/* * Copyright (C) 2017-2020 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "linker.h" #include "shared/source/helpers/debug_helpers.h" #include "shared/source/helpers/ptr_math.h" #include "shared/source/utilities/compiler_support.h" #include "RelocationInfo.h" #include namespace NEO { bool LinkerInput::decodeGlobalVariablesSymbolTable(const void *data, uint32_t numEntries) { auto symbolEntryIt = reinterpret_cast(data); auto symbolEntryEnd = symbolEntryIt + numEntries; symbols.reserve(symbols.size() + numEntries); for (; symbolEntryIt != symbolEntryEnd; ++symbolEntryIt) { DEBUG_BREAK_IF(symbols.count(symbolEntryIt->s_name) > 0); SymbolInfo &symbolInfo = symbols[symbolEntryIt->s_name]; symbolInfo.offset = symbolEntryIt->s_offset; symbolInfo.size = symbolEntryIt->s_size; switch (symbolEntryIt->s_type) { default: DEBUG_BREAK_IF(true); this->valid = false; return false; case vISA::S_GLOBAL_VAR: symbolInfo.segment = SegmentType::GlobalVariables; traits.exportsGlobalVariables = true; break; case vISA::S_GLOBAL_VAR_CONST: symbolInfo.segment = SegmentType::GlobalConstants; traits.exportsGlobalConstants = true; break; } } return true; } bool LinkerInput::decodeExportedFunctionsSymbolTable(const void *data, uint32_t numEntries, uint32_t instructionsSegmentId) { auto symbolEntryIt = reinterpret_cast(data); auto symbolEntryEnd = symbolEntryIt + numEntries; symbols.reserve(symbols.size() + numEntries); for (; symbolEntryIt != symbolEntryEnd; ++symbolEntryIt) { SymbolInfo &symbolInfo = symbols[symbolEntryIt->s_name]; symbolInfo.offset = symbolEntryIt->s_offset; symbolInfo.size = symbolEntryIt->s_size; switch (symbolEntryIt->s_type) { default: DEBUG_BREAK_IF(true); this->valid = false; return false; case vISA::S_GLOBAL_VAR: symbolInfo.segment = SegmentType::GlobalVariables; traits.exportsGlobalVariables = true; break; case vISA::S_GLOBAL_VAR_CONST: symbolInfo.segment = SegmentType::GlobalConstants; traits.exportsGlobalConstants = true; break; case vISA::S_FUNC: symbolInfo.segment = SegmentType::Instructions; traits.exportsFunctions = true; UNRECOVERABLE_IF((this->exportedFunctionsSegmentId != -1) && (this->exportedFunctionsSegmentId != static_cast(instructionsSegmentId))); this->exportedFunctionsSegmentId = static_cast(instructionsSegmentId); break; } } return true; } bool LinkerInput::decodeRelocationTable(const void *data, uint32_t numEntries, uint32_t instructionsSegmentId) { this->traits.requiresPatchingOfInstructionSegments = true; auto relocEntryIt = reinterpret_cast(data); auto relocEntryEnd = relocEntryIt + numEntries; if (instructionsSegmentId >= relocations.size()) { static_assert(std::is_nothrow_move_constructible::value, ""); relocations.resize(instructionsSegmentId + 1); } auto &outRelocInfo = relocations[instructionsSegmentId]; outRelocInfo.reserve(numEntries); for (; relocEntryIt != relocEntryEnd; ++relocEntryIt) { RelocationInfo relocInfo{}; relocInfo.offset = relocEntryIt->r_offset; relocInfo.symbolName = relocEntryIt->r_symbol; relocInfo.symbolSegment = SegmentType::Unknown; relocInfo.relocationSegment = SegmentType::Instructions; switch (relocEntryIt->r_type) { default: DEBUG_BREAK_IF(true); this->valid = false; return false; case vISA::R_SYM_ADDR: relocInfo.type = RelocationInfo::Type::Address; break; case vISA::R_SYM_ADDR_32: relocInfo.type = RelocationInfo::Type::AddressLow; break; case vISA::R_SYM_ADDR_32_HI: relocInfo.type = RelocationInfo::Type::AddressHigh; break; } outRelocInfo.push_back(std::move(relocInfo)); } return true; } void