Files
compute-runtime/shared/source/os_interface/linux/drm_allocation.cpp
Maciej Bielski 6924a48ca6 refactor: prepare CLOS logic for extension
Prepare cache setup and reservation logic to be extended w.r.t other
cache-levels.

Conceptually this change is like adding a switch-statement, in several
places, in which existing code makes a single (and only) case. This is
caused by splitting larger development to ease the review. Further cases
will be added in following steps. Such approach sometimes creates code
which may seem redundant but it is meant to simplify plugging following
extensions in an easy way.

Related-To: NEO-12837
Signed-off-by: Maciej Bielski <maciej.bielski@intel.com>
2025-02-17 10:43:08 +01:00

487 lines
18 KiB
C++

/*
* Copyright (C) 2020-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/os_interface/linux/drm_allocation.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/memory_manager/residency.h"
#include "shared/source/os_interface/linux/cache_info.h"
#include "shared/source/os_interface/linux/drm_buffer_object.h"
#include "shared/source/os_interface/linux/drm_memory_manager.h"
#include "shared/source/os_interface/linux/drm_neo.h"
#include "shared/source/os_interface/linux/i915_prelim.h"
#include "shared/source/os_interface/linux/ioctl_helper.h"
#include "shared/source/os_interface/linux/memory_info.h"
#include "shared/source/os_interface/linux/os_context_linux.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/os_interface/product_helper.h"
#include <sstream>
namespace NEO {
DrmAllocation::~DrmAllocation() {
[[maybe_unused]] int retCode;
for (auto &memory : this->memoryToUnmap) {
retCode = memory.unmapFunction(memory.pointer, memory.size);
DEBUG_BREAK_IF(retCode != 0);
}
}
std::string DrmAllocation::getAllocationInfoString() const {
std::stringstream ss;
for (auto bo : bufferObjects) {
if (bo != nullptr) {
ss << " Handle: " << bo->peekHandle();
}
}
return ss.str();
}
std::string DrmAllocation::getPatIndexInfoString(const ProductHelper &productHelper) const {
std::stringstream ss;
auto bo = getBO();
if (bo) {
ss << " PATIndex: " << bo->peekPatIndex() << ",";
}
auto gmm = getDefaultGmm();
if (gmm) {
ss << " Gmm resource usage: "
<< "[ " << gmm->getUsageTypeString() << " ],";
ss << " Cacheable: " << gmm->resourceParams.Flags.Info.Cacheable;
}
return ss.str();
}
void DrmAllocation::clearInternalHandle(uint32_t handleId) {
handles[handleId] = std::numeric_limits<uint64_t>::max();
}
int DrmAllocation::createInternalHandle(MemoryManager *memoryManager, uint32_t handleId, uint64_t &handle) {
return peekInternalHandle(memoryManager, handleId, handle);
}
int DrmAllocation::peekInternalHandle(MemoryManager *memoryManager, uint64_t &handle) {
return peekInternalHandle(memoryManager, 0u, handle);
}
int DrmAllocation::peekInternalHandle(MemoryManager *memoryManager, uint32_t handleId, uint64_t &handle) {
if (handles[handleId] != std::numeric_limits<uint64_t>::max()) {
handle = handles[handleId];
return 0;
}
int64_t ret = static_cast<int64_t>((static_cast<DrmMemoryManager *>(memoryManager))->obtainFdFromHandle(getBufferObjectToModify(handleId)->peekHandle(), this->rootDeviceIndex));
