Files
compute-runtime/shared/test/unit_test/helpers/kernel_helpers_tests.cpp
Katarzyna Cencelewska e9f7df6ae6 refactor: create helper for maxPtssIndex
Signed-off-by: Katarzyna Cencelewska <katarzyna.cencelewska@intel.com>
2024-05-07 12:47:52 +02:00

249 lines
12 KiB
C++

/*
* Copyright (C) 2019-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/constants.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/kernel_helpers.h"
#include "shared/test/common/fixtures/device_fixture.h"
#include "shared/test/common/helpers/debug_manager_state_restore.h"
#include "shared/test/common/mocks/mock_device.h"
#include "shared/test/common/mocks/mock_execution_environment.h"
#include "shared/test/common/test_macros/test.h"
#include <algorithm>
using namespace NEO;
struct KernelHelperMaxWorkGroupsTests : ::testing::Test {
EngineGroupType engineType = EngineGroupType::compute;
uint32_t simd = 8;
uint32_t dssCount = 16;
uint32_t availableSlm = 64 * MemoryConstants::kiloByte;
uint32_t usedSlm = 0;
uint32_t numberOfBarriers = 0;
uint32_t workDim = 3;
uint32_t grf = 128;
uint32_t numSubdevices = 1;
size_t lws[3] = {10, 10, 10};
void SetUp() override {
executionEnvironment = std::make_unique<MockExecutionEnvironment>(defaultHwInfo.get(), false, 1u);
rootDeviceEnvironment = executionEnvironment->rootDeviceEnvironments[0].get();
}
uint32_t getMaxWorkGroupCount() {
KernelDescriptor descriptor = {};
descriptor.kernelAttributes.simdSize = simd;
descriptor.kernelAttributes.barrierCount = numberOfBarriers;
descriptor.kernelAttributes.numGrfRequired = grf;
auto hwInfo = rootDeviceEnvironment->getMutableHardwareInfo();
hwInfo->gtSystemInfo.DualSubSliceCount = dssCount;
hwInfo->capabilityTable.slmSize = (availableSlm / MemoryConstants::kiloByte) / dssCount;
return KernelHelper::getMaxWorkGroupCount(*rootDeviceEnvironment, descriptor, numSubdevices, usedSlm, workDim, lws, engineType, false);
}
std::unique_ptr<MockExecutionEnvironment> executionEnvironment;
RootDeviceEnvironment *rootDeviceEnvironment = nullptr;
};
TEST_F(KernelHelperMaxWorkGroupsTests, GivenNoBarriersOrSlmUsedWhenCalculatingMaxWorkGroupsCountThenResultIsCalculatedWithSimd) {
auto &helper = rootDeviceEnvironment->getHelper<NEO::GfxCoreHelper>();
uint32_t workGroupSize = static_cast<uint32_t>(lws[0] * lws[1] * lws[2]);
uint32_t expected = helper.calculateAvailableThreadCount(*rootDeviceEnvironment->getHardwareInfo(), grf) / static_cast<uint32_t>(Math::divideAndRoundUp(workGroupSize, simd));
expected = helper.adjustMaxWorkGroupCount(expected, EngineGroupType::compute, *rootDeviceEnvironment, false);
EXPECT_EQ(expected, getMaxWorkGroupCount());
}
TEST_F(KernelHelperMaxWorkGroupsTests, GivenDebugFlagSetWhenGetMaxWorkGroupCountCalledThenReturnCorrectValue) {
DebugManagerStateRestore restore;
debugManager.flags.OverrideMaxWorkGroupCount.set(123);
EXPECT_EQ(123u, getMaxWorkGroupCount());
}
TEST_F(KernelHelperMaxWorkGroupsTests, givenMultipleSubdevicesWenCalculatingMaxWorkGroupsCountTenMultiply) {
auto &helper = rootDeviceEnvironment->getHelper<NEO::GfxCoreHelper>();
auto baseCount = getMaxWorkGroupCount();
numSubdevices = 4;
auto countWithSubdevices = getMaxWorkGroupCount();
if (helper.singleTileExecImplicitScalingRequired(true)) {
EXPECT_EQ(baseCount, countWithSubdevices);
} else {
EXPECT_EQ(baseCount * numSubdevices, countWithSubdevices);
}
}
TEST_F(KernelHelperMaxWorkGroupsTests, GivenBarriersWhenCalculatingMaxWorkGroupsCountThenResultIsCalculatedWithRegardToBarriersCount) {
numberOfBarriers = 0;
auto baseCount = getMaxWorkGroupCount();
numberOfBarriers = 16;
auto &helper = rootDeviceEnvironment->getHelper<NEO::GfxCoreHelper>();
auto maxBarrierCount = helper.getMaxBarrierRegisterPerSlice();
auto expected = std::min(baseCount, static_cast<uint32_t>(dssCount * (maxBarrierCount / numberOfBarriers)));
EXPECT_EQ(expected, getMaxWorkGroupCount());
}
TEST_F(KernelHelperMaxWorkGroupsTests, GivenUsedSlmSizeWhenCalculatingMaxWorkGroupsCountThenResultIsCalculatedWithRegardToUsedSlmSize) {
