Files
compute-runtime/level_zero/core/source/kernel/kernel.h
Jaime Arteaga beb3c5ed05 Add support for global work offset extension in L0
Add experimental extension to set global work offest in L0.
Current L0 specification does not have interface to export
experimental function symbols, so for now, applications need
to find the symbol like with dlsym on Linux.

A blackbox test showing functionality is also added.

Signed-off-by: Jaime Arteaga <jaime.a.arteaga.molina@intel.com>
2020-12-09 07:33:40 +01:00

151 lines
5.7 KiB
C++

/*
* Copyright (C) 2019-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/kernel/dispatch_kernel_encoder_interface.h"
#include "shared/source/kernel/kernel_descriptor.h"
#include "shared/source/memory_manager/graphics_allocation.h"
#include "shared/source/unified_memory/unified_memory.h"
#include <level_zero/ze_api.h>
#include <memory>
#include <vector>
struct _ze_kernel_handle_t {};
namespace NEO {
class Device;
struct KernelInfo;
class MemoryManager;
} // namespace NEO
namespace L0 {
struct Device;
struct Module;
struct KernelImmutableData {
KernelImmutableData(L0::Device *l0device = nullptr);
virtual ~KernelImmutableData();
void initialize(NEO::KernelInfo *kernelInfo, Device *device,
uint32_t computeUnitsUsedForSratch,
NEO::GraphicsAllocation *globalConstBuffer, NEO::GraphicsAllocation *globalVarBuffer, bool internalKernel);
const std::vector<NEO::GraphicsAllocation *> &getResidencyContainer() const {
return residencyContainer;
}
std::vector<NEO::GraphicsAllocation *> &getResidencyContainer() {
return residencyContainer;
}
uint32_t getIsaSize() const;
NEO::GraphicsAllocation *getIsaGraphicsAllocation() const { return isaGraphicsAllocation.get(); }
uint64_t getPrivateMemorySize() const;
NEO::GraphicsAllocation *getPrivateMemoryGraphicsAllocation() const { return privateMemoryGraphicsAllocation.get(); }
const uint8_t *getCrossThreadDataTemplate() const { return crossThreadDataTemplate.get(); }
uint32_t getSurfaceStateHeapSize() const { return surfaceStateHeapSize; }
const uint8_t *getSurfaceStateHeapTemplate() const { return surfaceStateHeapTemplate.get(); }
uint32_t getDynamicStateHeapDataSize() const { return dynamicStateHeapSize; }
const uint8_t *getDynamicStateHeapTemplate() const { return dynamicStateHeapTemplate.get(); }
const NEO::KernelDescriptor &getDescriptor() const { return *kernelDescriptor; }
Device *getDevice() { return this->device; }
protected:
Device *device = nullptr;
NEO::KernelDescriptor *kernelDescriptor = nullptr;
std::unique_ptr<NEO::GraphicsAllocation> isaGraphicsAllocation = nullptr;
std::unique_ptr<NEO::GraphicsAllocation> privateMemoryGraphicsAllocation = nullptr;
uint32_t crossThreadDataSize = 0;
std::unique_ptr<uint8_t[]> crossThreadDataTemplate = nullptr;
uint32_t surfaceStateHeapSize = 0;
std::unique_ptr<uint8_t[]> surfaceStateHeapTemplate = nullptr;
uint32_t dynamicStateHeapSize = 0;
std::unique_ptr<uint8_t[]> dynamicStateHeapTemplate = nullptr;
std::vector<NEO::GraphicsAllocation *> residencyContainer;
};
struct Kernel : _ze_kernel_handle_t, virtual NEO::DispatchKernelEncoderI {
template <typename Type>
struct Allocator {
static Kernel *allocate(Module *module) { return new Type(module); }
};
static Kernel *create(uint32_t productFamily, Module *module,
const ze_kernel_desc_t *desc, ze_result_t *ret);
~Kernel() override = default;
virtual ze_result_t destroy() = 0;
virtual ze_result_t setIndirectAccess(ze_kernel_indirect_access_flags_t flags) = 0;
virtual ze_result_t getIndirectAccess(ze_kernel_indirect_access_flags_t *flags) = 0;
virtual ze_result_t getSourceAttributes(uint32_t *pSize, char **pString) = 0;
virtual ze_result_t getProperties(ze_kernel_properties_t *pKernelProperties) = 0;
virtual ze_result_t setArgumentValue(uint32_t argIndex, size_t argSize, const void *pArgValue) = 0;
virtual void setGroupCount(uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) = 0;
virtual ze_result_t setArgBufferWithAlloc(uint32_t argIndex, uintptr_t argVal, NEO::GraphicsAllocation *allocation) = 0;
virtual ze_result_t setArgRedescribedImage(uint32_t argIndex, ze_image_handle_t argVal) = 0;
virtual ze_result_t setGroupSize(uint32_t groupSizeX, uint32_t groupSizeY,
uint32_t groupSizeZ) = 0;
virtual ze_result_t suggestGroupSize(uint32_t globalSizeX, uint32_t globalSizeY,
uint32_t globalSizeZ, uint32_t *groupSizeX,
uint32_t *groupSizeY, uint32_t *groupSizeZ) = 0;
virtual ze_result_t getKernelName(size_t *pSize, char *pName) = 0;
virtual uint32_t *getGlobalOffsets() = 0;
virtual ze_result_t setGlobalOffsetExp(uint32_t offsetX, uint32_t offsetY, uint32_t offsetZ) = 0;
virtual uint32_t patchGlobalOffset() = 0;
virtual ze_result_t suggestMaxCooperativeGroupCount(uint32_t *totalGroupCount) = 0;
virtual const KernelImmutableData *getImmutableData() const = 0;
virtual std::unique_ptr<Kernel> clone() const = 0;
virtual const std::vector<NEO::GraphicsAllocation *> &getResidencyContainer() const = 0;
virtual UnifiedMemoryControls getUnifiedMemoryControls() const = 0;
virtual bool hasIndirectAllocationsAllowed() const = 0;
virtual NEO::GraphicsAllocation *getPrintfBufferAllocation() = 0;
virtual void printPrintfOutput() = 0;
Kernel() = default;
Kernel(const Kernel &) = delete;
Kernel(Kernel &&) = delete;
Kernel &operator=(const Kernel &) = delete;
Kernel &operator=(Kernel &&) = delete;
static Kernel *fromHandle(ze_kernel_handle_t handle) { return static_cast<Kernel *>(handle); }
inline ze_kernel_handle_t toHandle() { return this; }
};
using KernelAllocatorFn = Kernel *(*)(Module *module);
extern KernelAllocatorFn kernelFactory[];
template <uint32_t productFamily, typename KernelType>
struct KernelPopulateFactory {
KernelPopulateFactory() {
kernelFactory[productFamily] = KernelType::template Allocator<KernelType>::allocate;
}
};
} // namespace L0