if (ret < 0) {
return -1;
}
handle = handles[handleId] = ret;
return 0;
}
void DrmAllocation::setCachePolicy(CachePolicy memType) {
for (auto bo : bufferObjects) {
if (bo != nullptr) {
bo->setCachePolicy(memType);
}
}
}
bool DrmAllocation::setPreferredLocation(Drm *drm, PreferredLocation memoryLocation) {
auto ioctlHelper = drm->getIoctlHelper();
auto remainingMemoryBanks = storageInfo.memoryBanks;
bool success = true;
auto pHwInfo = drm->getRootDeviceEnvironment().getHardwareInfo();
if (this->storageInfo.isChunked && debugManager.flags.EnableBOChunkingPreferredLocationHint.get() == 1) {
prelim_drm_i915_gem_memory_class_instance region{};
region.memory_class = NEO::PrelimI915::PRELIM_I915_MEMORY_CLASS_DEVICE;
auto banks = std::bitset<4>(remainingMemoryBanks);
MemRegionsVec memRegions{};
size_t currentBank = 0;
size_t i = 0;
while (i < banks.count()) {
if (banks.test(currentBank)) {
auto regionClassAndInstance = drm->getMemoryInfo()->getMemoryRegionClassAndInstance(1u << currentBank, *pHwInfo);
memRegions.push_back(regionClassAndInstance);
i++;
}
currentBank++;
}
for (uint32_t i = 0; i < this->storageInfo.numOfChunks; i++) {
// Depth-first
region.memory_instance = memRegions[i / (this->storageInfo.numOfChunks / memRegions.size())].memoryInstance;
uint64_t chunkLength = (bufferObjects[0]->peekSize() / this->storageInfo.numOfChunks);
uint64_t chunkStart = i * chunkLength;
printDebugString(debugManager.flags.PrintBOChunkingLogs.get(), stdout,
"Setting PRELIM_DRM_I915_GEM_VM_ADVISE for BO-%d chunk 0x%lx chunkLength %ld memory_class %d, memory_region %d\n",
bufferObjects[0]->peekHandle(),
chunkStart,
chunkLength,
region.memory_class,
region.memory_instance);
success &= ioctlHelper->setVmBoAdviseForChunking(bufferObjects[0]->peekHandle(),
chunkStart,
chunkLength,
ioctlHelper->getPreferredLocationAdvise(),
&region);
}
return success;
}
for (uint8_t handleId = 0u; handleId < numHandles; handleId++) {
auto memoryInstance = Math::getMinLsbSet(static_cast<uint32_t>(remainingMemoryBanks.to_ulong()));
std::optional<MemoryClassInstance> region = ioctlHelper->getPreferredLocationRegion(memoryLocation, memoryInstance);
if (region != std::nullopt) {
auto bo = this->getBOs()[handleId];
success &= ioctlHelper->setVmBoAdvise(bo->peekHandle(), ioctlHelper->getPreferredLocationAdvise(), &region);
}
remainingMemoryBanks.reset(memoryInstance);
}
return success;
}
bool DrmAllocation::setCacheRegion(Drm *drm, CacheRegion regionIndex) {
if (regionIndex == CacheRegion::defaultRegion) {
return true;
}
auto cacheInfo = drm->getCacheInfo();
if (cacheInfo == nullptr) {
return false;
}
auto regionSize = (cacheInfo->getMaxReservationNumCacheRegions() > 0) ? cacheInfo->getMaxReservationCacheSize() / cacheInfo->getMaxReservationNumCacheRegions() : 0;
if (regionSize == 0) {
return false;
}
return setCacheAdvice(drm, regionSize, regionIndex, !isAllocatedInLocalMemoryPool());
}
bool DrmAllocation::setCacheAdvice(Drm *drm, size_t regionSize, CacheRegion regionIndex, bool isSystemMemoryPool) {
if (!drm->getCacheInfo()->getCacheRegion(regionSize, regionIndex)) {