LinkerInput::addDataRelocationInfo(const RelocationInfo &relocationInfo) { DEBUG_BREAK_IF((relocationInfo.relocationSegment != SegmentType::GlobalConstants) && (relocationInfo.relocationSegment != SegmentType::GlobalVariables)); DEBUG_BREAK_IF((relocationInfo.symbolSegment != SegmentType::GlobalConstants) && (relocationInfo.symbolSegment != SegmentType::GlobalVariables)); DEBUG_BREAK_IF(relocationInfo.type == LinkerInput::RelocationInfo::Type::AddressHigh); this->traits.requiresPatchingOfGlobalVariablesBuffer |= (relocationInfo.relocationSegment == SegmentType::GlobalVariables); this->traits.requiresPatchingOfGlobalConstantsBuffer |= (relocationInfo.relocationSegment == SegmentType::GlobalConstants); this->dataRelocations.push_back(relocationInfo); } bool Linker::processRelocations(const SegmentInfo &globalVariables, const SegmentInfo &globalConstants, const SegmentInfo &exportedFunctions) { relocatedSymbols.reserve(data.getSymbols().size()); for (auto &symbol : data.getSymbols()) { const SegmentInfo *seg = nullptr; switch (symbol.second.segment) { default: DEBUG_BREAK_IF(true); return false; case SegmentType::GlobalVariables: seg = &globalVariables; break; case SegmentType::GlobalConstants: seg = &globalConstants; break; case SegmentType::Instructions: seg = &exportedFunctions; break; } uintptr_t gpuAddress = seg->gpuAddress + symbol.second.offset; if (symbol.second.offset + symbol.second.size > seg->segmentSize) { DEBUG_BREAK_IF(true); return false; } relocatedSymbols[symbol.first] = {symbol.second, gpuAddress}; } return true; } uint32_t addressSizeInBytes(LinkerInput::RelocationInfo::Type relocationtype) { return (relocationtype == LinkerInput::RelocationInfo::Type::Address) ? sizeof(uintptr_t) : sizeof(uint32_t); } bool Linker::patchInstructionsSegments(const std::vector &instructionsSegments, std::vector &outUnresolvedExternals) { if (false == data.getTraits().requiresPatchingOfInstructionSegments) { return true; } UNRECOVERABLE_IF(data.getRelocationsInInstructionSegments().size() > instructionsSegments.size()); auto unresolvedExternalsPrev = outUnresolvedExternals.size(); auto segIt = instructionsSegments.begin(); for (auto relocsIt = data.getRelocationsInInstructionSegments().begin(), relocsEnd = data.getRelocationsInInstructionSegments().end(); relocsIt != relocsEnd; ++relocsIt, ++segIt) { auto &thisSegmentRelocs = *relocsIt; const PatchableSegment &instSeg = *segIt; for (const auto &relocation : thisSegmentRelocs) { UNRECOVERABLE_IF(nullptr == instSeg.hostPointer); auto relocAddress = ptrOffset(instSeg.hostPointer, static_cast(relocation.offset)); auto symbolIt = relocatedSymbols.find(relocation.symbolName); bool invalidOffset = relocation.offset + addressSizeInBytes(relocation.type) > instSeg.segmentSize; bool unresolvedExternal = (symbolIt == relocatedSymbols.end()); DEBUG_BREAK_IF(invalidOffset); if (invalidOffset || unresolvedExternal) { uint32_t segId = static_cast(segIt - instructionsSegments.begin()); outUnresolvedExternals.push_back(UnresolvedExternal{relocation, segId, invalidOffset}); continue; } uint64_t gpuAddressAs64bit = static_cast(symbolIt->second.gpuAddress); switch (relocation.type) { default: UNRECOVERABLE_IF(RelocationInfo::Type::Address != relocation.type); *reinterpret_cast(relocAddress) = symbolIt->second.gpuAddress; break; case RelocationInfo::Type::AddressLow: *reinterpret_cast(relocAddress) = static_cast(gpuAddressAs64bit & 0xffffffff); break; case RelocationInfo::Type::AddressHigh: *reinterpret_cast(relocAddress) = static_cast((gpuAddressAs64bit >> 32) & 0xffffffff); break; } } } return outUnresolvedExternals.size() == unresolvedExternalsPrev; } bool Linker::patchDataSegments(const SegmentInfo &globalVariablesSegInfo, const SegmentInfo &globalConstantsSegInfo, PatchableSegment &globalVariablesSeg, PatchableSegment &globalConstantsSeg, std::vector &outUnresolvedExternals) { if (false == (data.getTraits().requiresPatchingOfGlobalConstantsBuffer || data.getTraits().requiresPatchingOfGlobalVariablesBuffer)) { return true; } auto unresolvedExternalsPrev = outUnresolvedExternals.size(); for (const auto &relocation : data.getDataRelocations()) { const SegmentInfo *src = nullptr; const PatchableSegment *dst = nullptr; switch (relocation.symbolSegment) { default: outUnresolvedExternals.push_back(UnresolvedExternal{relocation}); continue; case SegmentType::GlobalVariables: src = &globalVariablesSegInfo; break; case SegmentType::GlobalConstants: src = &globalConstantsSegInfo; break; } switch (relocation.relocationSegment) { default: outUnresolvedExternals.push_back(UnresolvedExternal{relocation}); continue; case SegmentType::GlobalVariables: dst = &globalVariablesSeg; break; case SegmentType::GlobalConstants: dst = &globalConstantsSeg; break; } UNRECOVERABLE_IF(nullptr == dst->hostPointer); if (RelocationInfo::Type::AddressHigh == relocation.type) { outUnresolvedExternals.push_back(UnresolvedExternal{relocation}); continue; } auto relocType = (LinkerInput::Traits::PointerSize::Ptr32bit == data.getTraits().pointerSize) ? RelocationInfo::Type::AddressLow : relocation.type; bool invalidOffset = relocation.offset + addressSizeInBytes(relocType) > dst->segmentSize; DEBUG_BREAK_IF(invalidOffset); if (invalidOffset) { outUnresolvedExternals.push_back(UnresolvedExternal{relocation}); continue; } uint64_t gpuAddressAs64bit = src->gpuAddress; auto relocAddress = ptrOffset(dst->hostPointer, static_cast(relocation.offset)); switch (relocType) { default: UNRECOVERABLE_IF(RelocationInfo::Type::Address != relocType); patchIncrement(relocAddress, sizeof(uintptr_t), gpuAddressAs64bit); break; case RelocationInfo::Type::AddressLow: patchIncrement(relocAddress, 4, static_cast(gpuAddressAs64bit & 0xffffffff)); break; } } return outUnresolvedExternals.size() == unresolvedExternalsPrev; } std::string constructLinkerErrorMessage(const Linker::UnresolvedExternals &unresolvedExternals, const std::vector &instructionsSegmentsNames) { std::stringstream errorStream; if (unresolvedExternals.size() == 0) { errorStream << "Internal linker error"; } else { for (const auto &unresExtern : unresolvedExternals) { if (unresExtern.internalError) { errorStream << "error : internal linker error while handling symbol "; } else { errorStream << "error : unresolved external symbol "; } if (unresExtern.unresolvedRelocation.relocationSegment == NEO::SegmentType::Instructions) { errorStream << unresExtern.unresolvedRelocation.symbolName << " at offset " << unresExtern.unresolvedRelocation.offset << " in instructions segment #" << unresExtern.instructionsSegmentId; if (instructionsSegmentsNames.size() > unresExtern.instructionsSegmentId) { errorStream << " (aka " << instructionsSegmentsNames[unresExtern.instructionsSegmentId] << ")"; } } else { errorStream << " address of segment #" << asString(unresExtern.unresolvedRelocation.symbolSegment) << " at offset " << unresExtern.unresolvedRelocation.offset << " in data segment #" << asString(unresExtern.unresolvedRelocation.relocationSegment); } errorStream << "\n"; } } return errorStream.str(); } } // namespace NEO