/* * Copyright (C) 2018-2024 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "shared/source/execution_environment/execution_environment.h" #include "shared/source/built_ins/built_ins.h" #include "shared/source/built_ins/sip.h" #include "shared/source/debug_settings/debug_settings_manager.h" #include "shared/source/direct_submission/direct_submission_controller.h" #include "shared/source/execution_environment/root_device_environment.h" #include "shared/source/helpers/affinity_mask.h" #include "shared/source/helpers/driver_model_type.h" #include "shared/source/helpers/gfx_core_helper.h" #include "shared/source/helpers/hw_info.h" #include "shared/source/helpers/string_helpers.h" #include "shared/source/memory_manager/memory_manager.h" #include "shared/source/memory_manager/os_agnostic_memory_manager.h" #include "shared/source/os_interface/debug_env_reader.h" #include "shared/source/os_interface/driver_info.h" #include "shared/source/os_interface/os_environment.h" #include "shared/source/os_interface/os_interface.h" #include "shared/source/os_interface/product_helper.h" #include "shared/source/utilities/wait_util.h" namespace NEO { ExecutionEnvironment::ExecutionEnvironment() { WaitUtils::init(); this->configureNeoEnvironment(); } void ExecutionEnvironment::releaseRootDeviceEnvironmentResources(RootDeviceEnvironment *rootDeviceEnvironment) { if (rootDeviceEnvironment == nullptr) { return; } SipKernel::freeSipKernels(rootDeviceEnvironment, memoryManager.get()); if (rootDeviceEnvironment->builtins.get()) { rootDeviceEnvironment->builtins->freeSipKernels(memoryManager.get()); } rootDeviceEnvironment->releaseDummyAllocation(); } ExecutionEnvironment::~ExecutionEnvironment() { if (directSubmissionController) { directSubmissionController->stopThread(); } if (memoryManager) { memoryManager->commonCleanup(); for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) { releaseRootDeviceEnvironmentResources(rootDeviceEnvironment.get()); } } rootDeviceEnvironments.clear(); mapOfSubDeviceIndices.clear(); this->restoreCcsMode(); } bool ExecutionEnvironment::initializeMemoryManager() { if (this->memoryManager) { return memoryManager->isInitialized(); } auto csrType = obtainCsrTypeFromIntegerValue(debugManager.flags.SetCommandStreamReceiver.get(), CommandStreamReceiverType::hardware); switch (csrType) { case CommandStreamReceiverType::tbx: case CommandStreamReceiverType::tbxWithAub: case CommandStreamReceiverType::aub: case CommandStreamReceiverType::nullAub: memoryManager = std::make_unique(*this); break; case CommandStreamReceiverType::hardware: case CommandStreamReceiverType::hardwareWithAub: default: { auto driverModelType = DriverModelType::unknown; if (this->rootDeviceEnvironments[0]->osInterface && this->rootDeviceEnvironments[0]->osInterface->getDriverModel()) { driverModelType = this->rootDeviceEnvironments[0]->osInterface->getDriverModel()->getDriverModelType(); } memoryManager = MemoryManager::createMemoryManager(*this, driverModelType); } break; } return memoryManager->isInitialized(); } void ExecutionEnvironment::calculateMaxOsContextCount() { MemoryManager::maxOsContextCount = 0u; for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) { auto hwInfo = rootDeviceEnvironment->getHardwareInfo(); auto &gfxCoreHelper = rootDeviceEnvironment->getHelper(); auto &engineInstances = gfxCoreHelper.getGpgpuEngineInstances(*rootDeviceEnvironment); auto osContextCount = static_cast(engineInstances.size()); auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo); auto ccsCount = hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled; bool