Files
compute-runtime/opencl/source/kernel/kernel.h
Fabian Zwolinski 7953d15826 Print warning when kernel uses too much SLM
Instead of just returning proper error code in case of exceeding
available Shared Local Memory size we also want to print error message
to make debugging easier.

Related-To: NEO-7280
Signed-off-by: Fabian Zwolinski <fabian.zwolinski@intel.com>
2022-10-07 19:06:19 +02:00

548 lines
22 KiB
C++

/*
* Copyright (C) 2018-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/command_stream/command_stream_receiver_hw.h"
#include "shared/source/command_stream/csr_properties_flags.h"
#include "shared/source/command_stream/thread_arbitration_policy.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/address_patch.h"
#include "shared/source/helpers/preamble.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/kernel/implicit_args.h"
#include "shared/source/kernel/kernel_execution_type.h"
#include "shared/source/program/kernel_info.h"
#include "shared/source/unified_memory/unified_memory.h"
#include "shared/source/utilities/stackvec.h"
#include "opencl/extensions/public/cl_ext_private.h"
#include "opencl/source/api/cl_types.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/helpers/base_object.h"
#include "opencl/source/helpers/properties_helper.h"
#include "opencl/source/kernel/kernel_objects_for_aux_translation.h"
#include "opencl/source/program/program.h"
#include <vector>
namespace NEO {
struct CompletionStamp;
class Buffer;
class CommandQueue;
class CommandStreamReceiver;
class GraphicsAllocation;
class ImageTransformer;
class Surface;
class PrintfHandler;
class MultiDeviceKernel;
class Kernel : public ReferenceTrackedObject<Kernel> {
public:
static const uint32_t kernelBinaryAlignment = 64;
enum kernelArgType {
NONE_OBJ,
IMAGE_OBJ,
BUFFER_OBJ,
PIPE_OBJ,
SVM_OBJ,
SVM_ALLOC_OBJ,
SAMPLER_OBJ,
ACCELERATOR_OBJ,
DEVICE_QUEUE_OBJ,
SLM_OBJ
};
struct SimpleKernelArgInfo {
cl_mem_flags svmFlags;
void *object;
const void *value;
size_t size;
GraphicsAllocation *svmAllocation;
kernelArgType type;
uint32_t allocId;
uint32_t allocIdMemoryManagerCounter;
bool isPatched = false;
bool isStatelessUncacheable = false;
bool isSetToNullptr = false;
};
enum class TunningStatus {
STANDARD_TUNNING_IN_PROGRESS,
SUBDEVICE_TUNNING_IN_PROGRESS,
TUNNING_DONE
};
enum class TunningType {
DISABLED,
SIMPLE,
FULL
};
typedef int32_t (Kernel::*KernelArgHandler)(uint32_t argIndex,
size_t argSize,
const void *argVal);
template <typename kernel_t = Kernel, typename program_t = Program>
static kernel_t *create(program_t *program, const KernelInfo &kernelInfo, ClDevice &clDevice, cl_int *errcodeRet) {
cl_int retVal;
kernel_t *pKernel = nullptr;
pKernel = new kernel_t(program, kernelInfo, clDevice);
retVal = pKernel->initialize();
if (retVal != CL_SUCCESS) {
delete pKernel;
pKernel = nullptr;
}
auto localMemSize = static_cast<uint32_t>(clDevice.getDevice().getDeviceInfo().localMemSize);
auto slmInlineSize = kernelInfo.kernelDescriptor.kernelAttributes.slmInlineSize;
if (slmInlineSize > 0 && localMemSize < slmInlineSize) {
PRINT_DEBUG_STRING(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr, "Size of SLM (%u) larger than available (%u)\n", slmInlineSize, localMemSize);
retVal = CL_OUT_OF_RESOURCES;
}
if (errcodeRet) {
*errcodeRet = retVal;
}
