_t WddmFrequencyImp::osFrequencyGetProperties(zes_freq_properties_t &properties) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
readOverclockingInfo();
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::FrequencyThrottledEventSupported;
request.paramInfo = static_cast<uint32_t>(frequencyDomainNumber);
properties.isThrottleEventSupported = false;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
properties.isThrottleEventSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::FrequencyRangeMinDefault;
request.paramInfo = static_cast<uint32_t>(frequencyDomainNumber);
properties.min = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
value = 0;
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
properties.min = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::FrequencyRangeMaxDefault;
request.paramInfo = static_cast<uint32_t>(frequencyDomainNumber);
properties.max = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
value = 0;
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
properties.max = static_cast<double>(value);
}
properties.onSubdevice = false;
properties.subdeviceId = 0;
properties.type = frequencyDomainNumber;
properties.canControl = canControl();
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::osFrequencyGetRange(zes_freq_range_t *pLimits) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return getRange(&pLimits->min, &pLimits->max);
}
ze_result_t WddmFrequencyImp::osFrequencySetRange(const zes_freq_range_t *pLimits) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return setRange(pLimits->min, pLimits->max);
}
ze_result_t WddmFrequencyImp::osFrequencyGetState(zes_freq_state_t *pState) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentRequestedFrequency;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
pState->request = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->request = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentTdpFrequency;
pState->tdp = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->tdp = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentResolvedFrequency;
pState->actual = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->actual = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentEfficientFrequency;
pState->efficient = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->efficient = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltage;
pState->currentVoltage = unsupportedProperty;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
pState->currentVoltage = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentThrottleReasons;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
KmdThrottleReasons value = {0};
pState->throttleReasons = {0};
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
if (value.powerlimit1) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_AVE_PWR_CAP;
}
if (value.powerlimit2) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_BURST_PWR_CAP;
}
if (value.powerlimit4) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_CURRENT_LIMIT;
}
if (value.thermal) {
pState->throttleReasons |= ZES_FREQ_THROTTLE_REASON_FLAG_THERMAL_LIMIT;
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
OsFrequency *OsFrequency::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {
WddmFrequencyImp *pWddmFrequencyImp = new WddmFrequencyImp();
bool WddmFrequencyImp::canControl() {
double minF = 0.0, maxF = 0.0;
if (getRange(&minF, &maxF) != ZE_RESULT_SUCCESS) {
return false;
}
return (setRange(minF, maxF) == ZE_RESULT_SUCCESS);
}
ze_result_t WddmFrequencyImp::getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) {
*pOcCapabilities = ocCapabilities;
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcFrequencyTarget(double *pCurrentOcFrequency) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyTarget;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pCurrentOcFrequency = currentFrequencyTarget = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcFrequencyTarget(double currentOcFrequency) {
if (currentFrequencyTarget != currentOcFrequency) {
currentFrequencyTarget = currentOcFrequency;
return applyOcSettings();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageTarget;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pCurrentVoltageTarget = currentVoltageTarget = static_cast<double>(value);
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageOffset;
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pCurrentVoltageOffset = currentVoltageOffset = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) {
if (this->currentVoltageTarget != currentVoltageTarget || this->currentVoltageOffset != currentVoltageOffset) {
this->currentVoltageTarget = currentVoltageTarget;
this->currentVoltageOffset = currentVoltageOffset;
return applyOcSettings();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcMode(zes_oc_mode_t *pCurrentOcMode) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFixedMode;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentFixedMode = value ? ZES_OC_MODE_FIXED : ZES_OC_MODE_OFF;
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageMode;
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageMode = value ? ZES_OC_MODE_OVERRIDE : ZES_OC_MODE_INTERPOLATIVE;
if (currentFixedMode == ZES_OC_MODE_FIXED) {
currentOcMode = ZES_OC_MODE_FIXED;
} else {
currentOcMode = currentVoltageMode;
}
*pCurrentOcMode = currentOcMode;
return status;
}
ze_result_t WddmFrequencyImp::setOcMode(zes_oc_mode_t currentOcMode) {
if (currentOcMode == ZES_OC_MODE_OFF) {
this->currentFrequencyTarget = ocCapabilities.maxFactoryDefaultFrequency;
this->currentVoltageTarget = ocCapabilities.maxFactoryDefaultVoltage;
this->currentVoltageOffset = 0;
this->currentFixedMode = ZES_OC_MODE_OFF;
this->currentVoltageMode = ZES_OC_MODE_INTERPOLATIVE;
this->currentOcMode = ZES_OC_MODE_OFF;
return applyOcSettings();
}
if (currentOcMode == ZES_OC_MODE_FIXED) {
this->currentOcMode = ZES_OC_MODE_FIXED;
this->currentFixedMode = ZES_OC_MODE_FIXED;
this->currentVoltageMode = ZES_OC_MODE_OVERRIDE;
return applyOcSettings();
}
if (currentOcMode == ZES_OC_MODE_INTERPOLATIVE || currentOcMode == ZES_OC_MODE_OVERRIDE) {
this->currentVoltageMode = currentOcMode;
this->currentFixedMode = ZES_OC_MODE_OFF;
this->currentOcMode = currentOcMode;
return applyOcSettings();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t WddmFrequencyImp::getOcIccMax(double *pOcIccMax) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pOcIccMax = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcIccMax(double ocIccMax) {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = sizeof(uint32_t);
value = static_cast<uint32_t>(ocIccMax);
