Files
compute-runtime/shared/source/memory_manager/gfx_partition.cpp
Mateusz Jablonski a650e08145 refactor: rename variable related to reserved cpu address range
in case of CPU address range wider than GPU address range, we reserve
CPU address range to avoid CPU side allocations in our non-SVM heaps

Signed-off-by: Mateusz Jablonski <mateusz.jablonski@intel.com>
2025-08-18 12:20:25 +02:00

400 lines
19 KiB
C++

/*
* Copyright (C) 2019-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/gfx_partition.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/heap_assigner.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/utilities/cpu_info.h"
#include "shared/source/utilities/heap_allocator.h"
namespace NEO {
const std::array<HeapIndex, 4> GfxPartition::heap32Names{{HeapIndex::heapInternalDeviceMemory,
HeapIndex::heapInternal,
HeapIndex::heapExternalDeviceMemory,
HeapIndex::heapExternal}};
const std::array<HeapIndex, 8> GfxPartition::heapNonSvmNames{{HeapIndex::heapInternalDeviceMemory,
HeapIndex::heapInternal,
HeapIndex::heapExternalDeviceMemory,
HeapIndex::heapExternal,
HeapIndex::heapStandard,
HeapIndex::heapStandard64KB,
HeapIndex::heapStandard2MB,
HeapIndex::heapExtended}};
static void reserveLow48BitRangeWithRetry(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange) {
uint64_t reservationSize = 256 * MemoryConstants::gigaByte;
constexpr uint64_t minimalReservationSize = 32 * MemoryConstants::gigaByte;
while (reservationSize >= minimalReservationSize) {
// With no base address being specified OS always reserve memory in [0x000000000000-0x7FFFFFFFFFFF] range
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(static_cast<size_t>(reservationSize), GfxPartition::heapGranularity);
if (reservedCpuAddressRange.alignedPtr) {
break;
}
// Oops... Try again with smaller chunk
reservationSize = alignDown(static_cast<uint64_t>(reservationSize * 0.9), MemoryConstants::pageSize64k);
};
}
static void reserveRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, uint64_t areaBase, uint64_t areaTop, uint64_t reservationSize) {
uint64_t reservationBase = areaBase;
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
if (reservedCpuAddressRange.alignedPtr != nullptr) {
uint64_t alignedPtrU64 = castToUint64(reservedCpuAddressRange.alignedPtr);
if (alignedPtrU64 >= areaBase && alignedPtrU64 + reservationSize < areaTop) {
return;
} else {
osMemory->releaseCpuAddressRange(reservedCpuAddressRange);
reservedCpuAddressRange.alignedPtr = nullptr;
}
}
OSMemory::MemoryMaps memoryMaps;
osMemory->getMemoryMaps(memoryMaps);
for (size_t i = 0; reservationBase < areaTop && i < memoryMaps.size(); ++i) {
if (memoryMaps[i].end < areaBase) {
continue;
}
if (memoryMaps[i].start - reservationBase >= reservationSize) {
break;
}
reservationBase = memoryMaps[i].end;
}
if (reservationBase + reservationSize < areaTop) {
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
}
}
static void reserveHigh48BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange) {
constexpr uint64_t high48BitAreaBase = maxNBitValue(47) + 1; // 0x800000000000
constexpr uint64_t high48BitAreaTop = maxNBitValue(48); // 0xFFFFFFFFFFFF
uint64_t reservationSize = MemoryConstants::teraByte;
reserveRangeWithMemoryMapsParse(osMemory, reservedCpuAddressRange, high48BitAreaBase, high48BitAreaTop, reservationSize);
}
static void reserve57BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, uint64_t reservationSize) {
constexpr uint64_t areaBase = maxNBitValue(48) + 1;
constexpr uint64_t areaTop = maxNBitValue(56);
reserveRangeWithMemoryMapsParse(osMemory, reservedCpuAddressRange, areaBase, areaTop, reservationSize);
}