hasRootCsr = subDevicesCount > 1; uint32_t numRegularEngines = 0; for (const auto &engine : engineInstances) { if (engine.second == EngineUsage::regular) { numRegularEngines++; } } if (debugManager.flags.ContextGroupSize.get() >= 1) { MemoryManager::maxOsContextCount += numRegularEngines * debugManager.flags.ContextGroupSize.get(); } MemoryManager::maxOsContextCount += osContextCount * subDevicesCount + hasRootCsr; if (ccsCount > 1 && debugManager.flags.EngineInstancedSubDevices.get()) { MemoryManager::maxOsContextCount += ccsCount * subDevicesCount; } } } DirectSubmissionController *ExecutionEnvironment::initializeDirectSubmissionController() { std::lock_guard lockForInit(initializeDirectSubmissionControllerMutex); auto initializeDirectSubmissionController = DirectSubmissionController::isSupported(); if (debugManager.flags.SetCommandStreamReceiver.get() > 0) { initializeDirectSubmissionController = false; } if (debugManager.flags.EnableDirectSubmissionController.get() != -1) { initializeDirectSubmissionController = debugManager.flags.EnableDirectSubmissionController.get(); } if (initializeDirectSubmissionController && this->directSubmissionController == nullptr) { this->directSubmissionController = std::make_unique(); this->directSubmissionController->startThread(); } return directSubmissionController.get(); } void ExecutionEnvironment::prepareRootDeviceEnvironments(uint32_t numRootDevices) { if (rootDeviceEnvironments.size() < numRootDevices) { rootDeviceEnvironments.resize(numRootDevices); } for (auto rootDeviceIndex = 0u; rootDeviceIndex < numRootDevices; rootDeviceIndex++) { if (!rootDeviceEnvironments[rootDeviceIndex]) { rootDeviceEnvironments[rootDeviceIndex] = std::make_unique(*this); } } } void ExecutionEnvironment::prepareForCleanup() const { for (auto &rootDeviceEnvironment : rootDeviceEnvironments) { if (rootDeviceEnvironment) { rootDeviceEnvironment->prepareForCleanup(); } } } void ExecutionEnvironment::prepareRootDeviceEnvironment(const uint32_t rootDeviceIndexForReInit) { rootDeviceEnvironments[rootDeviceIndexForReInit] = std::make_unique(*this); } bool ExecutionEnvironment::getSubDeviceHierarchy(uint32_t index, std::tuple *subDeviceMap) { if (mapOfSubDeviceIndices.find(index) != mapOfSubDeviceIndices.end()) { *subDeviceMap = mapOfSubDeviceIndices.at(index); return true; } else { return false; } } void ExecutionEnvironment::parseAffinityMask() { // If the device hierarchy is Combined, then skip the affinity mask parsing until level zero device get. if (isCombinedDeviceHierarchy()) { return; } const auto &affinityMaskString = debugManager.flags.ZE_AFFINITY_MASK.get(); if (affinityMaskString.compare("default") == 0 || affinityMaskString.empty()) { return; } // If the user has requested FLAT device hierarchy models, then report all the sub devices as devices. bool exposeSubDevicesAsApiDevices = isExposingSubDevicesAsDevices(); uint32_t numRootDevices = static_cast(rootDeviceEnvironments.size()); RootDeviceIndicesMap mapOfIndices; // Reserve at least for a size equal to rootDeviceEnvironments.size() times four, // which is enough for typical configurations size_t reservedSizeForIndices = numRootDevices * 4; mapOfIndices.reserve(reservedSizeForIndices); uint32_t hwSubDevicesCount = 0u; if (exposeSubDevicesAsApiDevices) { for (uint32_t currentRootDevice = 0u; currentRootDevice < static_cast(rootDeviceEnvironments.size()); currentRootDevice++) { auto hwInfo = rootDeviceEnvironments[currentRootDevice]->getHardwareInfo(); hwSubDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo); uint32_t currentSubDevice = 