if (fileLoggerInstance().enabled()) {
std::string source;
program->getSource(source);
fileLoggerInstance().dumpKernel(kernelInfo.kernelDescriptor.kernelMetadata.kernelName, source);
}
return pKernel;
}
Kernel &operator=(const Kernel &) = delete;
Kernel(const Kernel &) = delete;
~Kernel() override;
static bool isMemObj(kernelArgType kernelArg) {
return kernelArg == BUFFER_OBJ || kernelArg == IMAGE_OBJ || kernelArg == PIPE_OBJ;
}
bool isAuxTranslationRequired() const { return auxTranslationRequired; }
void setAuxTranslationRequired(bool onOff) { auxTranslationRequired = onOff; }
void updateAuxTranslationRequired();
ArrayRef<uint8_t> getCrossThreadDataRef() {
return ArrayRef<uint8_t>(reinterpret_cast<uint8_t *>(crossThreadData), crossThreadDataSize);
}
char *getCrossThreadData() const {
return crossThreadData;
}
uint32_t getCrossThreadDataSize() const {
return crossThreadDataSize;
}
cl_int initialize();
MOCKABLE_VIRTUAL cl_int cloneKernel(Kernel *pSourceKernel);
MOCKABLE_VIRTUAL bool canTransformImages() const;
MOCKABLE_VIRTUAL bool isPatched() const;
// API entry points
cl_int setArgument(uint32_t argIndex, size_t argSize, const void *argVal) { return setArg(argIndex, argSize, argVal); }
cl_int setArgSvm(uint32_t argIndex, size_t svmAllocSize, void *svmPtr, GraphicsAllocation *svmAlloc, cl_mem_flags svmFlags);
MOCKABLE_VIRTUAL cl_int setArgSvmAlloc(uint32_t argIndex, void *svmPtr, GraphicsAllocation *svmAlloc, uint32_t allocId);
void setSvmKernelExecInfo(GraphicsAllocation *argValue);
void clearSvmKernelExecInfo();
cl_int getInfo(cl_kernel_info paramName, size_t paramValueSize,
void *paramValue, size_t *paramValueSizeRet) const;
cl_int getArgInfo(cl_uint argIndx, cl_kernel_arg_info paramName,
size_t paramValueSize, void *paramValue, size_t *paramValueSizeRet) const;
cl_int getWorkGroupInfo(cl_kernel_work_group_info paramName,
size_t paramValueSize, void *paramValue, size_t *paramValueSizeRet) const;
cl_int getSubGroupInfo(cl_kernel_sub_group_info paramName,
size_t inputValueSize, const void *inputValue,
size_t paramValueSize, void *paramValue,
size_t *paramValueSizeRet) const;
const void *getKernelHeap() const;
void *getSurfaceStateHeap() const;
const void *getDynamicStateHeap() const;
size_t getKernelHeapSize() const;
size_t getSurfaceStateHeapSize() const;
size_t getDynamicStateHeapSize() const;
size_t getNumberOfBindingTableStates() const;
size_t getBindingTableOffset() const {
return localBindingTableOffset;
}
void resizeSurfaceStateHeap(void *pNewSsh, size_t newSshSize, size_t newBindingTableCount, size_t newBindingTableOffset);
void substituteKernelHeap(void *newKernelHeap, size_t newKernelHeapSize);
bool isKernelHeapSubstituted() const;
uint64_t getKernelId() const;
void setKernelId(uint64_t newKernelId);
uint32_t getStartOffset() const;
void setStartOffset(uint32_t offset);
const std::vector<SimpleKernelArgInfo> &getKernelArguments() const {
return kernelArguments;
}
size_t getKernelArgsNumber() const {
return kernelArguments.size();
}
bool usesBindfulAddressingForBuffers() const {
return KernelDescriptor::BindfulAndStateless == kernelInfo.kernelDescriptor.kernelAttributes.bufferAddressingMode;
}
inline const KernelDescriptor &getDescriptor() const {
return kernelInfo.kernelDescriptor;
}
inline const KernelInfo &getKernelInfo() const {