GfxPartition::GfxPartition(OSMemory::ReservedCpuAddressRange &reservedCpuAddressRangeForNonSvmHeaps) : reservedCpuAddressRangeForNonSvmHeaps(reservedCpuAddressRangeForNonSvmHeaps), osMemory(OSMemory::create()) {}
GfxPartition::~GfxPartition() {
osMemory->releaseCpuAddressRange(reservedCpuAddressRangeForNonSvmHeaps);
reservedCpuAddressRangeForNonSvmHeaps = {};
osMemory->releaseCpuAddressRange(reservedCpuAddressRangeForHeapExtended);
}
void GfxPartition::Heap::init(uint64_t base, uint64_t size, size_t allocationAlignment) {
this->base = base;
this->size = size;
auto heapGranularity = GfxPartition::heapGranularity;
if (allocationAlignment > heapGranularity) {
heapGranularity = GfxPartition::heapGranularity2MB;
}
// Exclude very first and very last 64K from GPU address range allocation
if (size > 2 * heapGranularity) {
size -= 2 * heapGranularity;
}
alloc = std::make_unique<HeapAllocator>(base + heapGranularity, size, allocationAlignment);
}
void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
size -= GfxPartition::heapGranularity;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize) {
this->base = base;
this->size = size;
// Exclude very very last 64K from GPU address range allocation
size -= GfxPartition::heapGranularity;
size -= frontWindowSize;
alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size, MemoryConstants::pageSize);
}
void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
uint64_t GfxPartition::Heap::allocate(size_t &size) {
return alloc->allocate(size);
}
uint64_t GfxPartition::Heap::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
return alloc->allocateWithCustomAlignment(sizeToAllocate, alignment);
}
void GfxPartition::Heap::free(uint64_t ptr, size_t size) {
alloc->free(ptr, size);
}
void GfxPartition::freeGpuAddressRange(uint64_t ptr, size_t size) {
for (auto heapName : GfxPartition::heapNonSvmNames) {
auto &heap = getHeap(heapName);
if ((ptr > heap.getBase()) && ((ptr + size) < heap.getLimit())) {
heap.free(ptr, size);
break;
}
}
}
uint64_t GfxPartition::getHeapMinimalAddress(HeapIndex heapIndex) {
if (heapIndex == HeapIndex::heapSvm ||
heapIndex == HeapIndex::heapExternalDeviceFrontWindow ||
heapIndex == HeapIndex::heapExternalFrontWindow ||
heapIndex == HeapIndex::heapInternalDeviceFrontWindow ||
heapIndex == HeapIndex::heapInternalFrontWindow) {
return getHeapBase(heapIndex);
} else {
if ((heapIndex == HeapIndex::heapExternal ||
heapIndex == HeapIndex::heapExternalDeviceMemory) &&
(getHeapLimit(HeapAssigner::mapExternalWindowIndex(heapIndex)) != 0)) {
return getHeapBase(heapIndex) + GfxPartition::externalFrontWindowPoolSize;
} else if (heapIndex == HeapIndex::heapInternal ||
heapIndex == HeapIndex::heapInternalDeviceMemory) {
return getHeapBase(heapIndex) + GfxPartition::internalFrontWindowPoolSize;
} else if (heapIndex == HeapIndex::heapStandard2MB) {
return getHeapBase(heapIndex) + GfxPartition::heapGranularity2MB;
}
return getHeapBase(heapIndex) + GfxPartition::heapGranularity;
}
}
bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToReserve, uint32_t rootDeviceIndex, size_t numRootDevices, bool useExternalFrontWindowPool, uint64_t systemMemorySize, uint64_t gfxTop) {
/*
* I. 64-bit builds:
*
* 1) 48-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |__________________________________|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x0000800000000000 0x0000FFFFFFFFFFFF
*
*
* 2) 47-bit Full Range SVM gfx layout:
*
* gfxSize = 2^47 / 4 = 0x200000000000
* ________________________________________________
* / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM
* |________________|____|____|____|____|________________|______________|_______________|
* | | | | | | | | |
* | gfxBase gfxTop |