memcpy_s(request.dataBuffer, sizeof(uint32_t), &value, sizeof(uint32_t));
return pKmdSysManager->requestSingle(request, response);
}
ze_result_t WddmFrequencyImp::getOcTjMax(double *pOcTjMax) {
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentTjMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*pOcTjMax = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::setOcTjMax(double ocTjMax) {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = sizeof(uint32_t);
value = static_cast<uint32_t>(ocTjMax);
memcpy_s(request.dataBuffer, sizeof(uint32_t), &value, sizeof(uint32_t));
return pKmdSysManager->requestSingle(request, response);
}
ze_result_t WddmFrequencyImp::setRange(double min, double max) {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyRange;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = 2 * sizeof(uint32_t);
value = static_cast<uint32_t>(min);
memcpy_s(request.dataBuffer, sizeof(uint32_t), &value, sizeof(uint32_t));
value = static_cast<uint32_t>(max);
memcpy_s((request.dataBuffer + sizeof(uint32_t)), sizeof(uint32_t), &value, sizeof(uint32_t));
return pKmdSysManager->requestSingle(request, response);
}
ze_result_t WddmFrequencyImp::getRange(double *min, double *max) {
ze_result_t status = ZE_RESULT_SUCCESS;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyRange;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
uint32_t value = 0;
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
*min = static_cast<double>(value);
memcpy_s(&value, sizeof(uint32_t), (response.dataBuffer + sizeof(uint32_t)), sizeof(uint32_t));
*max = static_cast<double>(value);
return status;
}
ze_result_t WddmFrequencyImp::applyOcSettings() {
ze_result_t status = ZE_RESULT_SUCCESS;
int32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Set;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::CurrentFixedMode;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
request.dataSize = sizeof(int32_t);
value = (currentFixedMode == ZES_OC_MODE_FIXED) ? 1 : 0;
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageMode;
value = (currentVoltageMode == ZES_OC_MODE_OVERRIDE) ? 1 : 0;
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageOffset;
value = static_cast<int32_t>(currentVoltageOffset);
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageTarget;
value = static_cast<int32_t>(currentVoltageTarget);
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyTarget;
value = static_cast<int32_t>(currentFrequencyTarget);
memcpy_s(request.dataBuffer, sizeof(int32_t), &value, sizeof(int32_t));
return pKmdSysManager->requestSingle(request, response);
}
void WddmFrequencyImp::readOverclockingInfo() {
uint32_t value = 0;
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::ExtendedOcSupported;
request.paramInfo = static_cast<uint32_t>(this->frequencyDomainNumber);
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isExtendedModeSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::FixedModeSupported;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isFixedModeSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::HighVoltageModeSupported;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isHighVoltModeCapable = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::HighVoltageEnabled;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isHighVoltModeEnabled = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentIccMax;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isIccMaxSupported = static_cast<ze_bool_t>(value > 0);
}
request.requestId = KmdSysman::Requests::Frequency::FrequencyOcSupported;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isOcSupported = static_cast<ze_bool_t>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentTjMax;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.isTjMaxSupported = static_cast<ze_bool_t>(value > 0);
}
request.requestId = KmdSysman::Requests::Frequency::MaxNonOcFrequencyDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxFactoryDefaultFrequency = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::MaxNonOcVoltageDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxFactoryDefaultVoltage = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::MaxOcFrequencyDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxOcFrequency = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::MaxOcVoltageDefault;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
ocCapabilities.maxOcVoltage = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentFixedMode;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentFixedMode = value ? ZES_OC_MODE_FIXED : ZES_OC_MODE_OFF;
}
request.requestId = KmdSysman::Requests::Frequency::CurrentFrequencyTarget;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentFrequencyTarget = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageTarget;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageTarget = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageOffset;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageOffset = static_cast<double>(value);
}
request.requestId = KmdSysman::Requests::Frequency::CurrentVoltageMode;
if (pKmdSysManager->requestSingle(request, response) == ZE_RESULT_SUCCESS) {
memcpy_s(&value, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
currentVoltageMode = value ? ZES_OC_MODE_OVERRIDE : ZES_OC_MODE_INTERPOLATIVE;
}
if (currentFrequencyTarget == 0.0 || currentVoltageTarget == 0.0) {
if (currentFrequencyTarget == 0.0) {
currentFrequencyTarget = ocCapabilities.maxFactoryDefaultFrequency;
}
if (currentVoltageTarget == 0.0) {
currentVoltageTarget = ocCapabilities.maxFactoryDefaultVoltage;
}
}
if (currentFixedMode == ZES_OC_MODE_FIXED) {
currentOcMode = ZES_OC_MODE_FIXED;
} else {
currentOcMode = currentVoltageMode;
}
}
WddmFrequencyImp::WddmFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber) {
WddmSysmanImp *pWddmSysmanImp = static_cast<WddmSysmanImp *>(pOsSysman);
this->frequencyDomainNumber = frequencyDomainNumber;
pKmdSysManager = &pWddmSysmanImp->getKmdSysManager();
}
OsFrequency *OsFrequency::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t frequencyDomainNumber) {
WddmFrequencyImp *pWddmFrequencyImp = new WddmFrequencyImp(pOsSysman, onSubdevice, subdeviceId, frequencyDomainNumber);
return static_cast<OsFrequency *>(pWddmFrequencyImp);
}
uint16_t OsFrequency::getHardwareBlockCount(ze_device_handle_t handle) {
return 1;
uint16_t OsFrequency::getNumberOfFreqDoainsSupported(OsSysman *pOsSysman) {
WddmSysmanImp *pWddmSysmanImp = static_cast<WddmSysmanImp *>(pOsSysman);
KmdSysManager *pKmdSysManager = &pWddmSysmanImp->getKmdSysManager();