return false;
}
auto patIndex = drm->getPatIndex(getDefaultGmm(), allocationType, regionIndex, CachePolicy::writeBack, true, isSystemMemoryPool);
if (fragmentsStorage.fragmentCount > 0) {
for (uint32_t i = 0; i < fragmentsStorage.fragmentCount; i++) {
auto bo = static_cast<OsHandleLinux *>(fragmentsStorage.fragmentStorageData[i].osHandleStorage)->bo;
bo->setCacheRegion(regionIndex);
bo->setPatIndex(patIndex);
}
return true;
}
for (auto bo : bufferObjects) {
if (bo != nullptr) {
bo->setCacheRegion(regionIndex);
bo->setPatIndex(patIndex);
}
}
return true;
}
bool DrmAllocation::prefetchBOWithChunking(Drm *drm) {
auto getSubDeviceIds = [](const DeviceBitfield &subDeviceBitfield) {
SubDeviceIdsVec subDeviceIds;
for (auto subDeviceId = 0u; subDeviceId < subDeviceBitfield.size(); subDeviceId++) {
if (subDeviceBitfield.test(subDeviceId)) {
subDeviceIds.push_back(subDeviceId);
}
}
return subDeviceIds;
};
auto bo = this->getBO();
auto ioctlHelper = drm->getIoctlHelper();
auto memoryClassDevice = ioctlHelper->getDrmParamValue(DrmParam::memoryClassDevice);
auto subDeviceIds = getSubDeviceIds(storageInfo.subDeviceBitfield);
uint32_t chunksPerSubDevice = this->storageInfo.numOfChunks / subDeviceIds.size();
uint64_t chunkLength = (bo->peekSize() / this->storageInfo.numOfChunks);
bool success = true;
for (uint32_t i = 0; i < this->storageInfo.numOfChunks; i++) {
uint64_t chunkStart = bo->peekAddress() + i * chunkLength;
auto subDeviceId = subDeviceIds[i / chunksPerSubDevice];
for (auto vmHandleId : subDeviceIds) {
auto region = static_cast<uint32_t>((memoryClassDevice << 16u) | subDeviceId);
auto vmId = drm->getVirtualMemoryAddressSpace(vmHandleId);
PRINT_DEBUG_STRING(debugManager.flags.PrintBOPrefetchingResult.get(), stdout,
"prefetching BO=%d to VM %u, drmVmId=%u, range: %llx - %llx, size: %lld, region: %x\n",
bo->peekHandle(), vmId, vmHandleId, chunkStart, ptrOffset(chunkStart, chunkLength), chunkLength, region);
success &= ioctlHelper->setVmPrefetch(chunkStart, chunkLength, region, vmId);
PRINT_DEBUG_STRING(debugManager.flags.PrintBOPrefetchingResult.get(), stdout,
"prefetched BO=%d to VM %u, drmVmId=%u, range: %llx - %llx, size: %lld, region: %x, result: %d\n",
bo->peekHandle(), vmId, vmHandleId, chunkStart, ptrOffset(chunkStart, chunkLength), chunkLength, region, success);
}
}
return success;
}
int DrmAllocation::makeBOsResident(OsContext *osContext, uint32_t vmHandleId, std::vector<BufferObject *> *bufferObjects, bool bind, const bool forcePagingFence) {
if (this->fragmentsStorage.fragmentCount) {
for (unsigned int f = 0; f < this->fragmentsStorage.fragmentCount; f++) {
if (!this->fragmentsStorage.fragmentStorageData[f].residency->resident[osContext->getContextId()]) {
int retVal = bindBO(static_cast<OsHandleLinux *>(this->fragmentsStorage.fragmentStorageData[f].osHandleStorage)->bo, osContext, vmHandleId, bufferObjects, bind, forcePagingFence);
if (retVal) {
return retVal;
}
this->fragmentsStorage.fragmentStorageData[f].residency->resident[osContext->getContextId()] = true;
}
}
} else {
int retVal = bindBOs(osContext, vmHandleId, bufferObjects, bind, forcePagingFence);