return kernelInfo;
}
Context &getContext() const {
return program->getContext();
}
Program *getProgram() const { return program; }
uint32_t getScratchSize() {
return kernelInfo.kernelDescriptor.kernelAttributes.perThreadScratchSize[0];
}
uint32_t getPrivateScratchSize() {
return kernelInfo.kernelDescriptor.kernelAttributes.perThreadScratchSize[1];
}
bool usesSyncBuffer() const;
void patchSyncBuffer(GraphicsAllocation *gfxAllocation, size_t bufferOffset);
void *patchBindlessSurfaceState(NEO::GraphicsAllocation *alloc, uint32_t bindless);
// Helpers
cl_int setArg(uint32_t argIndex, uint32_t argValue);
cl_int setArg(uint32_t argIndex, uint64_t argValue);
cl_int setArg(uint32_t argIndex, cl_mem argValue);
cl_int setArg(uint32_t argIndex, cl_mem argValue, uint32_t mipLevel);
cl_int setArg(uint32_t argIndex, size_t argSize, const void *argVal);
// Handlers
void setKernelArgHandler(uint32_t argIndex, KernelArgHandler handler);
void unsetArg(uint32_t argIndex);
cl_int setArgImmediate(uint32_t argIndex,
size_t argSize,
const void *argVal);
cl_int setArgBuffer(uint32_t argIndex,
size_t argSize,
const void *argVal);
cl_int setArgPipe(uint32_t argIndex,
size_t argSize,
const void *argVal);
cl_int setArgImage(uint32_t argIndex,
size_t argSize,
const void *argVal);
cl_int setArgImageWithMipLevel(uint32_t argIndex,
size_t argSize,
const void *argVal, uint32_t mipLevel);
cl_int setArgLocal(uint32_t argIndex,
size_t argSize,
const void *argVal);
cl_int setArgSampler(uint32_t argIndex,
size_t argSize,
const void *argVal);
cl_int setArgAccelerator(uint32_t argIndex,
size_t argSize,
const void *argVal);
void storeKernelArg(uint32_t argIndex,
kernelArgType argType,
void *argObject,
const void *argValue,
size_t argSize,
GraphicsAllocation *argSvmAlloc = nullptr,
cl_mem_flags argSvmFlags = 0);
void storeKernelArgAllocIdMemoryManagerCounter(uint32_t argIndex, uint32_t allocIdMemoryManagerCounter);
const void *getKernelArg(uint32_t argIndex) const;
const SimpleKernelArgInfo &getKernelArgInfo(uint32_t argIndex) const;
bool getAllowNonUniform() const { return program->getAllowNonUniform(); }
bool isVmeKernel() const { return kernelInfo.kernelDescriptor.kernelAttributes.flags.usesVme; }
bool requiresSystolicPipelineSelectMode() const { return systolicPipelineSelectMode; }
void performKernelTuning(CommandStreamReceiver &commandStreamReceiver, const Vec3<size_t> &lws, const Vec3<size_t> &gws, const Vec3<size_t> &offsets, TimestampPacketContainer *timestampContainer);
MOCKABLE_VIRTUAL bool isSingleSubdevicePreferred() const;
// residency for kernel surfaces
MOCKABLE_VIRTUAL void makeResident(CommandStreamReceiver &commandStreamReceiver);
MOCKABLE_VIRTUAL void getResidency(std::vector<Surface *> &dst);
bool requiresCoherency();
void resetSharedObjectsPatchAddresses();
bool isUsingSharedObjArgs() const { return usingSharedObjArgs; }
bool hasUncacheableStatelessArgs() const { return statelessUncacheableArgsCount > 0; }
bool hasPrintfOutput() const;
cl_int checkCorrectImageAccessQualifier(cl_uint argIndex,
size_t argSize,
const void *argValue) const;
static uint32_t dummyPatchLocation;
uint32_t allBufferArgsStateful = CL_TRUE;
bool isBuiltIn = false;
KernelExecutionType getExecutionType() const {
return executionType;
}
bool is32Bit() const {