KmdSysman::RequestProperty request;
KmdSysman::ResponseProperty response;
request.commandId = KmdSysman::Command::Get;
request.componentId = KmdSysman::Component::FrequencyComponent;
request.requestId = KmdSysman::Requests::Frequency::NumFrequencyDomains;
ze_result_t status = pKmdSysManager->requestSingle(request, response);
if (status != ZE_RESULT_SUCCESS) {
return 0;
}
uint32_t maxNumEnginesSupported = 0;
memcpy_s(&maxNumEnginesSupported, sizeof(uint32_t), response.dataBuffer, sizeof(uint32_t));
return static_cast<uint16_t>(maxNumEnginesSupported);
}
} // namespace L0

View File

@@ -0,0 +1,80 @@
/*
* Copyright (C) 2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/helpers/non_copyable_or_moveable.h"
#include "sysman/frequency/os_frequency.h"
#include "sysman/windows/os_sysman_imp.h"
#define KMD_BIT_RANGE(endbit, startbit) ((endbit) - (startbit) + 1)
namespace L0 {
struct KmdThrottleReasons {
union {
uint32_t bitfield;
struct {
uint32_t reserved1 : KMD_BIT_RANGE(16, 0);
uint32_t thermal : KMD_BIT_RANGE(17, 17);
uint32_t reserved2 : KMD_BIT_RANGE(23, 18);
uint32_t powerlimit4 : KMD_BIT_RANGE(24, 24);
uint32_t reserved3 : KMD_BIT_RANGE(25, 25);
uint32_t powerlimit1 : KMD_BIT_RANGE(26, 26);
uint32_t powerlimit2 : KMD_BIT_RANGE(27, 27);
uint32_t reserved4 : KMD_BIT_RANGE(31, 28);
};
};
};
class KmdSysManager;
class WddmFrequencyImp : public OsFrequency, NEO::NonCopyableOrMovableClass {
public:
ze_result_t osFrequencyGetProperties(zes_freq_properties_t &properties) override;
ze_result_t osFrequencyGetRange(zes_freq_range_t *pLimits) override;
ze_result_t osFrequencySetRange(const zes_freq_range_t *pLimits) override;
ze_result_t osFrequencyGetState(zes_freq_state_t *pState) override;
ze_result_t osFrequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) override;
ze_result_t getOcCapabilities(zes_oc_capabilities_t *pOcCapabilities) override;
ze_result_t getOcFrequencyTarget(double *pCurrentOcFrequency) override;
ze_result_t setOcFrequencyTarget(double currentOcFrequency) override;
ze_result_t getOcVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) override;
ze_result_t setOcVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) override;
ze_result_t getOcMode(zes_oc_mode_t *pCurrentOcMode) override;
ze_result_t setOcMode(zes_oc_mode_t currentOcMode) override;
ze_result_t getOcIccMax(double *pOcIccMax) override;
ze_result_t setOcIccMax(double ocIccMax) override;
ze_result_t getOcTjMax(double *pOcTjMax) override;
ze_result_t setOcTjMax(double ocTjMax) override;
WddmFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t type);
WddmFrequencyImp() = default;
~WddmFrequencyImp() override = default;
private:
ze_result_t setRange(double min, double max);
ze_result_t getRange(double *min, double *max);
void readOverclockingInfo();
bool canControl();
ze_result_t applyOcSettings();
double minRangeFreq = -1.0;
double maxRangeFreq = -1.0;
zes_oc_capabilities_t ocCapabilities = {};
zes_oc_mode_t currentOcMode = ZES_OC_MODE_OFF;
zes_oc_mode_t currentFixedMode = ZES_OC_MODE_OFF;
zes_oc_mode_t currentVoltageMode = ZES_OC_MODE_OFF;
double currentFrequencyTarget = -1.0;
double currentVoltageTarget = -1.0;
double currentVoltageOffset = -1.0;
protected:
KmdSysManager *pKmdSysManager = nullptr;
zes_freq_domain_t frequencyDomainNumber = ZES_FREQ_DOMAIN_GPU;
};
} // namespace L0

View File

@@ -218,7 +218,7 @@ struct Mock<FrequencySysfsAccess> : public FrequencySysfsAccess {
class PublicLinuxFrequencyImp : public L0::LinuxFrequencyImp {
public:
PublicLinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : LinuxFrequencyImp(pOsSysman, onSubdevice, subdeviceId) {}
PublicLinuxFrequencyImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_freq_domain_t type) : LinuxFrequencyImp(pOsSysman, onSubdevice, subdeviceId, type) {}
using LinuxFrequencyImp::getMaxVal;
using LinuxFrequencyImp::getMin;
using LinuxFrequencyImp::getMinVal;

View File

@@ -120,8 +120,8 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenComponentCountZeroAndValidPtrWhenEnume
TEST_F(SysmanDeviceFrequencyFixture, GivenActualComponentCountTwoWhenTryingToGetOneComponentOnlyThenOneComponentIsReturnedAndCountUpdated) {
auto pFrequencyHandleContextTest = std::make_unique<FrequencyHandleContext>(pOsSysman);
pFrequencyHandleContextTest->handleList.push_back(new FrequencyImp(pOsSysman, device->toHandle(), 0));
pFrequencyHandleContextTest->handleList.push_back(new FrequencyImp(pOsSysman, device->toHandle(), 0));
pFrequencyHandleContextTest->handleList.push_back(new FrequencyImp(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU));
pFrequencyHandleContextTest->handleList.push_back(new FrequencyImp(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU));
uint32_t count = 1;
std::vector<zes_freq_handle_t> phFrequency(count, nullptr);
@@ -173,7 +173,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndCorrectCountWhe
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidateFrequencyGetRangeWhengetMaxFailsThenFrequencyGetRangeCallShouldFail) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limit = {};
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getValReturnErrorNotAvailable));
@@ -195,7 +195,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFreq
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyLimitsWhenCallingFrequencySetRangeForFailures1ThenAPIExitsGracefully) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limits = {};
// Verify that Max must be within range.
@@ -211,7 +211,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyLimitsWhenCallingFrequen
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyLimitsWhenCallingFrequencySetRangeForFailures2ThenAPIExitsGracefully) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limits = {};
// Verify that Max must be within range.
@@ -265,7 +265,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFreq
}
TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequencySetRangeThenVerifyFrequencySetRangeTest1ReturnsError) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limits;
// Verify that Max must be within range.
@@ -275,7 +275,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequ
}
TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequencySetRangeThenVerifyFrequencySetRangeTest2ReturnsError) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limits;
// Verify that Min must be within range.
@@ -285,7 +285,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequ
}
TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequencySetRangeThenVerifyFrequencySetRangeTest3ReturnsError) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limits;
// Verify that values must be multiples of step.