* 0x0 reserveCpuAddressRange(gfxSize) 0x00007FFFFFFFFFFF
* \_____________________________________ SVM _________________________________________/
*
*
*
* 3) Limited Range gfx layout (no SVM):
*
* H0 H1 H2 H3 STANDARD STANDARD64K
* |____|____|____|____|____________________|__________________|
* | | | | | | |
* gfxBase gfxTop
* 0x0 0xFFF...FFF < 47 bit
*
*
* II. 32-bit builds:
*
* 1) 32-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |_______|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x100000000 gpuAddressSpace
*/
uint64_t gfxBase = 0x0ull;
const uint64_t gfxHeap32Size = 4 * MemoryConstants::gigaByte;
if (is32bit) {
gfxBase = maxNBitValue(32) + 1;
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
} else {
auto cpuVirtualAddressSize = CpuInfo::getInstance().getVirtualAddressSize();
if (cpuVirtualAddressSize == 48 && gpuAddressSpace == maxNBitValue(48)) {
gfxBase = maxNBitValue(48 - 1) + 1;
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
} else if (gpuAddressSpace == maxNBitValue(47)) {
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
if (cpuAddressRangeSizeToReserve == 0) {
return false;
}
reservedCpuAddressRangeForNonSvmHeaps = osMemory->reserveCpuAddressRange(cpuAddressRangeSizeToReserve, GfxPartition::heapGranularity);
if (reservedCpuAddressRangeForNonSvmHeaps.originalPtr == nullptr) {
return false;
}
if (!isAligned<GfxPartition::heapGranularity>(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr)) {
return false;
}
}
gfxBase = reinterpret_cast<uint64_t>(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr);
gfxTop = gfxBase + cpuAddressRangeSizeToReserve;
heapInit(HeapIndex::heapSvm, 0ull, gpuAddressSpace + 1);
} else if (gpuAddressSpace < maxNBitValue(47)) {
gfxBase = 0ull;
heapInit(HeapIndex::heapSvm, 0ull, 0ull);
} else {
if (!initAdditionalRange(cpuVirtualAddressSize, gpuAddressSpace, gfxBase, gfxTop, rootDeviceIndex, systemMemorySize)) {
return false;
}
}
}
for (auto heap : GfxPartition::heap32Names) {
if (useExternalFrontWindowPool && HeapAssigner::heapTypeExternalWithFrontWindowPool(heap)) {
heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size);
size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
auto allocation = heapAllocate(heap, externalFrontWindowSize);
heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), allocation,
externalFrontWindowSize);
} else if (HeapAssigner::isInternalHeap(heap)) {
heapInitWithFrontWindow(heap, gfxBase, gfxHeap32Size, GfxPartition::internalFrontWindowPoolSize);
heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize);
} else {
heapInit(heap, gfxBase, gfxHeap32Size);
}
gfxBase += gfxHeap32Size;
}
constexpr uint32_t numStandardHeaps = static_cast<uint32_t>(HeapIndex::heapStandard2MB) - static_cast<uint32_t>(HeapIndex::heapStandard) + 1;
constexpr uint64_t maxStandardHeapGranularity = std::max(GfxPartition::heapGranularity, GfxPartition::heapGranularity2MB);
gfxBase = alignUp(gfxBase, maxStandardHeapGranularity);
uint64_t maxStandardHeapSize = alignDown((gfxTop - gfxBase) / numStandardHeaps, maxStandardHeapGranularity);
uint64_t maxStandard64HeapSize = maxStandardHeapSize;
uint64_t maxStandard2MBHeapSize = maxStandardHeapSize;
if (gpuAddressSpace == maxNBitValue(57)) {
maxStandardHeapSize *= 2;
maxStandard64HeapSize /= 2;
maxStandard2MBHeapSize /= 2;
}
auto gfxStandardSize = maxStandardHeapSize;
heapInit(HeapIndex::heapStandard, gfxBase, gfxStandardSize);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::heapStandard)));
gfxBase += maxStandardHeapSize;
// Split HEAP_STANDARD64K among root devices
auto gfxStandard64KBSize = alignDown(maxStandard64HeapSize / numRootDevices, GfxPartition::heapGranularity);