0; mapOfIndices.push_back(std::make_tuple(currentRootDevice, currentSubDevice)); for (currentSubDevice = 1; currentSubDevice < hwSubDevicesCount; currentSubDevice++) { mapOfIndices.push_back(std::make_tuple(currentRootDevice, currentSubDevice)); } } numRootDevices = static_cast(mapOfIndices.size()); } std::vector affinityMaskHelper(numRootDevices); auto affinityMaskEntries = StringHelpers::split(affinityMaskString, ","); // Index of the Device to be returned to the user, not the physcial device index. uint32_t deviceIndex = 0; for (const auto &entry : affinityMaskEntries) { auto subEntries = StringHelpers::split(entry, "."); uint32_t rootDeviceIndex = StringHelpers::toUint32t(subEntries[0]); // tiles as devices if (exposeSubDevicesAsApiDevices) { if (rootDeviceIndex >= numRootDevices) { continue; } // FlatHierarchy not supported with AllowSingleTileEngineInstancedSubDevices // so ignore X.Y if (subEntries.size() > 1) { continue; } std::tuple indexKey = mapOfIndices[rootDeviceIndex]; auto hwDeviceIndex = std::get<0>(indexKey); auto tileIndex = std::get<1>(indexKey); affinityMaskHelper[hwDeviceIndex].enableGenericSubDevice(tileIndex); // Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user. mapOfSubDeviceIndices[deviceIndex++] = std::make_tuple(hwDeviceIndex, tileIndex, hwSubDevicesCount); continue; } // cards as devices if (rootDeviceIndex < numRootDevices) { auto hwInfo = rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo(); auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo); if (subEntries.size() > 1) { uint32_t subDeviceIndex = StringHelpers::toUint32t(subEntries[1]); bool enableSecondLevelEngineInstanced = ((subDevicesCount == 1) && (hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled > 1) && debugManager.flags.AllowSingleTileEngineInstancedSubDevices.get()); if (enableSecondLevelEngineInstanced) { UNRECOVERABLE_IF(subEntries.size() != 2); if (subDeviceIndex < hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled) { // Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user. mapOfSubDeviceIndices[rootDeviceIndex] = std::make_tuple(rootDeviceIndex, subDeviceIndex, subDevicesCount); affinityMaskHelper[rootDeviceIndex].enableEngineInstancedSubDevice(0, subDeviceIndex); // Mask: X.Y } } else if (subDeviceIndex < subDevicesCount) { if (subEntries.size() == 2) { // Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user. mapOfSubDeviceIndices[rootDeviceIndex] = std::make_tuple(rootDeviceIndex, subDeviceIndex, subDevicesCount); affinityMaskHelper[rootDeviceIndex].enableGenericSubDevice(subDeviceIndex); // Mask: X.Y } else { UNRECOVERABLE_IF(subEntries.size() != 3); uint32_t ccsIndex = StringHelpers::toUint32t(subEntries[2]); if (ccsIndex < hwInfo->gtSystemInfo.CCSInfo.NumberOfCCSEnabled) { affinityMaskHelper[rootDeviceIndex].enableEngineInstancedSubDevice(subDeviceIndex, ccsIndex); // Mask: X.Y.Z } } } } else { affinityMaskHelper[rootDeviceIndex].enableAllGenericSubDevices(subDevicesCount); // Mask: X } } } std::vector> filteredEnvironments; for (uint32_t i = 0u; i < numRootDevices; i++) { if (!affinityMaskHelper[i].isDeviceEnabled()) { continue; } rootDeviceEnvironments[i]->deviceAffinityMask = affinityMaskHelper[i]; filteredEnvironments.emplace_back(rootDeviceEnvironments[i].release()); } rootDeviceEnvironments.swap(filteredEnvironments); } void ExecutionEnvironment::sortNeoDevices() { std::sort(rootDeviceEnvironments.begin(), rootDeviceEnvironments.end(), comparePciIdBusNumber); } void ExecutionEnvironment::setDeviceHierarchy(const GfxCoreHelper &gfxCoreHelper) { NEO::EnvironmentVariableReader envReader; std::string