@@ -295,7 +295,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequ
}
TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidFrequencyLimitsWhenCallingFrequencySetRangeThenVerifyFrequencySetRangeTest4ReturnsError) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_range_t limits;
// Verify that Max must be greater than min range.
@@ -329,7 +329,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFreq
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidStatePointerWhenValidatingfrequencyGetStateForFailuresThenAPIExitsGracefully) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_state_t state = {};
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getValRequestReturnErrorNotAvailable));
@@ -365,13 +365,13 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidStatePointerWhenValidatingfrequen
}
TEST_F(SysmanDeviceFrequencyFixture, GivenThrottleTimeStructPointerWhenCallingfrequencyGetThrottleTimeThenUnsupportedIsReturned) {
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), 0);
auto pFrequencyImp = std::make_unique<FrequencyImp>(pOsSysman, device->toHandle(), ZES_FREQ_DOMAIN_GPU);
zes_freq_throttle_time_t throttleTime = {};
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, pFrequencyImp->frequencyGetThrottleTime(&throttleTime));
}
TEST_F(SysmanDeviceFrequencyFixture, GivengetMinFunctionReturnsErrorWhenValidatinggetMinFailuresThenAPIReturnsErrorAccordingly) {
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0);
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
double min = 0;
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getValReturnErrorNotAvailable));
@@ -383,7 +383,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivengetMinFunctionReturnsErrorWhenValidati
}
TEST_F(SysmanDeviceFrequencyFixture, GivengetMinValFunctionReturnsErrorWhenValidatinggetMinValFailuresThenAPIReturnsErrorAccordingly) {
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0);
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
double val = 0;
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getMinValReturnErrorNotAvailable));
@@ -395,7 +395,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivengetMinValFunctionReturnsErrorWhenValid
}
TEST_F(SysmanDeviceFrequencyFixture, GivengetMaxValFunctionReturnsErrorWhenValidatinggetMaxValFailuresThenAPIReturnsErrorAccordingly) {
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0);
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
double val = 0;
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getMaxValReturnErrorNotAvailable));
@@ -408,7 +408,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivengetMaxValFunctionReturnsErrorWhenValid
TEST_F(SysmanDeviceFrequencyFixture, GivengetMaxValFunctionReturnsErrorWhenValidatingosFrequencyGetPropertiesThenAPIBehavesAsExpected) {
zes_freq_properties_t properties = {};
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0);
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getMaxValReturnErrorNotAvailable));
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetProperties(properties));
@@ -417,7 +417,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivengetMaxValFunctionReturnsErrorWhenValid
TEST_F(SysmanDeviceFrequencyFixture, GivengetMinValFunctionReturnsErrorWhenValidatingosFrequencyGetPropertiesThenAPIBehavesAsExpected) {
zes_freq_properties_t properties = {};
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0);
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 0, 0, ZES_FREQ_DOMAIN_GPU);
ON_CALL(*pSysfsAccess.get(), read(_, _))
.WillByDefault(::testing::Invoke(pSysfsAccess.get(), &Mock<FrequencySysfsAccess>::getMinValReturnErrorNotAvailable));
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetProperties(properties));
@@ -426,7 +426,7 @@ TEST_F(SysmanDeviceFrequencyFixture, GivengetMinValFunctionReturnsErrorWhenValid
TEST_F(SysmanDeviceFrequencyFixture, GivenOnSubdeviceSetWhenValidatingAnyFrequencyAPIThenSuccessIsReturned) {
zes_freq_properties_t properties = {};
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 1, 0);
PublicLinuxFrequencyImp linuxFrequencyImp(pOsSysman, 1, 0, ZES_FREQ_DOMAIN_GPU);
EXPECT_EQ(ZE_RESULT_SUCCESS, linuxFrequencyImp.osFrequencyGetProperties(properties));
EXPECT_EQ(1, properties.canControl);
}
@@ -449,5 +449,93 @@ TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFreq
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetFrequencyTargetThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double freqTarget = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetFrequencyTarget(handle, &freqTarget));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetFrequencyTargetThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double freqTarget = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetFrequencyTarget(handle, freqTarget));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetVoltageTargetThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double voltTarget = 0.0, voltOffset = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetVoltageTarget(handle, &voltTarget, &voltOffset));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetVoltageTargetThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double voltTarget = 0.0, voltOffset = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetVoltageTarget(handle, voltTarget, voltOffset));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetModeThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
zes_oc_mode_t mode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetMode(handle, mode));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetModeThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
zes_oc_mode_t mode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetMode(handle, &mode));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetCapabilitiesThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
zes_oc_capabilities_t caps = {};
