Files
compute-runtime/level_zero/tools/source/debug/debug_session_imp.h
Brandon Yates 7f50c59c0c fix: Two fixes for debugger SLM access
1) retry count needs to be increased. It is too low in some cases
2) Command.offset will get zero'd by SIP in some cases. We cannot
rely on it to maintain running value

Related-to: HSD-18043174020

Signed-off-by: Brandon Yates <brandon.yates@intel.com>
2025-10-22 20:27:04 +02:00

345 lines
15 KiB
C++

/*
* Copyright (C) 2021-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/built_ins/sip.h"
#include "shared/source/helpers/string.h"
#include "level_zero/tools/source/debug/debug_session.h"
#include "level_zero/zet_intel_gpu_debug.h"
#include "common/StateSaveAreaHeader.h"
#include <atomic>
#include <chrono>
#include <cmath>
#include <condition_variable>
#include <mutex>
#include <queue>
namespace NEO {
struct StateSaveAreaHeader;
} // namespace NEO
namespace SIP {
struct StateSaveAreaHeader;
struct regset_desc;
struct sr_ident;
struct sip_command;
} // namespace SIP
namespace NEO {
class SipExternalLib;
}
namespace L0 {
struct Device;
struct DebugSessionImp : DebugSession {
enum class Error {
success,
threadsRunning,
unknown
};
DebugSessionImp(const zet_debug_config_t &config, Device *device) : DebugSession(config, device) {
tileAttachEnabled = NEO::debugManager.flags.ExperimentalEnableTileAttach.get();
}
ze_result_t interrupt(ze_device_thread_t thread) override;
ze_result_t resume(ze_device_thread_t thread) override;
ze_result_t readRegisters(ze_device_thread_t thread, uint32_t type, uint32_t start, uint32_t count, void *pRegisterValues) override;
ze_result_t writeRegisters(ze_device_thread_t thread, uint32_t type, uint32_t start, uint32_t count, void *pRegisterValues) override;
ze_result_t readEvent(uint64_t timeout, zet_debug_event_t *event) override;
DebugSession *attachTileDebugSession(Device *device) override;
void detachTileDebugSession(DebugSession *tileSession) override;
bool areAllTileDebugSessionDetached() override;
bool isInterruptSent() { return interruptSent; }
void setAttachMode(bool isRootAttach) override {
if (isRootAttach) {
tileAttachEnabled = false;
}
}
void getNotStoppedThreads(const std::vector<EuThread::ThreadId> &threadsWithAtt, std::vector<EuThread::ThreadId> &notStoppedThreads);
virtual void attachTile() = 0;
virtual void detachTile() = 0;
virtual void cleanRootSessionAfterDetach(uint32_t deviceIndex) = 0;
static bool isHeaplessMode(L0::Device *device, const SIP::intelgt_state_save_area_V3 &ssa);
static const SIP::regset_desc *getSbaRegsetDesc(L0::Device *device, const NEO::StateSaveAreaHeader &ssah);
static const SIP::regset_desc *getModeFlagsRegsetDesc();
static const SIP::regset_desc *getDebugScratchRegsetDesc();
static const SIP::regset_desc *getThreadScratchRegsetDesc();
static const SIP::regset_desc *typeToRegsetDesc(const NEO::StateSaveAreaHeader *pStateSaveAreaHeader, uint32_t type, L0::Device *device);
static uint32_t typeToRegsetFlags(uint32_t type);
static SIP::regset_desc *getRegsetDesc(zet_debug_regset_type_intel_gpu_t type, NEO::SipExternalLib *sipExternalLib);
static uint32_t getSipRegisterType(zet_debug_regset_type_intel_gpu_t zeRegisterType);
struct SipMemoryAccessArgs {
struct DebugSessionImp *debugSession;
uint64_t contextHandle;
uint64_t gpuVa;
};
static uint32_t readSipMemory(void *userArg, uint32_t offset, uint32_t size, void *destination);
static uint32_t writeSipMemory(void *userArg, uint32_t offset, uint32_t size, void *source);
std::unordered_map<uint64_t, void *> pIGSipHandleMap;