heapInitWithAllocationAlignment(HeapIndex::heapStandard64KB, gfxBase + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize, MemoryConstants::pageSize64k);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::heapStandard64KB)));
gfxBase += maxStandard64HeapSize;
// Split HEAP_STANDARD2MB among root devices
auto gfxStandard2MBSize = alignDown(maxStandard2MBHeapSize / numRootDevices, GfxPartition::heapGranularity2MB);
heapInitWithAllocationAlignment(HeapIndex::heapStandard2MB, gfxBase + rootDeviceIndex * gfxStandard2MBSize, gfxStandard2MBSize, 2 * MemoryConstants::megaByte);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity2MB>(getHeapBase(HeapIndex::heapStandard2MB)));
return true;
}
bool GfxPartition::initAdditionalRange(uint32_t cpuVirtualAddressSize, uint64_t gpuAddressSpace, uint64_t &gfxBase, uint64_t &gfxTop, uint32_t rootDeviceIndex, uint64_t systemMemorySize) {
/*
* 57-bit Full Range SVM gfx layout:
*
* gfxSize = 256GB(48b)/1TB(57b) 2^48 = 0x1_0000_0000_0000 (Not Used Now)
* ________________________________________________ _______________________________ ___________________
* / \ / \ / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM / HEAP_EXTENDED \ / \
* |________________|____|____|____|____|________________|______________|_______________|___________________________________|______________ ..... __|
* | | | | | | | | | | |
* | gfxBase gfxTop < 0xFFFFFFFFFFFF | | |
* 0x0 reserveCpuAddressRange(gfxSize) < 0xFFFFFFFFFFFF - gfxSize 0x100_0000_0000_0000(57b) 0x100_FFFF_FFFF_FFFF 0x1FF_FFFF_FFFF_FFFF
* \_____________________________________ SVM _________________________________________/
*
*/
// We are here means either CPU VA or GPU VA or both are 57 bit
if (cpuVirtualAddressSize != 57 && cpuVirtualAddressSize != 48) {
return false;
}
if (gpuAddressSpace != maxNBitValue(57) && gpuAddressSpace != maxNBitValue(48)) {
return false;
}
if (cpuVirtualAddressSize == 57 && CpuInfo::getInstance().isCpuFlagPresent("la57")) {
// Always reserve 48 bit window on 57 bit CPU
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
reserveHigh48BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRangeForNonSvmHeaps);
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
reserveLow48BitRangeWithRetry(osMemory.get(), reservedCpuAddressRangeForNonSvmHeaps);
}
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
return false;
}
}
gfxBase = castToUint64(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr);
gfxTop = gfxBase + reservedCpuAddressRangeForNonSvmHeaps.sizeToReserve;
if (gpuAddressSpace == maxNBitValue(57)) {
heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(57 - 1) + 1);
} else {
heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(48) + 1);
}
if (gpuAddressSpace == maxNBitValue(57)) {
uint64_t heapExtendedSize = 4 * systemMemorySize;
reserve57BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRangeForHeapExtended, heapExtendedSize);
if (reservedCpuAddressRangeForHeapExtended.alignedPtr) {
heapInit(HeapIndex::heapExtendedHost, castToUint64(reservedCpuAddressRangeForHeapExtended.alignedPtr), heapExtendedSize);
}
}
} else {
// On 48 bit CPU this range is reserved for OS usage, do not reserve
gfxBase = maxNBitValue(48 - 1) + 1; // 0x800000000000
gfxTop = maxNBitValue(48) + 1; // 0x1000000000000
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
}
// Init HEAP_EXTENDED only for 57 bit GPU
if (gpuAddressSpace == maxNBitValue(57)) {
auto heapExtendedSize = alignDown((maxNBitValue(48) + 1), GfxPartition::heapGranularity);
heapInit(HeapIndex::heapExtended, maxNBitValue(57 - 1) + 1 + rootDeviceIndex * heapExtendedSize, heapExtendedSize);
}
return true;
}
} // namespace NEO