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetCapabilities(handle, &caps));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetIccMaxThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double iccMax = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetIccMax(handle, &iccMax));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetIccMaxThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double iccMax = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetIccMax(handle, iccMax));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetTjMaxThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double tjMax = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcGetTjMax(handle, &tjMax));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcSetTjMaxThenVerifyTestCallFail) {
auto handles = get_freq_handles(handleComponentCount);
for (auto handle : handles) {
double tjMax = 0.0;
EXPECT_EQ(ZE_RESULT_ERROR_UNSUPPORTED_FEATURE, zesFrequencyOcSetTjMax(handle, tjMax));
}
}
} // namespace ult
} // namespace L0

View File

@@ -0,0 +1,14 @@
#
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
#
if(WIN32)
target_sources(${TARGET_NAME}
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt
${CMAKE_CURRENT_SOURCE_DIR}/test_zes_frequency.cpp
${CMAKE_CURRENT_SOURCE_DIR}/mock_frequency.h
)
endif()

View File

@@ -0,0 +1,344 @@
/*
* Copyright (C) 2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "level_zero/core/test/unit_tests/mock.h"
#include "level_zero/tools/test/unit_tests/sources/sysman/windows/mock_kmd_sys_manager.h"
#include "sysman/frequency/windows/os_frequency_imp.h"
namespace L0 {
namespace ult {
class FrequencyKmdSysManager : public Mock<MockKmdSysManager> {};
template <>
struct Mock<FrequencyKmdSysManager> : public FrequencyKmdSysManager {
uint32_t mockNumberOfDomains = 2;
uint32_t mockDomainType[2] = {ZES_FREQ_DOMAIN_GPU, ZES_FREQ_DOMAIN_MEMORY};
bool mockGPUCanControl[2] = {true, false};
bool mockGPUCannotControl[2] = {false, false};
uint32_t mockMinFrequencyRange = 400;
uint32_t mockMaxFrequencyRange = 1200;
uint32_t mockRpn[2] = {400, 0};
uint32_t mockRp0[2] = {1200, 0};
uint32_t mockRequestedFrequency = 600;
uint32_t mockTdpFrequency = 0;
uint32_t mockResolvedFrequency[2] = {600, 4200};
uint32_t mockEfficientFrequency = 400;
uint32_t mockCurrentVoltage = 1100;
uint32_t mockThrottleReasons = 0;
uint32_t mockIccMax = 1025;
uint32_t mockTjMax = 105;
uint32_t mockIsExtendedModeSupported[2] = {0, 0};
uint32_t mockIsFixedModeSupported[2] = {0, 0};
uint32_t mockIsHighVoltModeCapable[2] = {0, 0};
uint32_t mockIsHighVoltModeEnabled[2] = {0, 0};
uint32_t mockIsIccMaxSupported = 1;
uint32_t mockIsOcSupported[2] = {0, 0};
uint32_t mockIsTjMaxSupported = 1;
uint32_t mockMaxFactoryDefaultFrequency[2] = {600, 4200};
uint32_t mockMaxFactoryDefaultVoltage[2] = {1200, 1300};
uint32_t mockMaxOcFrequency[2] = {1800, 4500};
uint32_t mockMaxOcVoltage[2] = {1300, 1400};
uint32_t mockFixedMode[2] = {0, 0};
uint32_t mockVoltageMode[2] = {0, 0};
uint32_t mockHighVoltageSupported[2] = {0, 0};
uint32_t mockHighVoltageEnabled[2] = {0, 0};
uint32_t mockFrequencyTarget[2] = {0, 0};
uint32_t mockVoltageTarget[2] = {0, 0};
uint32_t mockVoltageOffset[2] = {0, 0};
void getFrequencyProperty(KmdSysman::GfxSysmanReqHeaderIn *pRequest, KmdSysman::GfxSysmanReqHeaderOut *pResponse) override {
uint8_t *pBuffer = reinterpret_cast<uint8_t *>(pResponse);
pBuffer += sizeof(KmdSysman::GfxSysmanReqHeaderOut);
KmdSysman::GeneralDomainsType domain = static_cast<KmdSysman::GeneralDomainsType>(pRequest->inCommandParam);
if (domain < KmdSysman::GeneralDomainsType::GeneralDomainDGPU || domain >= KmdSysman::GeneralDomainsType::GeneralDomainMaxTypes) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
return;
}
switch (pRequest->inRequestId) {
case KmdSysman::Requests::Frequency::NumFrequencyDomains: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockNumberOfDomains;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::ExtendedOcSupported: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockIsExtendedModeSupported[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::FixedModeSupported: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockFixedMode[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::HighVoltageModeSupported: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockHighVoltageSupported[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::HighVoltageEnabled: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockHighVoltageEnabled[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::FrequencyOcSupported: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockIsOcSupported[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentIccMax: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockIccMax;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentTjMax: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockTjMax;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::MaxNonOcFrequencyDefault: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockMaxFactoryDefaultFrequency[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::MaxNonOcVoltageDefault: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockMaxFactoryDefaultVoltage[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::MaxOcFrequencyDefault: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockMaxOcFrequency[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::MaxOcVoltageDefault: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockMaxOcVoltage[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentFixedMode: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockFixedMode[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentFrequencyTarget: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockFrequencyTarget[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentVoltageTarget: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockVoltageTarget[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentVoltageOffset: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockVoltageOffset[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentVoltageMode: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockVoltageMode[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::FrequencyThrottledEventSupported: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentFrequencyRange: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pMinFreq = reinterpret_cast<uint32_t *>(pBuffer);
uint32_t *pMaxFreq = reinterpret_cast<uint32_t *>(pBuffer + sizeof(uint32_t));
*pMinFreq = mockMinFrequencyRange;
