Files
compute-runtime/shared/source/memory_manager/gfx_partition.cpp
Mateusz Jablonski cf3817e058 Add debug flag for EOT WA
EOT WA requires allocating last 64KB of kernel heap and putting EOT
signature at the last 16 bytes of kernel heap

Related-To: NEO-7099
Signed-off-by: Mateusz Jablonski <mateusz.jablonski@intel.com>
2022-07-07 16:58:24 +02:00

343 lines
16 KiB
C++

/*
* Copyright (C) 2019-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/gfx_partition.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/heap_assigner.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/utilities/cpu_info.h"
namespace NEO {
const std::array<HeapIndex, 4> GfxPartition::heap32Names{{HeapIndex::HEAP_INTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_INTERNAL,
HeapIndex::HEAP_EXTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_EXTERNAL}};
const std::array<HeapIndex, 8> GfxPartition::heapNonSvmNames{{HeapIndex::HEAP_INTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_INTERNAL,
HeapIndex::HEAP_EXTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_EXTERNAL,
HeapIndex::HEAP_STANDARD,
HeapIndex::HEAP_STANDARD64KB,
HeapIndex::HEAP_STANDARD2MB,
HeapIndex::HEAP_EXTENDED}};
static void reserveLow48BitRangeWithRetry(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange) {
uint64_t reservationSize = 256 * MemoryConstants::gigaByte;
constexpr uint64_t minimalReservationSize = 32 * MemoryConstants::gigaByte;
while (reservationSize >= minimalReservationSize) {
// With no base address being specified OS always reserve memory in [0x000000000000-0x7FFFFFFFFFFF] range
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(static_cast<size_t>(reservationSize), GfxPartition::heapGranularity);
if (reservedCpuAddressRange.alignedPtr) {
break;
}
// Oops... Try again with smaller chunk
reservationSize = alignDown(static_cast<uint64_t>(reservationSize * 0.9), MemoryConstants::pageSize64k);
};
}
static void reserveHigh48BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange) {
constexpr uint64_t high48BitAreaBase = maxNBitValue(47) + 1; // 0x800000000000
constexpr uint64_t high48BitAreaTop = maxNBitValue(48); // 0xFFFFFFFFFFFF
uint64_t reservationSize = 1024 * MemoryConstants::gigaByte; // 1 TB
uint64_t reservationBase = high48BitAreaBase;
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
if (reservedCpuAddressRange.alignedPtr != nullptr) {
uint64_t alignedPtrU64 = castToUint64(reservedCpuAddressRange.alignedPtr);
if (alignedPtrU64 >= high48BitAreaBase && alignedPtrU64 + reservationSize < high48BitAreaTop) {
return;
} else {
osMemory->releaseCpuAddressRange(reservedCpuAddressRange);
reservedCpuAddressRange.alignedPtr = nullptr;
}
}
OSMemory::MemoryMaps memoryMaps;
osMemory->getMemoryMaps(memoryMaps);
for (size_t i = 0; reservationBase < high48BitAreaTop && i < memoryMaps.size(); ++i) {
if (memoryMaps[i].end < high48BitAreaBase) {
continue;
}
if (memoryMaps[i].start - reservationBase >= reservationSize) {
break;
}
reservationBase = memoryMaps[i].end;
}
if (reservationBase + reservationSize < high48BitAreaTop) {
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
}
}
GfxPartition::GfxPartition(OSMemory::ReservedCpuAddressRange &sharedReservedCpuAddressRange) : reservedCpuAddressRange(sharedReservedCpuAddressRange), osMemory(OSMemory::create()) {}
GfxPartition::~GfxPartition() {
osMemory->releaseCpuAddressRange(reservedCpuAddressRange);
reservedCpuAddressRange = {0};
}
void GfxPartition::Heap::init(uint64_t base, uint64_t size, size_t allocationAlignment) {
this->base = base;
this->size = size;
auto heapGranularity = GfxPartition::heapGranularity;
if (allocationAlignment > heapGranularity) {
heapGranularity = GfxPartition::heapGranularity2MB;
}
// Exclude very first and very last 64K from GPU address range allocation
if (size > 2 * heapGranularity) {
size -= 2 * heapGranularity;
}
alloc = std::make_unique<HeapAllocator>(base + heapGranularity, size, allocationAlignment);
}
void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
