Files
compute-runtime/level_zero/core/source/module/module.h
Maciej Bielski 2778043d67 fix(l0): check for largeGRF when computing maxWorkGroupSize
Sizing context (PVC):
When using LargeGRF (a.k.a GRF256) there are only 4 HW threads per EU
(instead of default 8). Together with SIMD16 that means that there can
be max 64 work-items per EU. With 8 EU per subslice this gives 512
work-items on a single subslice. For correct intra-WG synchronization
all its WIs must be executed on the same subslice (to access the same
SLM, where the synchronization primitives are stored). Thus, with SIMD16
and LargeGRF the work-group size must not exceed 512 (PVC example).

So far `maxWorkGroupSize` is taken solely from a DeviceInfo structure
both in `ModuleTranslationUnit::processUnpackedBinary()` and
`ModuleImp::initialize()`. This method does not take kernel parameters
(LargeGRF) into account. It allows to submit a kernel using LargeGRF
with SIMD16 with the work-group size set to 1024. That leads to a hang.

Fix the `.maxWorkGroupSize` computation so that it takes the kernel
parameters into consideration.

Add new (for discrete platforms >= XeHP) and adapt existing tests, fix
cosmetics by the way.

Similar check for OCL:
https://github.com/intel/compute-runtime/blob/master/opencl/source/comma
nd_queue/enqueue_kernel.h#L130

Related-To: NEO-7684
Signed-off-by: Maciej Bielski <maciej.bielski@intel.com>
2023-02-08 11:20:52 +01:00

73 lines
2.4 KiB
C++

/*
* Copyright (C) 2020-2023 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include <level_zero/ze_api.h>
#include <memory>
#include <set>
#include <vector>
struct _ze_module_handle_t {};
namespace NEO {
struct KernelDescriptor;
}
namespace L0 {
struct Device;
struct ModuleBuildLog;
struct KernelImmutableData;
enum class ModuleType {
Builtin,
User
};
struct Module : _ze_module_handle_t {
static Module *create(Device *device, const ze_module_desc_t *desc, ModuleBuildLog *moduleBuildLog, ModuleType type, ze_result_t *result);
virtual ~Module() = default;
virtual Device *getDevice() const = 0;
virtual ze_result_t createKernel(const ze_kernel_desc_t *desc,
ze_kernel_handle_t *kernelHandle) = 0;
virtual ze_result_t destroy() = 0;
virtual ze_result_t getNativeBinary(size_t *pSize, uint8_t *pModuleNativeBinary) = 0;
virtual ze_result_t getFunctionPointer(const char *pKernelName, void **pfnFunction) = 0;
virtual ze_result_t getGlobalPointer(const char *pGlobalName, size_t *pSize, void **pPtr) = 0;
virtual ze_result_t getDebugInfo(size_t *pDebugDataSize, uint8_t *pDebugData) = 0;
virtual ze_result_t getKernelNames(uint32_t *pCount, const char **pNames) = 0;
virtual ze_result_t getProperties(ze_module_properties_t *pModuleProperties) = 0;
virtual ze_result_t performDynamicLink(uint32_t numModules,
ze_module_handle_t *phModules,
ze_module_build_log_handle_t *phLinkLog) = 0;
virtual const KernelImmutableData *getKernelImmutableData(const char *kernelName) const = 0;
virtual const std::vector<std::unique_ptr<KernelImmutableData>> &getKernelImmutableDataVector() const = 0;
virtual uint32_t getMaxGroupSize(const NEO::KernelDescriptor &kernelDescriptor) const = 0;
virtual bool isDebugEnabled() const = 0;
virtual bool shouldAllocatePrivateMemoryPerDispatch() const = 0;
virtual uint32_t getProfileFlags() const = 0;
virtual void checkIfPrivateMemoryPerDispatchIsNeeded() = 0;
Module() = default;
Module(const Module &) = delete;
Module(Module &&) = delete;
Module &operator=(const Module &) = delete;
Module &operator=(Module &&) = delete;
static Module *fromHandle(ze_module_handle_t handle) { return static_cast<Module *>(handle); }
inline ze_module_handle_t toHandle() { return this; }
};
} // namespace L0