*pMaxFreq = mockMaxFrequencyRange;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = 2 * sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::CurrentRequestedFrequency: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockRequestedFrequency;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::CurrentTdpFrequency: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockTdpFrequency;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::CurrentResolvedFrequency: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockResolvedFrequency[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} break;
case KmdSysman::Requests::Frequency::CurrentEfficientFrequency: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockEfficientFrequency;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::FrequencyRangeMaxDefault: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockRp0[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::FrequencyRangeMinDefault: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockRpn[domain];
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::CurrentVoltage: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockCurrentVoltage;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
case KmdSysman::Requests::Frequency::CurrentThrottleReasons: {
if (domain == KmdSysman::GeneralDomainsType::GeneralDomainDGPU) {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
*pValue = mockThrottleReasons;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
pResponse->outDataSize = sizeof(uint32_t);
} else if (domain == KmdSysman::GeneralDomainsType::GeneralDomainHBM) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
}
} break;
default: {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
} break;
}
}
void setFrequencyProperty(KmdSysman::GfxSysmanReqHeaderIn *pRequest, KmdSysman::GfxSysmanReqHeaderOut *pResponse) override {
uint8_t *pBuffer = reinterpret_cast<uint8_t *>(pRequest);
pBuffer += sizeof(KmdSysman::GfxSysmanReqHeaderIn);
KmdSysman::GeneralDomainsType domain = static_cast<KmdSysman::GeneralDomainsType>(pRequest->inCommandParam);
if (domain < KmdSysman::GeneralDomainsType::GeneralDomainDGPU || domain >= KmdSysman::GeneralDomainsType::GeneralDomainMaxTypes) {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
return;
}
switch (pRequest->inRequestId) {
case KmdSysman::Requests::Frequency::CurrentFrequencyRange: {
uint32_t *pMinFreq = reinterpret_cast<uint32_t *>(pBuffer);
uint32_t *pMaxFreq = reinterpret_cast<uint32_t *>(pBuffer + sizeof(uint32_t));
mockMinFrequencyRange = *pMinFreq;
mockMaxFrequencyRange = *pMaxFreq;
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
} break;
case KmdSysman::Requests::Frequency::CurrentFixedMode: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
mockFixedMode[domain] = *pValue;
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
} break;
case KmdSysman::Requests::Frequency::CurrentVoltageMode: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
mockVoltageMode[domain] = *pValue;
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
} break;
case KmdSysman::Requests::Frequency::CurrentVoltageOffset: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
mockVoltageOffset[domain] = *pValue;
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
} break;
case KmdSysman::Requests::Frequency::CurrentVoltageTarget: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
mockVoltageTarget[domain] = *pValue;
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
} break;
case KmdSysman::Requests::Frequency::CurrentFrequencyTarget: {
uint32_t *pValue = reinterpret_cast<uint32_t *>(pBuffer);
mockFrequencyTarget[domain] = *pValue;
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanSuccess;
} break;
default: {
pResponse->outDataSize = 0;
pResponse->outReturnCode = KmdSysman::KmdSysmanFail;
} break;
}
}
Mock() = default;
~Mock() = default;
};
} // namespace ult
} // namespace L0

View File

@@ -0,0 +1,478 @@
/*
* Copyright (C) 2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/frequency/windows/os_frequency_imp.h"
#include "level_zero/tools/test/unit_tests/sources/sysman/frequency/windows/mock_frequency.h"
#include "level_zero/tools/test/unit_tests/sources/sysman/windows/mock_sysman_fixture.h"
namespace L0 {
namespace ult {
constexpr uint32_t frequencyHandleComponentCount = 2u;
constexpr double minFreq = 400.0;
constexpr double maxFreq = 1200.0;
constexpr double step = 50.0 / 3;
constexpr uint32_t numClocks = static_cast<uint32_t>((maxFreq - minFreq) / step) + 1;
class SysmanDeviceFrequencyFixture : public SysmanDeviceFixture {
protected:
Mock<FrequencyKmdSysManager> *pKmdSysManager = nullptr;
KmdSysManager *pOriginalKmdSysManager = nullptr;
void SetUp(bool allowSetCalls) { // NOLINT(readability-identifier-naming)
SysmanDeviceFixture::SetUp();
pKmdSysManager = new Mock<FrequencyKmdSysManager>;
pKmdSysManager->allowSetCalls = allowSetCalls;
EXPECT_CALL(*pKmdSysManager, escape(_, _, _, _, _))
.WillRepeatedly(::testing::Invoke(pKmdSysManager, &Mock<FrequencyKmdSysManager>::mock_escape));
pOriginalKmdSysManager = pWddmSysmanImp->pKmdSysManager;
pWddmSysmanImp->pKmdSysManager = pKmdSysManager;
// delete handles created in initial SysmanDeviceHandleContext::init() call
for (auto handle : pSysmanDeviceImp->pFrequencyHandleContext->handleList) {
delete handle;
}
pSysmanDeviceImp->pFrequencyHandleContext->handleList.clear();
uint32_t subDeviceCount = 0;
std::vector<ze_device_handle_t> deviceHandles;
// We received a device handle. Check for subdevices in this device
Device::fromHandle(device->toHandle())->getSubDevices(&subDeviceCount, nullptr);
if (subDeviceCount == 0) {
deviceHandles.resize(1, device->toHandle());
} else {
deviceHandles.resize(subDeviceCount, nullptr);
Device::fromHandle(device->toHandle())->getSubDevices(&subDeviceCount, deviceHandles.data());
}
pSysmanDeviceImp->pFrequencyHandleContext->init(deviceHandles);
}
void TearDown() override {
SysmanDeviceFixture::TearDown();
pWddmSysmanImp->pKmdSysManager = pOriginalKmdSysManager;
if (pKmdSysManager != nullptr) {
delete pKmdSysManager;
pKmdSysManager = nullptr;
}
}
double clockValue(const double calculatedClock) {
// i915 specific. frequency step is a fraction
// However, the Kmd represents all clock
// rates as integer values. So clocks are
// rounded to the nearest integer.