size -= GfxPartition::heapGranularity;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize) {
this->base = base;
this->size = size;
// Exclude very very last 64K from GPU address range allocation
size -= GfxPartition::heapGranularity;
size -= frontWindowSize;
alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size, MemoryConstants::pageSize);
}
void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
void GfxPartition::freeGpuAddressRange(uint64_t ptr, size_t size) {
for (auto heapName : GfxPartition::heapNonSvmNames) {
auto &heap = getHeap(heapName);
if ((ptr > heap.getBase()) && ((ptr + size) < heap.getLimit())) {
heap.free(ptr, size);
break;
}
}
}
bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToReserve, uint32_t rootDeviceIndex, size_t numRootDevices, bool useExternalFrontWindowPool) {
/*
* I. 64-bit builds:
*
* 1) 48-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |__________________________________|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x0000800000000000 0x0000FFFFFFFFFFFF
*
*
* 2) 47-bit Full Range SVM gfx layout:
*
* gfxSize = 2^47 / 4 = 0x200000000000
* ________________________________________________
* / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM
* |________________|____|____|____|____|________________|______________|_______________|
* | | | | | | | | |
* | gfxBase gfxTop |
* 0x0 reserveCpuAddressRange(gfxSize) 0x00007FFFFFFFFFFF
* \_____________________________________ SVM _________________________________________/
*
*
*
* 3) Limited Range gfx layout (no SVM):
*
* H0 H1 H2 H3 STANDARD STANDARD64K
* |____|____|____|____|____________________|__________________|
* | | | | | | |
* gfxBase gfxTop
* 0x0 0xFFF...FFF < 47 bit
*
*
* II. 32-bit builds:
*
* 1) 32-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |_______|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x100000000 gpuAddressSpace
*/
uint64_t gfxTop = gpuAddressSpace + 1;
uint64_t gfxBase = 0x0ull;
const uint64_t gfxHeap32Size = 4 * MemoryConstants::gigaByte;
if (is32bit) {
gfxBase = maxNBitValue(32) + 1;
heapInit(HeapIndex::HEAP_SVM, 0ull, gfxBase);
} else {
auto cpuVirtualAddressSize = CpuInfo::getInstance().getVirtualAddressSize();
if (cpuVirtualAddressSize == 48 && gpuAddressSpace == maxNBitValue(48)) {
gfxBase = maxNBitValue(48 - 1) + 1;
heapInit(HeapIndex::HEAP_SVM, 0ull, gfxBase);
} else if (gpuAddressSpace == maxNBitValue(47)) {
if (reservedCpuAddressRange.alignedPtr == nullptr) {
if (cpuAddressRangeSizeToReserve == 0) {
return false;
}
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(cpuAddressRangeSizeToReserve, GfxPartition::heapGranularity);
if (reservedCpuAddressRange.originalPtr == nullptr) {
return false;
}
if (!isAligned<GfxPartition::heapGranularity>(reservedCpuAddressRange.alignedPtr)) {
return false;
}
}
gfxBase = reinterpret_cast<uint64_t>(reservedCpuAddressRange.alignedPtr);
gfxTop = gfxBase + cpuAddressRangeSizeToReserve;
heapInit(HeapIndex::HEAP_SVM, 0ull, gpuAddressSpace + 1);
} else if (gpuAddressSpace < maxNBitValue(47)) {
gfxBase = 0ull;
heapInit(HeapIndex::HEAP_SVM, 0ull, 0ull);
} else {
if (!initAdditionalRange(cpuVirtualAddressSize, gpuAddressSpace, gfxBase, gfxTop, rootDeviceIndex, numRootDevices)) {
return false;
}
}
}
for (auto heap : GfxPartition::heap32Names) {
if (useExternalFrontWindowPool && HeapAssigner::heapTypeExternalWithFrontWindowPool(heap)) {
heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size);
size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), heapAllocate(heap, externalFrontWindowSize),
externalFrontWindowSize);
} else if (HeapAssigner::isInternalHeap(heap)) {
auto heapSize = gfxHeap32Size;
if (DebugManager.flags.EnableEotWa.get()) {
heapSize = 4 * MemoryConstants::gigaByte - MemoryConstants::pageSize64k;
}
heapInitWithFrontWindow(heap, gfxBase, heapSize, GfxPartition::internalFrontWindowPoolSize);
heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize);
} else {
heapInit(heap, gfxBase, gfxHeap32Size);
}
gfxBase += gfxHeap32Size;
}