return kernelInfo.kernelDescriptor.kernelAttributes.gpuPointerSize == 4;
}
size_t getPerThreadSystemThreadSurfaceSize() const {
return kernelInfo.kernelDescriptor.kernelAttributes.perThreadSystemThreadSurfaceSize;
}
std::vector<PatchInfoData> &getPatchInfoDataList() { return patchInfoDataList; };
bool usesImages() const {
return usingImages;
}
bool usesOnlyImages() const {
return usingImagesOnly;
}
std::unique_ptr<KernelObjsForAuxTranslation> fillWithKernelObjsForAuxTranslation();
MOCKABLE_VIRTUAL bool requiresCacheFlushCommand(const CommandQueue &commandQueue) const;
using CacheFlushAllocationsVec = StackVec<GraphicsAllocation *, 32>;
void getAllocationsForCacheFlush(CacheFlushAllocationsVec &out) const;
void setAuxTranslationDirection(AuxTranslationDirection auxTranslationDirection) {
this->auxTranslationDirection = auxTranslationDirection;
}
void setUnifiedMemorySyncRequirement(bool isUnifiedMemorySyncRequired) {
this->isUnifiedMemorySyncRequired = isUnifiedMemorySyncRequired;
}
void setUnifiedMemoryProperty(cl_kernel_exec_info infoType, bool infoValue);
void setUnifiedMemoryExecInfo(GraphicsAllocation *argValue);
void clearUnifiedMemoryExecInfo();
bool areStatelessWritesUsed() { return containsStatelessWrites; }
int setKernelThreadArbitrationPolicy(uint32_t propertyValue);
cl_int setKernelExecutionType(cl_execution_info_kernel_type_intel executionType);
void getSuggestedLocalWorkSize(const cl_uint workDim, const size_t *globalWorkSize, const size_t *globalWorkOffset,
size_t *localWorkSize);
uint32_t getMaxWorkGroupCount(const cl_uint workDim, const size_t *localWorkSize, const CommandQueue *commandQueue) const;
uint64_t getKernelStartAddress(const bool localIdsGenerationByRuntime, const bool kernelUsesLocalIds, const bool isCssUsed, const bool returnFullAddress) const;
bool isKernelDebugEnabled() const { return debugEnabled; }
void setAdditionalKernelExecInfo(uint32_t additionalKernelExecInfo);
uint32_t getAdditionalKernelExecInfo() const;
MOCKABLE_VIRTUAL bool requiresWaDisableRccRhwoOptimization() const;
// dispatch traits
void setGlobalWorkOffsetValues(uint32_t globalWorkOffsetX, uint32_t globalWorkOffsetY, uint32_t globalWorkOffsetZ);
void setGlobalWorkSizeValues(uint32_t globalWorkSizeX, uint32_t globalWorkSizeY, uint32_t globalWorkSizeZ);
void setLocalWorkSizeValues(uint32_t localWorkSizeX, uint32_t localWorkSizeY, uint32_t localWorkSizeZ);
void setLocalWorkSize2Values(uint32_t localWorkSizeX, uint32_t localWorkSizeY, uint32_t localWorkSizeZ);
void setEnqueuedLocalWorkSizeValues(uint32_t localWorkSizeX, uint32_t localWorkSizeY, uint32_t localWorkSizeZ);
void setNumWorkGroupsValues(uint32_t numWorkGroupsX, uint32_t numWorkGroupsY, uint32_t numWorkGroupsZ);
void setWorkDim(uint32_t workDim);
const uint32_t *getDispatchTrait(const CrossThreadDataOffset offset) const {
return isValidOffset(offset) ? reinterpret_cast<uint32_t *>(getCrossThreadData() + offset)
: &Kernel::dummyPatchLocation;
}
const uint32_t *getWorkDim() const { return getDispatchTrait(getDescriptor().payloadMappings.dispatchTraits.workDim); }
std::array<const uint32_t *, 3> getDispatchTraitArray(const CrossThreadDataOffset dispatchTrait[3]) const { return {getDispatchTrait(dispatchTrait[0]), getDispatchTrait(dispatchTrait[1]), getDispatchTrait(dispatchTrait[2])}; }