if (retVal) {
return retVal;
}
}
return 0;
}
int DrmAllocation::bindBO(BufferObject *bo, OsContext *osContext, uint32_t vmHandleId, std::vector<BufferObject *> *bufferObjects, bool bind, const bool forcePagingFence) {
auto retVal = 0;
if (bo) {
bo->requireExplicitResidency(bo->peekDrm()->hasPageFaultSupport() && !shouldAllocationPageFault(bo->peekDrm()));
if (bufferObjects) {
if (bo->peekIsReusableAllocation()) {
for (auto bufferObject : *bufferObjects) {
if (bufferObject == bo) {
return 0;
}
}
}
bufferObjects->push_back(bo);
} else {
if (bind) {
retVal = bo->bind(osContext, vmHandleId, forcePagingFence);
} else {
retVal = bo->unbind(osContext, vmHandleId);
}
}
}
return retVal;
}
int DrmAllocation::bindBOs(OsContext *osContext, uint32_t vmHandleId, std::vector<BufferObject *> *bufferObjects, bool bind, const bool forcePagingFence) {
int retVal = 0;
if (this->storageInfo.getNumBanks() > 1) {
auto &bos = this->getBOs();
if (this->storageInfo.tileInstanced) {
auto bo = bos[vmHandleId];
retVal = bindBO(bo, osContext, vmHandleId, bufferObjects, bind, forcePagingFence);
if (retVal) {
return retVal;
}
} else {
for (auto bo : bos) {
retVal = bindBO(bo, osContext, vmHandleId, bufferObjects, bind, forcePagingFence);
if (retVal) {
return retVal;
}
}
}
} else {
auto bo = this->getBO();
retVal = bindBO(bo, osContext, vmHandleId, bufferObjects, bind, forcePagingFence);
if (retVal) {
return retVal;
}
}
return 0;
}
bool DrmAllocation::prefetchBO(BufferObject *bo, uint32_t vmHandleId, uint32_t subDeviceId) {
auto drm = bo->peekDrm();
auto ioctlHelper = drm->getIoctlHelper();
auto memoryClassDevice = ioctlHelper->getDrmParamValue(DrmParam::memoryClassDevice);
auto region = static_cast<uint32_t>((memoryClassDevice << 16u) | subDeviceId);
auto vmId = drm->getVirtualMemoryAddressSpace(vmHandleId);
auto result = ioctlHelper->setVmPrefetch(bo->peekAddress(), bo->peekSize(), region, vmId);
PRINT_DEBUG_STRING(debugManager.flags.PrintBOPrefetchingResult.get(), stdout,
"prefetch BO=%d to VM %u, drmVmId=%u, range: %llx - %llx, size: %lld, region: %x, result: %d\n",
bo->peekHandle(), vmId, vmHandleId, bo->peekAddress(), ptrOffset(bo->peekAddress(), bo->peekSize()), bo->peekSize(), region, result);
return result;
}
void DrmAllocation::registerBOBindExtHandle(Drm *drm) {
if (!drm->getIoctlHelper()->resourceRegistrationEnabled()) {
return;
}
drm->getIoctlHelper()->registerBOBindHandle(drm, this);
}
void DrmAllocation::setAsReadOnly() {
auto &bos = getBOs();
for (auto &bo : bos) {
if (bo) {
bo->setAsReadOnly(true);
}
}
}
void DrmAllocation::linkWithRegisteredHandle(uint32_t handle) {
auto &bos = getBOs();
for (auto bo : bos) {
if (bo) {
bo->addBindExtHandle(handle);
bo->requireImmediateBinding(true);
}
}
}
void DrmAllocation::freeRegisteredBOBindExtHandles(Drm *drm) {
for (auto it = registeredBoBindHandles.rbegin(); it != registeredBoBindHandles.rend(); ++it) {
drm->unregisterResource(*it);
}
}
void DrmAllocation::markForCapture() {
auto &bos = getBOs();
for (auto bo : bos) {
if (bo) {
bo->markForCapture();
}
}
}
bool DrmAllocation::shouldAllocationPageFault(const Drm *drm) {