uint32_t actualClock = static_cast<uint32_t>(calculatedClock + 0.5);
return static_cast<double>(actualClock);
}
std::vector<zes_freq_handle_t> get_frequency_handles(uint32_t count) {
std::vector<zes_freq_handle_t> handles(count, nullptr);
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, handles.data()), ZE_RESULT_SUCCESS);
return handles;
}
};
TEST_F(SysmanDeviceFrequencyFixture, GivenComponentCountZeroWhenEnumeratingFrequencyDomainsThenValidCountIsReturnedAndVerifySysmanPowerGetCallSucceeds) {
SetUp(true);
uint32_t count = 0;
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, nullptr), ZE_RESULT_SUCCESS);
EXPECT_EQ(count, frequencyHandleComponentCount);
}
TEST_F(SysmanDeviceFrequencyFixture, GivenInvalidComponentCountWhenEnumeratingFrequencyDomainsThenValidCountIsReturnedAndVerifySysmanPowerGetCallSucceeds) {
SetUp(true);
uint32_t count = 0;
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, nullptr), ZE_RESULT_SUCCESS);
EXPECT_EQ(count, frequencyHandleComponentCount);
count = count + 1;
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, nullptr), ZE_RESULT_SUCCESS);
EXPECT_EQ(count, frequencyHandleComponentCount);
}
TEST_F(SysmanDeviceFrequencyFixture, GivenComponentCountZeroWhenEnumeratingFrequencyDomainsThenValidPowerHandlesIsReturned) {
SetUp(true);
uint32_t count = 0;
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, nullptr), ZE_RESULT_SUCCESS);
EXPECT_EQ(count, frequencyHandleComponentCount);
std::vector<zes_freq_handle_t> handles(count, nullptr);
EXPECT_EQ(zesDeviceEnumFrequencyDomains(device->toHandle(), &count, handles.data()), ZE_RESULT_SUCCESS);
for (auto handle : handles) {
EXPECT_NE(handle, nullptr);
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyGetPropertiesThenSuccessIsReturned) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
EXPECT_NE(handle, nullptr);
zes_freq_properties_t properties;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetProperties(handle, &properties));
EXPECT_EQ(pKmdSysManager->mockDomainType[domainIndex], properties.type);
EXPECT_FALSE(properties.onSubdevice);
EXPECT_EQ(pKmdSysManager->mockGPUCanControl[domainIndex], properties.canControl);
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
EXPECT_DOUBLE_EQ(pKmdSysManager->mockRp0[domainIndex], properties.max);
EXPECT_DOUBLE_EQ(pKmdSysManager->mockRpn[domainIndex], properties.min);
} else if (domainIndex == ZES_FREQ_DOMAIN_MEMORY) {
EXPECT_DOUBLE_EQ(-1, properties.max);
EXPECT_DOUBLE_EQ(-1, properties.min);
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesAllowSetCallsToFalseFrequencyGetPropertiesThenSuccessIsReturned) {
SetUp(false);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
EXPECT_NE(handle, nullptr);
zes_freq_properties_t properties;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetProperties(handle, &properties));
EXPECT_EQ(pKmdSysManager->mockDomainType[domainIndex], properties.type);
EXPECT_FALSE(properties.onSubdevice);
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
EXPECT_DOUBLE_EQ(pKmdSysManager->mockRp0[domainIndex], properties.max);
EXPECT_DOUBLE_EQ(pKmdSysManager->mockRpn[domainIndex], properties.min);
} else if (domainIndex == ZES_FREQ_DOMAIN_MEMORY) {
EXPECT_DOUBLE_EQ(-1.0, properties.max);
EXPECT_DOUBLE_EQ(-1.0, properties.min);
}
EXPECT_EQ(pKmdSysManager->mockGPUCannotControl[domainIndex], properties.canControl);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndZeroCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
EXPECT_NE(handle, nullptr);
uint32_t count = 0;
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
EXPECT_EQ(numClocks, count);
} else if (domainIndex == ZES_FREQ_DOMAIN_MEMORY) {
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
EXPECT_EQ(1, count);
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAndCorrectCountWhenCallingzesFrequencyGetAvailableClocksThenCallSucceeds) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
uint32_t count = 0;
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, nullptr));
EXPECT_EQ(numClocks, count);
double *clocks = new double[count];
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetAvailableClocks(handle, &count, clocks));
EXPECT_EQ(numClocks, count);
for (uint32_t i = 0; i < count; i++) {
EXPECT_DOUBLE_EQ(clockValue(pKmdSysManager->mockRpn[domainIndex] + (step * i)), clocks[i]);
}
delete[] clocks;
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyGetRangeThenVerifyzesFrequencyGetRangeTestCallSucceeds) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
zes_freq_range_t limits;
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
EXPECT_DOUBLE_EQ(pKmdSysManager->mockMinFrequencyRange, limits.min);
EXPECT_DOUBLE_EQ(pKmdSysManager->mockMaxFrequencyRange, limits.max);
} else if (domainIndex == ZES_FREQ_DOMAIN_MEMORY) {
EXPECT_EQ(ZE_RESULT_ERROR_NOT_AVAILABLE, zesFrequencyGetRange(handle, &limits));
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencySetRangeThenVerifyzesFrequencySetRangeTest1CallSucceeds) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
const double startingMin = 900.0;
const double newMax = 600.0;
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
zes_freq_range_t limits;
pKmdSysManager->mockMinFrequencyRange = static_cast<uint32_t>(startingMin);
// If the new Max value is less than the old Min
// value, the new Min must be set before the new Max
limits.min = minFreq;
limits.max = newMax;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencySetRange(handle, &limits));
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
EXPECT_DOUBLE_EQ(minFreq, limits.min);
EXPECT_DOUBLE_EQ(newMax, limits.max);
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencySetRangeThenVerifyzesFrequencySetRangeTest2CallSucceeds) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
const double startingMax = 600.0;
const double newMin = 900.0;
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
zes_freq_range_t limits;
pKmdSysManager->mockMaxFrequencyRange = static_cast<uint32_t>(startingMax);
// If the new Min value is greater than the old Max
// value, the new Max must be set before the new Min
limits.min = newMin;
limits.max = maxFreq;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencySetRange(handle, &limits));
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetRange(handle, &limits));
EXPECT_DOUBLE_EQ(newMin, limits.min);
EXPECT_DOUBLE_EQ(maxFreq, limits.max);
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyGetStateThenVerifyCallSucceeds) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
uint32_t domainIndex = 0;
for (auto handle : handles) {
zes_freq_state_t state = {};
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyGetState(handle, &state));
if (domainIndex == ZES_FREQ_DOMAIN_GPU) {
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockResolvedFrequency[domainIndex]), state.actual);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockCurrentVoltage), state.currentVoltage);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockEfficientFrequency), state.efficient);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockRequestedFrequency), state.request);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockTdpFrequency), state.tdp);