std::array<const uint32_t *, 3> getGlobalWorkOffsetValues() const { return getDispatchTraitArray(getDescriptor().payloadMappings.dispatchTraits.globalWorkOffset); }
std::array<const uint32_t *, 3> getLocalWorkSizeValues() const { return getDispatchTraitArray(getDescriptor().payloadMappings.dispatchTraits.localWorkSize); }
std::array<const uint32_t *, 3> getLocalWorkSize2Values() const { return getDispatchTraitArray(getDescriptor().payloadMappings.dispatchTraits.localWorkSize2); }
std::array<const uint32_t *, 3> getEnqueuedLocalWorkSizeValues() const { return getDispatchTraitArray(getDescriptor().payloadMappings.dispatchTraits.enqueuedLocalWorkSize); }
std::array<const uint32_t *, 3> getNumWorkGroupsValues() const { return getDispatchTraitArray(getDescriptor().payloadMappings.dispatchTraits.numWorkGroups); }
bool isLocalWorkSize2Patchable();
uint32_t getMaxKernelWorkGroupSize() const;
uint32_t getSlmTotalSize() const;
bool getHasIndirectAccess() const {
return this->kernelHasIndirectAccess;
}
MultiDeviceKernel *getMultiDeviceKernel() const { return pMultiDeviceKernel; }
void setMultiDeviceKernel(MultiDeviceKernel *pMultiDeviceKernelToSet) { pMultiDeviceKernel = pMultiDeviceKernelToSet; }
bool areMultipleSubDevicesInContext() const;
bool requiresMemoryMigration() const { return migratableArgsMap.size() > 0; }
const std::map<uint32_t, MemObj *> &getMemObjectsToMigrate() const { return migratableArgsMap; }
ImplicitArgs *getImplicitArgs() const { return pImplicitArgs.get(); }
const HardwareInfo &getHardwareInfo() const;
bool isAnyKernelArgumentUsingSystemMemory() const {
return anyKernelArgumentUsingSystemMemory;
}
static bool graphicsAllocationTypeUseSystemMemory(AllocationType type);
void setDestinationAllocationInSystemMemory(bool value) {
isDestinationAllocationInSystemMemory = value;
}
bool getDestinationAllocationInSystemMemory() const {
return isDestinationAllocationInSystemMemory;
}
protected:
struct KernelConfig {
Vec3<size_t> gws;
Vec3<size_t> lws;
Vec3<size_t> offsets;
bool operator==(const KernelConfig &other) const { return this->gws == other.gws && this->lws == other.lws && this->offsets == other.offsets; }
};
struct KernelConfigHash {
size_t operator()(KernelConfig const &config) const {
auto hash = std::hash<size_t>{};
size_t gwsHashX = hash(config.gws.x);
size_t gwsHashY = hash(config.gws.y);
size_t gwsHashZ = hash(config.gws.z);
size_t gwsHash = hashCombine(gwsHashX, gwsHashY, gwsHashZ);
size_t lwsHashX = hash(config.lws.x);
size_t lwsHashY = hash(config.lws.y);
size_t lwsHashZ = hash(config.lws.z);
size_t lwsHash = hashCombine(lwsHashX, lwsHashY, lwsHashZ);
size_t offsetsHashX = hash(config.offsets.x);
size_t offsetsHashY = hash(config.offsets.y);
size_t offsetsHashZ = hash(config.offsets.z);
size_t offsetsHash = hashCombine(offsetsHashX, offsetsHashY, offsetsHashZ);
return hashCombine(gwsHash, lwsHash, offsetsHash);
}
size_t hashCombine(size_t hash1, size_t hash2, size_t hash3) const {
return (hash1 ^ (hash2 << 1u)) ^ (hash3 << 2u);
}
};
struct KernelSubmissionData {
std::unique_ptr<TimestampPacketContainer> kernelStandardTimestamps;
std::unique_ptr<TimestampPacketContainer> kernelSubdeviceTimestamps;
TunningStatus status;
bool singleSubdevicePreferred = false;
};
Kernel(Program *programArg, const KernelInfo &kernelInfo, ClDevice &clDevice);