hierarchyModel = envReader.getSetting("ZE_FLAT_DEVICE_HIERARCHY", std::string(gfxCoreHelper.getDefaultDeviceHierarchy())); if (strcmp(hierarchyModel.c_str(), "COMPOSITE") == 0) { setExposeSubDevicesAsDevices(false); } if (strcmp(hierarchyModel.c_str(), "FLAT") == 0) { setExposeSubDevicesAsDevices(true); } if (strcmp(hierarchyModel.c_str(), "COMBINED") == 0) { setCombinedDeviceHierarchy(true); } } void ExecutionEnvironment::adjustCcsCountImpl(RootDeviceEnvironment *rootDeviceEnvironment) const { auto hwInfo = rootDeviceEnvironment->getMutableHardwareInfo(); auto &productHelper = rootDeviceEnvironment->getHelper(); productHelper.adjustNumberOfCcs(*hwInfo); } void ExecutionEnvironment::adjustCcsCount() { parseCcsCountLimitations(); for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceEnvironments.size(); rootDeviceIndex++) { auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex]; UNRECOVERABLE_IF(!rootDeviceEnvironment); if (!rootDeviceEnvironment->isNumberOfCcsLimited()) { adjustCcsCountImpl(rootDeviceEnvironment.get()); } } } void ExecutionEnvironment::adjustCcsCount(const uint32_t rootDeviceIndex) const { auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex]; UNRECOVERABLE_IF(!rootDeviceEnvironment); if (rootDeviceNumCcsMap.find(rootDeviceIndex) != rootDeviceNumCcsMap.end()) { rootDeviceEnvironment->limitNumberOfCcs(rootDeviceNumCcsMap.at(rootDeviceIndex)); } else { adjustCcsCountImpl(rootDeviceEnvironment.get()); } } void ExecutionEnvironment::parseCcsCountLimitations() { const auto &numberOfCcsString = debugManager.flags.ZEX_NUMBER_OF_CCS.get(); if (numberOfCcsString.compare("default") == 0 || numberOfCcsString.empty()) { return; } const uint32_t numRootDevices = static_cast(rootDeviceEnvironments.size()); auto numberOfCcsEntries = StringHelpers::split(numberOfCcsString, ","); for (const auto &entry : numberOfCcsEntries) { auto subEntries = StringHelpers::split(entry, ":"); uint32_t rootDeviceIndex = StringHelpers::toUint32t(subEntries[0]); if (rootDeviceIndex < numRootDevices) { if (subEntries.size() > 1) { uint32_t maxCcsCount = StringHelpers::toUint32t(subEntries[1]); rootDeviceNumCcsMap.insert({rootDeviceIndex, maxCcsCount}); rootDeviceEnvironments[rootDeviceIndex]->limitNumberOfCcs(maxCcsCount); } } } } void ExecutionEnvironment::configureNeoEnvironment() { if (debugManager.flags.NEO_CAL_ENABLED.get()) { debugManager.flags.UseKmdMigration.setIfDefault(0); debugManager.flags.SplitBcsSize.setIfDefault(256); } } bool ExecutionEnvironment::comparePciIdBusNumber(std::unique_ptr &rootDeviceEnvironment1, std::unique_ptr &rootDeviceEnvironment2) { const auto pciOrderVar = debugManager.flags.ZE_ENABLE_PCI_ID_DEVICE_ORDER.get(); if (!pciOrderVar) { auto isIntegrated1 = rootDeviceEnvironment1->getHardwareInfo()->capabilityTable.isIntegratedDevice; auto isIntegrated2 = rootDeviceEnvironment2->getHardwareInfo()->capabilityTable.isIntegratedDevice; if (isIntegrated1 != isIntegrated2) { return isIntegrated2; } } // BDF sample format is : 00:02.0 auto pciBusInfo1 = rootDeviceEnvironment1->osInterface->getDriverModel()->getPciBusInfo(); auto pciBusInfo2 = rootDeviceEnvironment2->osInterface->getDriverModel()->getPciBusInfo(); if (pciBusInfo1.pciDomain != pciBusInfo2.pciDomain) { return (pciBusInfo1.pciDomain < pciBusInfo2.pciDomain); } if (pciBusInfo1.pciBus != pciBusInfo2.pciBus) { return (pciBusInfo1.pciBus < pciBusInfo2.pciBus); } if (pciBusInfo1.pciDevice != pciBusInfo2.pciDevice) { return (pciBusInfo1.pciDevice < pciBusInfo2.pciDevice); } return (pciBusInfo1.pciFunction < pciBusInfo2.pciFunction); } } // namespace NEO