EXPECT_EQ(pKmdSysManager->mockThrottleReasons, state.throttleReasons);
} else if (domainIndex == ZES_FREQ_DOMAIN_MEMORY) {
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockResolvedFrequency[domainIndex]), state.actual);
EXPECT_DOUBLE_EQ(-1.0, state.currentVoltage);
EXPECT_DOUBLE_EQ(-1.0, state.efficient);
EXPECT_DOUBLE_EQ(-1.0, state.request);
EXPECT_DOUBLE_EQ(-1.0, state.tdp);
EXPECT_EQ(pKmdSysManager->mockThrottleReasons, state.throttleReasons);
}
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyGetThrottleTimeThenVerifyCallFails) {
SetUp(true);
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
zes_freq_throttle_time_t throttletime = {};
EXPECT_NE(ZE_RESULT_SUCCESS, zesFrequencyGetThrottleTime(handle, &throttletime));
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetCapabilitiesThenVerifyCallSucceeds) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
zes_oc_capabilities_t ocCaps = {};
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetCapabilities(handle, &ocCaps));
EXPECT_EQ(pKmdSysManager->mockIsExtendedModeSupported[domainIndex], ocCaps.isExtendedModeSupported);
EXPECT_EQ(pKmdSysManager->mockIsFixedModeSupported[domainIndex], ocCaps.isFixedModeSupported);
EXPECT_EQ(pKmdSysManager->mockHighVoltageSupported[domainIndex], ocCaps.isHighVoltModeCapable);
EXPECT_EQ(pKmdSysManager->mockHighVoltageEnabled[domainIndex], ocCaps.isHighVoltModeEnabled);
EXPECT_EQ(pKmdSysManager->mockIsIccMaxSupported, ocCaps.isIccMaxSupported);
EXPECT_EQ(pKmdSysManager->mockIsOcSupported[domainIndex], ocCaps.isOcSupported);
EXPECT_EQ(pKmdSysManager->mockIsTjMaxSupported, ocCaps.isTjMaxSupported);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockMaxFactoryDefaultFrequency[domainIndex]), ocCaps.maxFactoryDefaultFrequency);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockMaxFactoryDefaultVoltage[domainIndex]), ocCaps.maxFactoryDefaultVoltage);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockMaxOcFrequency[domainIndex]), ocCaps.maxOcFrequency);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockMaxOcVoltage[domainIndex]), ocCaps.maxOcVoltage);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockVoltageOffset[domainIndex]), ocCaps.maxOcVoltageOffset);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockVoltageOffset[domainIndex]), ocCaps.minOcVoltageOffset);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetFrequencyTargetThenVerifyCallSucceeds) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
double freqTarget = 0.0;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetFrequencyTarget(handle, &freqTarget));
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockFrequencyTarget[domainIndex]), freqTarget);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetVoltageTargetThenVerifyCallSucceeds) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
double voltageTarget = 0.0, voltageOffset = 0.0;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetVoltageTarget(handle, &voltageTarget, &voltageOffset));
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockVoltageTarget[domainIndex]), voltageTarget);
EXPECT_DOUBLE_EQ(static_cast<double>(pKmdSysManager->mockVoltageOffset[domainIndex]), voltageOffset);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleWhenCallingzesFrequencyOcGetModeThenVerifyCallSucceeds) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
zes_oc_mode_t mode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetMode(handle, &mode));
EXPECT_DOUBLE_EQ(ZES_OC_MODE_INTERPOLATIVE, mode);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAllowSetCallsToFalseWhenCallingzesFrequencyOcSetFrequencyTargetThenVerifyCallFails) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
double freqTarget = 1400.0;
EXPECT_NE(ZE_RESULT_SUCCESS, zesFrequencyOcSetFrequencyTarget(handle, freqTarget));
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAllowSetCallsToFalseWhenCallingzesFrequencyOcSetVoltageTargetThenVerifyCallFails) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
double voltageTarget = 1040.0, voltageOffset = 20.0;
EXPECT_NE(ZE_RESULT_SUCCESS, zesFrequencyOcSetVoltageTarget(handle, voltageTarget, voltageOffset));
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAllowSetCallsToFalseWhenCallingzesFrequencyOcSetModeThenVerifyCallFails) {
SetUp(false);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
zes_oc_mode_t mode = ZES_OC_MODE_OVERRIDE;
EXPECT_NE(ZE_RESULT_SUCCESS, zesFrequencyOcSetMode(handle, mode));
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAllowSetCallsToTrueWhenCallingzesFrequencyOcSetFrequencyTargetThenVerifyCallSucceed) {
SetUp(true);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
double freqTarget = 1400.0;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcSetFrequencyTarget(handle, freqTarget));
double newFreqTarget = 0.0;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetFrequencyTarget(handle, &newFreqTarget));
EXPECT_DOUBLE_EQ(freqTarget, newFreqTarget);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAllowSetCallsToTrueWhenCallingzesFrequencyOcSetVoltageTargetThenVerifyCallSucceed) {
SetUp(true);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
double voltageTarget = 1040.0, voltageOffset = 20.0;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcSetVoltageTarget(handle, voltageTarget, voltageOffset));
double newVoltageTarget = 1040.0, newVoltageOffset = 20.0;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetVoltageTarget(handle, &newVoltageTarget, &newVoltageOffset));
EXPECT_DOUBLE_EQ(voltageTarget, newVoltageTarget);
EXPECT_DOUBLE_EQ(voltageOffset, newVoltageOffset);
domainIndex++;
}
}
TEST_F(SysmanDeviceFrequencyFixture, GivenValidFrequencyHandleAllowSetCallsToTrueWhenCallingzesFrequencyOcSetModeThenVerifyCallSucceed) {
SetUp(true);
uint32_t domainIndex = 0;
auto handles = get_frequency_handles(frequencyHandleComponentCount);
for (auto handle : handles) {
zes_oc_mode_t mode = ZES_OC_MODE_OVERRIDE;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcSetMode(handle, mode));
zes_oc_mode_t newmode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetMode(handle, &newmode));
EXPECT_EQ(mode, newmode);
mode = ZES_OC_MODE_INTERPOLATIVE;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcSetMode(handle, mode));
newmode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetMode(handle, &newmode));
EXPECT_EQ(mode, newmode);
mode = ZES_OC_MODE_FIXED;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcSetMode(handle, mode));
newmode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetMode(handle, &newmode));
EXPECT_EQ(mode, newmode);
mode = ZES_OC_MODE_OFF;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcSetMode(handle, mode));
newmode = ZES_OC_MODE_OVERRIDE;
EXPECT_EQ(ZE_RESULT_SUCCESS, zesFrequencyOcGetMode(handle, &newmode));
EXPECT_EQ(ZES_OC_MODE_INTERPOLATIVE, newmode);
domainIndex++;
}
}
} // namespace ult
} // namespace L0