void makeArgsResident(CommandStreamReceiver &commandStreamReceiver);
void *patchBufferOffset(const ArgDescPointer &argAsPtr, void *svmPtr, GraphicsAllocation *svmAlloc);
void patchWithImplicitSurface(void *ptrToPatchInCrossThreadData, GraphicsAllocation &allocation, const ArgDescPointer &arg);
void provideInitializationHints();
void markArgPatchedAndResolveArgs(uint32_t argIndex);
void resolveArgs();
void reconfigureKernel();
bool hasDirectStatelessAccessToSharedBuffer() const;
bool hasDirectStatelessAccessToHostMemory() const;
bool hasIndirectStatelessAccessToHostMemory() const;
void addAllocationToCacheFlushVector(uint32_t argIndex, GraphicsAllocation *argAllocation);
bool allocationForCacheFlush(GraphicsAllocation *argAllocation) const;
const ClDevice &getDevice() const {
return clDevice;
}
cl_int patchPrivateSurface();
bool hasTunningFinished(KernelSubmissionData &submissionData);
bool hasRunFinished(TimestampPacketContainer *timestampContainer);
UnifiedMemoryControls unifiedMemoryControls{};
std::map<uint32_t, MemObj *> migratableArgsMap{};
std::unordered_map<KernelConfig, KernelSubmissionData, KernelConfigHash> kernelSubmissionMap;
std::vector<SimpleKernelArgInfo> kernelArguments;
std::vector<KernelArgHandler> kernelArgHandlers;
std::vector<GraphicsAllocation *> kernelSvmGfxAllocations;
std::vector<GraphicsAllocation *> kernelUnifiedMemoryGfxAllocations;
std::vector<PatchInfoData> patchInfoDataList;
std::vector<GraphicsAllocation *> kernelArgRequiresCacheFlush;
std::vector<size_t> slmSizes;
std::unique_ptr<ImageTransformer> imageTransformer;
std::unique_ptr<char[]> pSshLocal;
std::unique_ptr<ImplicitArgs> pImplicitArgs = nullptr;
uint64_t privateSurfaceSize = 0u;
size_t numberOfBindingTableStates = 0u;
size_t localBindingTableOffset = 0u;
const ExecutionEnvironment &executionEnvironment;
Program *program;
ClDevice &clDevice;
const KernelInfo &kernelInfo;
GraphicsAllocation *privateSurface = nullptr;
MultiDeviceKernel *pMultiDeviceKernel = nullptr;
uint32_t *maxWorkGroupSizeForCrossThreadData = &Kernel::dummyPatchLocation;
uint32_t *dataParameterSimdSize = &Kernel::dummyPatchLocation;
uint32_t *parentEventOffset = &Kernel::dummyPatchLocation;
uint32_t *preferredWkgMultipleOffset = &Kernel::dummyPatchLocation;
char *crossThreadData = nullptr;
AuxTranslationDirection auxTranslationDirection = AuxTranslationDirection::None;
KernelExecutionType executionType = KernelExecutionType::Default;
uint32_t patchedArgumentsNum = 0;
uint32_t startOffset = 0;
uint32_t statelessUncacheableArgsCount = 0;
uint32_t additionalKernelExecInfo = AdditionalKernelExecInfo::DisableOverdispatch;
uint32_t maxKernelWorkGroupSize = 0;
uint32_t slmTotalSize = 0u;
uint32_t sshLocalSize = 0u;
uint32_t crossThreadDataSize = 0u;
bool containsStatelessWrites = true;
bool usingSharedObjArgs = false;
bool usingImages = false;
bool usingImagesOnly = false;
bool auxTranslationRequired = false;
bool systolicPipelineSelectMode = false;
bool svmAllocationsRequireCacheFlush = false;
bool isUnifiedMemorySyncRequired = true;
bool debugEnabled = false;
bool singleSubdevicePreferredInCurrentEnqueue = false;
bool kernelHasIndirectAccess = true;
bool anyKernelArgumentUsingSystemMemory = false;
bool isDestinationAllocationInSystemMemory = false;
};
} // namespace NEO