using ApiEventQueue = std::queue<zet_debug_event_t>;
protected:
ze_result_t readRegistersImp(EuThread::ThreadId thread, uint32_t type, uint32_t start, uint32_t count, void *pRegisterValues) override;
MOCKABLE_VIRTUAL ze_result_t writeRegistersImp(EuThread::ThreadId thread, uint32_t type, uint32_t start, uint32_t count, void *pRegisterValues);
Error resumeThreadsWithinDevice(uint32_t deviceIndex, ze_device_thread_t physicalThread);
MOCKABLE_VIRTUAL bool writeResumeCommand(const std::vector<EuThread::ThreadId> &threadIds);
void applyResumeWa(uint8_t *bitmask, size_t bitmaskSize);
MOCKABLE_VIRTUAL bool checkThreadIsResumed(const EuThread::ThreadId &threadID);
MOCKABLE_VIRTUAL bool checkThreadIsResumed(const EuThread::ThreadId &threadID, const void *stateSaveArea);
virtual ze_result_t resumeImp(const std::vector<EuThread::ThreadId> &threads, uint32_t deviceIndex) = 0;
virtual ze_result_t interruptImp(uint32_t deviceIndex) = 0;
virtual void checkStoppedThreadsAndGenerateEvents(const std::vector<EuThread::ThreadId> &threads, uint64_t memoryHandle, uint32_t deviceIndex) { return; };
virtual ze_result_t readGpuMemory(uint64_t memoryHandle, char *output, size_t size, uint64_t gpuVa) = 0;
virtual ze_result_t writeGpuMemory(uint64_t memoryHandle, const char *input, size_t size, uint64_t gpuVa) = 0;
template <class BufferType, bool write>
ze_result_t slmMemoryAccess(EuThread::ThreadId threadId, const zet_debug_memory_space_desc_t *desc, size_t size, BufferType buffer);
ze_result_t validateThreadAndDescForMemoryAccess(ze_device_thread_t thread, const zet_debug_memory_space_desc_t *desc);
virtual void enqueueApiEvent(zet_debug_event_t &debugEvent) = 0;
size_t calculateSrMagicOffset(const NEO::StateSaveAreaHeader *header, EuThread *thread);
MOCKABLE_VIRTUAL bool readSystemRoutineIdent(EuThread *thread, uint64_t vmHandle, SIP::sr_ident &srMagic);
MOCKABLE_VIRTUAL bool readSystemRoutineIdentFromMemory(EuThread *thread, const void *stateSaveArea, SIP::sr_ident &srIdent);
ze_result_t readSbaRegisters(EuThread::ThreadId thread, uint32_t start, uint32_t count, void *pRegisterValues);
ze_result_t readModeFlags(uint32_t start, uint32_t count, void *pRegisterValues);
ze_result_t readDebugScratchRegisters(uint32_t start, uint32_t count, void *pRegisterValues);
MOCKABLE_VIRTUAL ze_result_t readThreadScratchRegisters(EuThread::ThreadId thread, uint32_t start, uint32_t count, void *pRegisterValues);
MOCKABLE_VIRTUAL bool isForceExceptionOrForceExternalHaltOnlyExceptionReason(uint32_t *cr0);
MOCKABLE_VIRTUAL bool isAIPequalToThreadStartIP(uint32_t *cr0, uint32_t *dbg0);
void sendInterrupts();
MOCKABLE_VIRTUAL void addThreadToNewlyStoppedFromRaisedAttention(EuThread::ThreadId threadId, uint64_t memoryHandle, const void *stateSaveArea);
MOCKABLE_VIRTUAL void fillResumeAndStoppedThreadsFromNewlyStopped(std::vector<EuThread::ThreadId> &resumeThreads, std::vector<EuThread::ThreadId> &stoppedThreadsToReport, std::vector<EuThread::ThreadId> &interruptedThreads);
MOCKABLE_VIRTUAL void generateEventsAndResumeStoppedThreads();
MOCKABLE_VIRTUAL void resumeAccidentallyStoppedThreads(const std::vector<EuThread::ThreadId> &threadIds);
MOCKABLE_VIRTUAL void generateEventsForStoppedThreads(const std::vector<EuThread::ThreadId> &threadIds);
MOCKABLE_VIRTUAL void generateEventsForPendingInterrupts();
const NEO::StateSaveAreaHeader *getStateSaveAreaHeader();
void dumpDebugSurfaceToFile(uint64_t vmHandle, uint64_t gpuVa, const std::string &path);
void validateAndSetStateSaveAreaHeader(uint64_t vmHandle, uint64_t gpuVa);
virtual void readStateSaveAreaHeader(){};