if (!drm->hasPageFaultSupport()) {
return false;
}
if (debugManager.flags.EnableImplicitMigrationOnFaultableHardware.get() != -1) {
return debugManager.flags.EnableImplicitMigrationOnFaultableHardware.get();
}
switch (this->allocationType) {
case AllocationType::unifiedSharedMemory:
return drm->hasKmdMigrationSupport();
case AllocationType::buffer:
return debugManager.flags.UseKmdMigrationForBuffers.get() > 0;
default:
return false;
}
}
bool DrmAllocation::setMemAdvise(Drm *drm, MemAdviseFlags flags) {
bool success = true;
if (flags.cachedMemory != enabledMemAdviseFlags.cachedMemory) {
CachePolicy memType = flags.cachedMemory ? CachePolicy::writeBack : CachePolicy::uncached;
setCachePolicy(memType);
}
auto ioctlHelper = drm->getIoctlHelper();
if (flags.nonAtomic != enabledMemAdviseFlags.nonAtomic) {
for (auto bo : bufferObjects) {
if (bo != nullptr) {
success &= ioctlHelper->setVmBoAdvise(bo->peekHandle(), ioctlHelper->getAtomicAdvise(flags.nonAtomic), nullptr);
}
}
}
if (flags.devicePreferredLocation != enabledMemAdviseFlags.devicePreferredLocation) {
success &= setPreferredLocation(drm, flags.devicePreferredLocation ? PreferredLocation::device : PreferredLocation::clear);
}
if (flags.systemPreferredLocation != enabledMemAdviseFlags.systemPreferredLocation) {
success &= setPreferredLocation(drm, flags.systemPreferredLocation ? PreferredLocation::system : PreferredLocation::defaultLocation);
}
if (success) {
enabledMemAdviseFlags = flags;
}
return success;
}
bool DrmAllocation::setAtomicAccess(Drm *drm, size_t size, AtomicAccessMode mode) {
bool success = true;
if (mode == AtomicAccessMode::host) {
// Host mode not currently supported by KMD
return success;
}
auto ioctlHelper = drm->getIoctlHelper();
for (auto bo : bufferObjects) {
if (bo != nullptr) {
success &= ioctlHelper->setVmBoAdvise(bo->peekHandle(), ioctlHelper->getAtomicAccess(mode), nullptr);
}
}
return success;
}
bool DrmAllocation::setMemPrefetch(Drm *drm, SubDeviceIdsVec &subDeviceIds) {
UNRECOVERABLE_IF(subDeviceIds.size() == 0);
bool success = true;
if (numHandles > 1) {
for (uint8_t handleId = 0u; handleId < numHandles; handleId++) {
auto bo = this->getBOs()[handleId];
auto subDeviceId = handleId;
if (debugManager.flags.KMDSupportForCrossTileMigrationPolicy.get() > 0) {
subDeviceId = subDeviceIds[handleId % subDeviceIds.size()];
}
for (auto vmHandleId : subDeviceIds) {
success &= prefetchBO(bo, vmHandleId, subDeviceId);
}
}
} else {
auto bo = this->getBO();
if (bo->isChunked()) {
auto drm = bo->peekDrm();
success = prefetchBOWithChunking(const_cast<Drm *>(drm));
} else {
success = prefetchBO(bo, subDeviceIds[0], subDeviceIds[0]);
}
}
return success;
}
void DrmAllocation::registerMemoryToUnmap(void *pointer, size_t size, DrmAllocation::MemoryUnmapFunction unmapFunction) {
this->memoryToUnmap.push_back({pointer, size, unmapFunction});
}
uint64_t DrmAllocation::getHandleAddressBase(uint32_t handleIndex) {
return bufferObjects[handleIndex]->peekAddress();
}
size_t DrmAllocation::getHandleSize(uint32_t handleIndex) {
return bufferObjects[handleIndex]->peekSize();
}
} // namespace NEO