/* * Copyright (C) 2018-2023 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "shared/source/execution_environment/execution_environment.h" #include "shared/source/built_ins/built_ins.h" #include "shared/source/built_ins/sip.h" #include "shared/source/debug_settings/debug_settings_manager.h" #include "shared/source/direct_submission/direct_submission_controller.h" #include "shared/source/execution_environment/root_device_environment.h" #include "shared/source/helpers/affinity_mask.h" #include "shared/source/helpers/driver_model_type.h" #include "shared/source/helpers/gfx_core_helper.h" #include "shared/source/helpers/hw_info.h" #include "shared/source/helpers/string_helpers.h" #include "shared/source/memory_manager/memory_manager.h" #include "shared/source/memory_manager/os_agnostic_memory_manager.h" #include "shared/source/os_interface/debug_env_reader.h" #include "shared/source/os_interface/driver_info.h" #include "shared/source/os_interface/os_environment.h" #include "shared/source/os_interface/os_interface.h" #include "shared/source/os_interface/product_helper.h" #include "shared/source/utilities/wait_util.h" namespace NEO { ExecutionEnvironment::ExecutionEnvironment() { WaitUtils::init(); this->configureNeoEnvironment(); } void ExecutionEnvironment::releaseRootDeviceEnvironmentResources(RootDeviceEnvironment *rootDeviceEnvironment) { if (rootDeviceEnvironment == nullptr) { return; } SipKernel::freeSipKernels(rootDeviceEnvironment, memoryManager.get()); if (rootDeviceEnvironment->builtins.get()) { rootDeviceEnvironment->builtins->freeSipKernels(memoryManager.get()); } } ExecutionEnvironment::~ExecutionEnvironment() { if (memoryManager) { memoryManager->commonCleanup(); for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) { releaseRootDeviceEnvironmentResources(rootDeviceEnvironment.get()); } } rootDeviceEnvironments.clear(); } bool ExecutionEnvironment::initializeMemoryManager() { if (this->memoryManager) { return memoryManager->isInitialized(); } int32_t setCommandStreamReceiverType = CommandStreamReceiverType::CSR_HW; if (DebugManager.flags.SetCommandStreamReceiver.get() >= 0) { setCommandStreamReceiverType = DebugManager.flags.SetCommandStreamReceiver.get(); } switch (setCommandStreamReceiverType) { case CommandStreamReceiverType::CSR_TBX: case CommandStreamReceiverType::CSR_TBX_WITH_AUB: case CommandStreamReceiverType::CSR_AUB: memoryManager = std::make_unique(*this); break; case CommandStreamReceiverType::CSR_HW: case CommandStreamReceiverType::CSR_HW_WITH_AUB: default: { auto driverModelType = DriverModelType::UNKNOWN; if (this->rootDeviceEnvironments[0]->osInterface && this->rootDeviceEnvironments[0]->osInterface->getDriverModel()) { driverModelType = this->rootDeviceEnvironments[0]->osInterface->getDriverModel()->getDriverModelType(); } memoryManager = MemoryManager::createMemoryManager(*this, driverModelType); } break; } return memoryManager->isInitialized(); } void ExecutionEnvironment::calculateMaxOsContextCount() { MemoryManager::maxOsContextCount = 0u; for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) { auto hwInfo = rootDeviceEnvironment->getHardwareInfo(); auto &gfxCoreHelper = rootDeviceEnvironment->getHelper(); auto osContextCount = static_cast(gfxCoreHelper.getGpgpuEngineInstances(*rootDeviceEnvironment).size()); auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo); auto ccsCount = hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled; bool hasRootCsr = subDevicesCount > 1; MemoryManager::maxOsContextCount += osContextCount * subDevicesCount + hasRootCsr; if (ccsCount > 1 && DebugManager.flags.EngineInstancedSubDevices.get()) { MemoryManager::maxOsContextCount += ccsCount * subDevicesCount; } } } DirectSubmissionController *ExecutionEnvironment::initializeDirectSubmissionController() { std::lock_guard lockForInit(initializeDirectSubmissionControllerMutex); auto initializeDirectSubmissionController = DirectSubmissionController::isSupported(); if (DebugManager.flags.SetCommandStreamReceiver.get() > 0) { initializeDirectSubmissionController = false; } if (DebugManager.flags.EnableDirectSubmissionController.get() != -1) { initializeDirectSubmissionController = DebugManager.flags.EnableDirectSubmissionController.get(); } if (initializeDirectSubmissionController && this->directSubmissionController == nullptr) { this->directSubmissionController = std::make_unique(); } return directSubmissionController.get(); } void ExecutionEnvironment::prepareRootDeviceEnvironments(uint32_t numRootDevices) { if (rootDeviceEnvironments.size() < numRootDevices) { rootDeviceEnvironments.resize(numRootDevices); } for (auto rootDeviceIndex = 0u; rootDeviceIndex < numRootDevices; rootDeviceIndex++) { if (!rootDeviceEnvironments[rootDeviceIndex]) { rootDeviceEnvironments[rootDeviceIndex] = std::make_unique(*this); } } } void ExecutionEnvironment::prepareForCleanup() const { for (auto &rootDeviceEnvironment : rootDeviceEnvironments) { if (rootDeviceEnvironment) { rootDeviceEnvironment->prepareForCleanup(); } } } void ExecutionEnvironment::prepareRootDeviceEnvironment(const uint32_t rootDeviceIndexForReInit) { rootDeviceEnvironments[rootDeviceIndexForReInit] = std::make_unique(*this); } void ExecutionEnvironment::parseAffinityMask() { const auto &affinityMaskString = DebugManager.flags.ZE_AFFINITY_MASK.get(); if (affinityMaskString.compare("default") == 0 || affinityMaskString.empty()) { return; } bool exposeSubDevicesAsApiDevices = false; if (NEO::DebugManager.flags.ReturnSubDevicesAsApiDevices.get() != -1) { exposeSubDevicesAsApiDevices = NEO::DebugManager.flags.ReturnSubDevicesAsApiDevices.get(); } // If the user has requested FLAT device hierarchy models, then report all the sub devices as devices. if (this->subDevicesAsDevices) { exposeSubDevicesAsApiDevices = true; } uint32_t numRootDevices = static_cast(rootDeviceEnvironments.size()); RootDeviceIndicesMap mapOfIndexes; // Reserve at least for a size equal to rootDeviceEnvironments.size() times four, // which is enough for typical configurations size_t reservedSizeForIndices = numRootDevices * 4; mapOfIndexes.reserve(reservedSizeForIndices); if (exposeSubDevicesAsApiDevices) { uint32_t currentDeviceIndex = 0; for (uint32_t currentRootDevice = 0u; currentRootDevice < static_cast(rootDeviceEnvironments.size()); currentRootDevice++) { auto hwInfo = rootDeviceEnvironments[currentRootDevice]->getHardwareInfo(); auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo); uint32_t currentSubDevice = 0; mapOfIndexes[currentDeviceIndex++] = std::make_tuple(currentRootDevice, currentSubDevice); for (currentSubDevice = 1; currentSubDevice < subDevicesCount; currentSubDevice++) { mapOfIndexes[currentDeviceIndex++] = std::make_tuple(currentRootDevice, currentSubDevice); } } numRootDevices = currentDeviceIndex; UNRECOVERABLE_IF(numRootDevices > reservedSizeForIndices); } std::vector affinityMaskHelper(numRootDevices); auto affinityMaskEntries = StringHelpers::split(affinityMaskString, ","); for (const auto &entry : affinityMaskEntries) { auto subEntries = StringHelpers::split(entry, "."); uint32_t rootDeviceIndex = StringHelpers::toUint32t(subEntries[0]); // tiles as devices if (exposeSubDevicesAsApiDevices) { if (rootDeviceIndex > numRootDevices) { continue; } // ReturnSubDevicesAsApiDevices not supported with AllowSingleTileEngineInstancedSubDevices // so ignore X.Y if (subEntries.size() > 1) { continue; } std::tuple indexKey = mapOfIndexes[rootDeviceIndex]; auto deviceIndex = std::get<0>(indexKey); auto tileIndex = std::get<1>(indexKey); affinityMaskHelper[deviceIndex].enableGenericSubDevice(tileIndex); continue; } // cards as devices if (rootDeviceIndex < numRootDevices) { auto hwInfo = rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo(); auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo); if (subEntries.size() > 1) { uint32_t subDeviceIndex = StringHelpers::toUint32t(subEntries[1]); bool enableSecondLevelEngineInstanced = ((subDevicesCount == 1) && (hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled > 1) && DebugManager.flags.AllowSingleTileEngineInstancedSubDevices.get()); if (enableSecondLevelEngineInstanced) { UNRECOVERABLE_IF(subEntries.size() != 2); if (subDeviceIndex < hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled) { affinityMaskHelper[rootDeviceIndex].enableEngineInstancedSubDevice(0, subDeviceIndex); // Mask: X.Y } } else if (subDeviceIndex < subDevicesCount) { if (subEntries.size() == 2) { affinityMaskHelper[rootDeviceIndex].enableGenericSubDevice(subDeviceIndex); // Mask: X.Y } else { UNRECOVERABLE_IF(subEntries.size() != 3); uint32_t ccsIndex = StringHelpers::toUint32t(subEntries[2]); if (ccsIndex < hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled) { affinityMaskHelper[rootDeviceIndex].enableEngineInstancedSubDevice(subDeviceIndex, ccsIndex); // Mask: X.Y.Z } } } } else { affinityMaskHelper[rootDeviceIndex].enableAllGenericSubDevices(subDevicesCount); // Mask: X } } } std::vector> filteredEnvironments; for (uint32_t i = 0u; i < numRootDevices; i++) { if (!affinityMaskHelper[i].isDeviceEnabled()) { continue; } rootDeviceEnvironments[i]->deviceAffinityMask = affinityMaskHelper[i]; filteredEnvironments.emplace_back(rootDeviceEnvironments[i].release()); } rootDeviceEnvironments.swap(filteredEnvironments); } void ExecutionEnvironment::sortNeoDevices() { std::sort(rootDeviceEnvironments.begin(), rootDeviceEnvironments.end(), comparePciIdBusNumber); } void ExecutionEnvironment::adjustCcsCountImpl(RootDeviceEnvironment *rootDeviceEnvironment) const { auto hwInfo = rootDeviceEnvironment->getMutableHardwareInfo(); auto &productHelper = rootDeviceEnvironment->getHelper(); productHelper.adjustNumberOfCcs(*hwInfo); } void ExecutionEnvironment::adjustCcsCount() { parseCcsCountLimitations(); for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceEnvironments.size(); rootDeviceIndex++) { auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex]; UNRECOVERABLE_IF(!rootDeviceEnvironment); if (!rootDeviceEnvironment->isNumberOfCcsLimited()) { adjustCcsCountImpl(rootDeviceEnvironment.get()); } } } void ExecutionEnvironment::adjustCcsCount(const uint32_t rootDeviceIndex) const { auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex]; UNRECOVERABLE_IF(!rootDeviceEnvironment); if (rootDeviceNumCcsMap.find(rootDeviceIndex) != rootDeviceNumCcsMap.end()) { rootDeviceEnvironment->limitNumberOfCcs(rootDeviceNumCcsMap.at(rootDeviceIndex)); } else { adjustCcsCountImpl(rootDeviceEnvironment.get()); } } void ExecutionEnvironment::parseCcsCountLimitations() { const auto &numberOfCcsString = DebugManager.flags.ZEX_NUMBER_OF_CCS.get(); if (numberOfCcsString.compare("default") == 0 || numberOfCcsString.empty()) { return; } const uint32_t numRootDevices = static_cast(rootDeviceEnvironments.size()); auto numberOfCcsEntries = StringHelpers::split(numberOfCcsString, ","); for (const auto &entry : numberOfCcsEntries) { auto subEntries = StringHelpers::split(entry, ":"); uint32_t rootDeviceIndex = StringHelpers::toUint32t(subEntries[0]); if (rootDeviceIndex < numRootDevices) { if (subEntries.size() > 1) { uint32_t maxCcsCount = StringHelpers::toUint32t(subEntries[1]); rootDeviceNumCcsMap.insert({rootDeviceIndex, maxCcsCount}); rootDeviceEnvironments[rootDeviceIndex]->limitNumberOfCcs(maxCcsCount); } } } } void ExecutionEnvironment::configureNeoEnvironment() { if (DebugManager.flags.NEO_CAL_ENABLED.get()) { DebugManager.flags.UseKmdMigration.setIfDefault(0); DebugManager.flags.SplitBcsSize.setIfDefault(256); } NEO::EnvironmentVariableReader envReader; std::string hierarchyModel = envReader.getSetting("ZE_FLAT_DEVICE_HIERARCHY", std::string("COMPOSITE")); if (strcmp(hierarchyModel.c_str(), "COMPOSITE") == 0) { setExposeSubDevicesAsDevices(false); } if (strcmp(hierarchyModel.c_str(), "FLAT") == 0) { setExposeSubDevicesAsDevices(true); } if (NEO::DebugManager.flags.ReturnSubDevicesAsApiDevices.get() == 1) { setExposeSubDevicesAsDevices(true); } } bool ExecutionEnvironment::comparePciIdBusNumber(std::unique_ptr &rootDeviceEnvironment1, std::unique_ptr &rootDeviceEnvironment2) { const auto pciOrderVar = DebugManager.flags.ZE_ENABLE_PCI_ID_DEVICE_ORDER.get(); if (!pciOrderVar) { auto isIntegrated1 = rootDeviceEnvironment1->getHardwareInfo()->capabilityTable.isIntegratedDevice; auto isIntegrated2 = rootDeviceEnvironment2->getHardwareInfo()->capabilityTable.isIntegratedDevice; if (isIntegrated1 != isIntegrated2) { return isIntegrated2; } } // BDF sample format is : 00:02.0 auto pciBusInfo1 = rootDeviceEnvironment1->osInterface->getDriverModel()->getPciBusInfo(); auto pciBusInfo2 = rootDeviceEnvironment2->osInterface->getDriverModel()->getPciBusInfo(); if (pciBusInfo1.pciDomain != pciBusInfo2.pciDomain) { return (pciBusInfo1.pciDomain < pciBusInfo2.pciDomain); } if (pciBusInfo1.pciBus != pciBusInfo2.pciBus) { return (pciBusInfo1.pciBus < pciBusInfo2.pciBus); } if (pciBusInfo1.pciDevice != pciBusInfo2.pciDevice) { return (pciBusInfo1.pciDevice < pciBusInfo2.pciDevice); } return (pciBusInfo1.pciFunction < pciBusInfo2.pciFunction); } } // namespace NEO