MOCKABLE_VIRTUAL ze_result_t readFifo(uint64_t vmHandle, std::vector<EuThread::ThreadId> &threadsWithAttention);
MOCKABLE_VIRTUAL ze_result_t isValidNode(uint64_t vmHandle, uint64_t gpuVa, SIP::fifo_node &node);
virtual uint64_t getContextStateSaveAreaGpuVa(uint64_t memoryHandle) = 0;
virtual size_t getContextStateSaveAreaSize(uint64_t memoryHandle) = 0;
ze_result_t registersAccessHelper(const EuThread *thread, const SIP::regset_desc *regdesc,
uint32_t start, uint32_t count, uint32_t type, void *pRegisterValues, bool write);
void slmSipVersionCheck();
MOCKABLE_VIRTUAL ze_result_t cmdRegisterAccessHelper(const EuThread::ThreadId &threadId, SIP::sip_command &command, bool write);
MOCKABLE_VIRTUAL ze_result_t waitForCmdReady(EuThread::ThreadId threadId, uint16_t retryCount);
uint32_t getRegisterSize(uint32_t type) override;
size_t calculateThreadSlotOffset(EuThread::ThreadId threadId);
size_t calculateRegisterOffsetInThreadSlot(const SIP::regset_desc *const regdesc, uint32_t start);
bool openSipWrapper(NEO::Device *neoDevice, uint64_t contextHandle, uint64_t gpuVa) override;
bool closeSipWrapper(NEO::Device *neoDevice, uint64_t contextHandle) override;
void closeExternalSipHandles() override;
void *getSipHandle(uint64_t contextHandle);
bool getRegisterAccessProperties(EuThread::ThreadId *threadId, uint32_t *pCount, zet_debug_regset_properties_t *pRegisterSetProperties) override;
void newAttentionRaised() {
if (expectedAttentionEvents > 0) {
expectedAttentionEvents--;
}
}
void checkTriggerEventsForAttention() {
if (pendingInterrupts.size() > 0 || newlyStoppedThreads.size()) {
if (expectedAttentionEvents == 0) {
triggerEvents = true;
}
}
}
bool isValidGpuAddress(const zet_debug_memory_space_desc_t *desc) const;
MOCKABLE_VIRTUAL int64_t getTimeDifferenceMilliseconds(std::chrono::high_resolution_clock::time_point time) {
auto now = std::chrono::high_resolution_clock::now();
auto timeDifferenceMs = std::chrono::duration_cast<std::chrono::milliseconds>(now - time).count();
return timeDifferenceMs;
}
void allocateStateSaveAreaMemory(size_t size) {
if (stateSaveAreaMemory.size() < size) {
stateSaveAreaMemory.resize(size);
}
}
struct AttentionEventFields {
uint64_t clientHandle;
uint64_t contextHandle;
uint64_t lrcHandle;
uint32_t bitmaskSize;
uint8_t *bitmask;
};
void handleStoppedThreads();
void pollFifo();
int32_t fifoPollInterval = 150;
int64_t interruptTimeout = 2000;
std::unordered_map<uint64_t, AttentionEventFields> attentionEventContext{};
std::chrono::milliseconds lastFifoReadTime = std::chrono::milliseconds(0);
virtual ze_result_t updateStoppedThreadsAndCheckTriggerEvents(const AttentionEventFields &attention, uint32_t tileIndex, std::vector<EuThread::ThreadId> &threadsWithAttention) = 0;
std::chrono::high_resolution_clock::time_point interruptTime;
std::atomic<bool> interruptSent = false;
std::atomic<bool> triggerEvents = false;
uint32_t expectedAttentionEvents = 0;
std::mutex interruptMutex;
std::mutex threadStateMutex;
std::queue<ze_device_thread_t> interruptRequests;
std::vector<std::pair<ze_device_thread_t, bool>> pendingInterrupts;
std::vector<EuThread::ThreadId> newlyStoppedThreads;
std::vector<char> stateSaveAreaHeader;
SIP::version minSlmSipVersion = {2, 1, 0};
bool sipSupportsSlm = false;
std::vector<char> stateSaveAreaMemory;
std::vector<std::pair<DebugSessionImp *, bool>> tileSessions; // DebugSession, attached
bool tileAttachEnabled = false;
bool tileSessionsEnabled = false;
ThreadHelper asyncThread;
std::mutex asyncThreadMutex;
ApiEventQueue apiEvents;