constexpr uint32_t numStandardHeaps = static_cast<uint32_t>(HeapIndex::HEAP_STANDARD2MB) - static_cast<uint32_t>(HeapIndex::HEAP_STANDARD) + 1;
constexpr uint64_t maxStandardHeapGranularity = std::max(GfxPartition::heapGranularity, GfxPartition::heapGranularity2MB);
gfxBase = alignUp(gfxBase, maxStandardHeapGranularity);
uint64_t maxStandardHeapSize = alignDown((gfxTop - gfxBase) / numStandardHeaps, maxStandardHeapGranularity);
auto gfxStandardSize = maxStandardHeapSize;
heapInit(HeapIndex::HEAP_STANDARD, gfxBase, gfxStandardSize);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::HEAP_STANDARD)));
gfxBase += maxStandardHeapSize;
// Split HEAP_STANDARD64K among root devices
auto gfxStandard64KBSize = alignDown(maxStandardHeapSize / numRootDevices, GfxPartition::heapGranularity);
heapInitWithAllocationAlignment(HeapIndex::HEAP_STANDARD64KB, gfxBase + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize, MemoryConstants::pageSize64k);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::HEAP_STANDARD64KB)));
gfxBase += maxStandardHeapSize;
// Split HEAP_STANDARD2MB among root devices
auto gfxStandard2MBSize = alignDown(maxStandardHeapSize / numRootDevices, GfxPartition::heapGranularity2MB);
heapInitWithAllocationAlignment(HeapIndex::HEAP_STANDARD2MB, gfxBase + rootDeviceIndex * gfxStandard2MBSize, gfxStandard2MBSize, 2 * MemoryConstants::megaByte);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity2MB>(getHeapBase(HeapIndex::HEAP_STANDARD2MB)));
return true;
}
bool GfxPartition::initAdditionalRange(uint32_t cpuVirtualAddressSize, uint64_t gpuAddressSpace, uint64_t &gfxBase, uint64_t &gfxTop, uint32_t rootDeviceIndex, size_t numRootDevices) {
/*
* 57-bit Full Range SVM gfx layout:
*
* gfxSize = 256GB(48b)/1TB(57b) 2^48 = 0x1_0000_0000_0000 (Not Used Now)
* ________________________________________________ _______________________________ ___________________
* / \ / \ / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM / HEAP_EXTENDED \ / \
* |________________|____|____|____|____|________________|______________|_______________|___________________________________|______________ ..... __|
* | | | | | | | | | | |
* | gfxBase gfxTop < 0xFFFFFFFFFFFF | | |
* 0x0 reserveCpuAddressRange(gfxSize) < 0xFFFFFFFFFFFF - gfxSize 0x100_0000_0000_0000(57b) 0x100_FFFF_FFFF_FFFF 0x1FF_FFFF_FFFF_FFFF
* \_____________________________________ SVM _________________________________________/
*
*/
// We are here means either CPU VA or GPU VA or both are 57 bit
if (cpuVirtualAddressSize != 57 && cpuVirtualAddressSize != 48) {
return false;
}
if (gpuAddressSpace != maxNBitValue(57) && gpuAddressSpace != maxNBitValue(48)) {
return false;
}
if (cpuVirtualAddressSize == 57 && CpuInfo::getInstance().isCpuFlagPresent("la57")) {
// Always reserve 48 bit window on 57 bit CPU
if (reservedCpuAddressRange.alignedPtr == nullptr) {
reserveHigh48BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRange);
if (reservedCpuAddressRange.alignedPtr == nullptr) {
reserveLow48BitRangeWithRetry(osMemory.get(), reservedCpuAddressRange);
}
if (reservedCpuAddressRange.alignedPtr == nullptr) {
return false;
}
}
gfxBase = castToUint64(reservedCpuAddressRange.alignedPtr);
gfxTop = gfxBase + reservedCpuAddressRange.sizeToReserve;
if (gpuAddressSpace == maxNBitValue(57)) {
heapInit(HeapIndex::HEAP_SVM, 0ull, maxNBitValue(57 - 1) + 1);
} else {
heapInit(HeapIndex::HEAP_SVM, 0ull, maxNBitValue(48) + 1);
}
} else {
// On 48 bit CPU this range is reserved for OS usage, do not reserve
gfxBase = maxNBitValue(48 - 1) + 1; // 0x800000000000
gfxTop = maxNBitValue(48) + 1; // 0x1000000000000
heapInit(HeapIndex::HEAP_SVM, 0ull, gfxBase);
}
// Init HEAP_EXTENDED only for 57 bit GPU
if (gpuAddressSpace == maxNBitValue(57)) {
// Split HEAP_EXTENDED among root devices (like HEAP_STANDARD64K)
auto heapExtendedSize = alignDown((maxNBitValue(48) + 1) / numRootDevices, GfxPartition::heapGranularity);
heapInit(HeapIndex::HEAP_EXTENDED, maxNBitValue(57 - 1) + 1 + rootDeviceIndex * heapExtendedSize, heapExtendedSize);
}
return true;
}
} // namespace NEO