std::condition_variable apiEventCondition;
constexpr static uint16_t slmAddressSpaceTag = 28;
constexpr static uint16_t slmSendBytesSize = 16;
constexpr static uint16_t sipRetryCount = 25;
uint32_t maxUnitsPerLoop = EXCHANGE_BUFFER_SIZE / slmSendBytesSize;
};
template <class BufferType, bool write>
ze_result_t DebugSessionImp::slmMemoryAccess(EuThread::ThreadId threadId, const zet_debug_memory_space_desc_t *desc, size_t size, BufferType buffer) {
ze_result_t status;
if (!sipSupportsSlm) {
return ZE_RESULT_ERROR_UNSUPPORTED_VERSION;
}
SIP::sip_command sipCommand = {0};
uint64_t offset = desc->address & maxNBitValue(slmAddressSpaceTag);
// SIP accesses SLM in units of slmSendBytesSize at offset alignment of slmSendBytesSize
uint32_t frontPadding = offset % slmSendBytesSize;
uint64_t alignedOffset = offset - frontPadding;
uint32_t remainingSlmSendUnits = static_cast<uint32_t>(std::ceil(static_cast<float>(size) / slmSendBytesSize));
if ((size + frontPadding) > (remainingSlmSendUnits * slmSendBytesSize)) {
remainingSlmSendUnits++;
}
std::unique_ptr<char[]> tmpBuffer(new char[remainingSlmSendUnits * slmSendBytesSize]);
if constexpr (write) {
size_t tailPadding = (size % slmSendBytesSize) ? slmSendBytesSize - (size % slmSendBytesSize) : 0;
if ((frontPadding || tailPadding)) {
zet_debug_memory_space_desc_t alignedDesc = *desc;
alignedDesc.address = desc->address - frontPadding;
size_t alignedSize = remainingSlmSendUnits * slmSendBytesSize;
status = slmMemoryAccess<void *, false>(threadId, &alignedDesc, alignedSize, tmpBuffer.get());
if (status != ZE_RESULT_SUCCESS) {
return status;
}
}
memcpy_s(tmpBuffer.get() + frontPadding, size, buffer, size);
}
status = waitForCmdReady(threadId, sipRetryCount);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
uint32_t loops = static_cast<uint32_t>(std::ceil(static_cast<float>(remainingSlmSendUnits) / maxUnitsPerLoop));
uint32_t accessUnits = 0;
uint32_t countReadyBytes = 0;
sipCommand.offset = alignedOffset;
for (uint32_t loop = 0; loop < loops; loop++) {
if (remainingSlmSendUnits >= maxUnitsPerLoop) {
accessUnits = maxUnitsPerLoop;
} else {
accessUnits = remainingSlmSendUnits;
}
if constexpr (write) {
sipCommand.command = static_cast<uint32_t>(NEO::SipKernel::Command::slmWrite);
sipCommand.size = static_cast<uint32_t>(accessUnits);
memcpy_s(sipCommand.buffer, accessUnits * slmSendBytesSize, tmpBuffer.get() + countReadyBytes, accessUnits * slmSendBytesSize);
} else {
sipCommand.command = static_cast<uint32_t>(NEO::SipKernel::Command::slmRead);
sipCommand.size = static_cast<uint32_t>(accessUnits);
}
status = cmdRegisterAccessHelper(threadId, sipCommand, true);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
status = resumeImp(std::vector<EuThread::ThreadId>{threadId}, threadId.tileIndex);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
status = waitForCmdReady(threadId, sipRetryCount);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
if constexpr (!write) { // Read need an extra access to retrieve data
status = cmdRegisterAccessHelper(threadId, sipCommand, false);
if (status != ZE_RESULT_SUCCESS) {
return status;
}
memcpy_s(tmpBuffer.get() + countReadyBytes, accessUnits * slmSendBytesSize, sipCommand.buffer, accessUnits * slmSendBytesSize);
}
remainingSlmSendUnits -= accessUnits;
countReadyBytes += accessUnits * slmSendBytesSize;
alignedOffset += accessUnits * slmSendBytesSize;
sipCommand.offset = alignedOffset;
}
if constexpr (!write) {
memcpy_s(buffer, size, tmpBuffer.get() + frontPadding, size);
}
return ZE_RESULT_SUCCESS;
}
} // namespace L0