usedSlm = 0;
auto baseCount = getMaxWorkGroupCount();
usedSlm = 4 * MemoryConstants::kiloByte;
auto expected = std::min(baseCount, availableSlm / usedSlm);
EXPECT_EQ(expected, getMaxWorkGroupCount());
}
TEST_F(KernelHelperMaxWorkGroupsTests, GivenVariousValuesWhenCalculatingMaxWorkGroupsCountThenLowestResultIsAlwaysReturned) {
auto &helper = rootDeviceEnvironment->getHelper<NEO::GfxCoreHelper>();
engineType = EngineGroupType::cooperativeCompute;
usedSlm = 1 * MemoryConstants::kiloByte;
numberOfBarriers = 1;
dssCount = 1;
workDim = 1;
lws[0] = simd;
auto hwInfo = rootDeviceEnvironment->getMutableHardwareInfo();
hwInfo->gtSystemInfo.ThreadCount = 1024;
EXPECT_NE(1u, getMaxWorkGroupCount());
numberOfBarriers = static_cast<uint32_t>(helper.getMaxBarrierRegisterPerSlice());
EXPECT_EQ(1u, getMaxWorkGroupCount());
numberOfBarriers = 1;
EXPECT_NE(1u, getMaxWorkGroupCount());
usedSlm = availableSlm;
EXPECT_EQ(1u, getMaxWorkGroupCount());
}
using KernelHelperTest = Test<DeviceFixture>;
TEST_F(KernelHelperTest, GivenStatelessPrivateSizeGreaterThanGlobalSizeWhenCheckingIfThereIsEnaughSpaceThenOutOfMemReturned) {
auto globalSize = pDevice->getDeviceInfo().globalMemSize;
KernelDescriptor::KernelAttributes attributes = {};
attributes.perHwThreadPrivateMemorySize = (static_cast<uint32_t>((globalSize + pDevice->getDeviceInfo().computeUnitsUsedForScratch) / pDevice->getDeviceInfo().computeUnitsUsedForScratch)) + 100;
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::outOfDeviceMemory);
}
TEST_F(KernelHelperTest, GivenScratchSizeGreaterThanGlobalSizeWhenCheckingIfThereIsEnaughSpaceThenOutOfMemReturned) {
auto globalSize = pDevice->getDeviceInfo().globalMemSize;
KernelDescriptor::KernelAttributes attributes = {};
attributes.perThreadScratchSize[0] = (static_cast<uint32_t>((globalSize + pDevice->getDeviceInfo().computeUnitsUsedForScratch) / pDevice->getDeviceInfo().computeUnitsUsedForScratch)) + 100;
auto &gfxCoreHelper = pDevice->getGfxCoreHelper();
auto &productHelper = pDevice->getProductHelper();
if (attributes.perThreadScratchSize[0] > gfxCoreHelper.getMaxScratchSize(productHelper)) {
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::invalidKernel);
} else {
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::outOfDeviceMemory);
}
}
TEST_F(KernelHelperTest, GivenScratchPrivateSizeGreaterThanGlobalSizeWhenCheckingIfThereIsEnaughSpaceThenOutOfMemReturned) {
auto globalSize = pDevice->getDeviceInfo().globalMemSize;
KernelDescriptor::KernelAttributes attributes = {};
attributes.perThreadScratchSize[1] = (static_cast<uint32_t>((globalSize + pDevice->getDeviceInfo().computeUnitsUsedForScratch) / pDevice->getDeviceInfo().computeUnitsUsedForScratch)) + 100;
auto &gfxCoreHelper = pDevice->getGfxCoreHelper();
auto &productHelper = pDevice->getProductHelper();
if (attributes.perThreadScratchSize[1] > gfxCoreHelper.getMaxScratchSize(productHelper)) {
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::invalidKernel);
} else {
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::outOfDeviceMemory);
}
}
TEST_F(KernelHelperTest, GivenScratchAndPrivateSizeLessThanGlobalSizeWhenCheckingIfThereIsEnaughSpaceThenSuccessReturned) {
auto globalSize = pDevice->getDeviceInfo().globalMemSize;
KernelDescriptor::KernelAttributes attributes = {};
auto size = (static_cast<uint32_t>((globalSize + pDevice->getDeviceInfo().computeUnitsUsedForScratch) / pDevice->getDeviceInfo().computeUnitsUsedForScratch)) - 100;
attributes.perHwThreadPrivateMemorySize = size;
auto &gfxCoreHelper = pDevice->getRootDeviceEnvironment().getHelper<NEO::GfxCoreHelper>();
auto &productHelper = pDevice->getProductHelper();
uint32_t maxScratchSize = gfxCoreHelper.getMaxScratchSize(productHelper);
attributes.perThreadScratchSize[0] = (size > maxScratchSize) ? maxScratchSize : size;
attributes.perThreadScratchSize[1] = (size > maxScratchSize) ? maxScratchSize : size;
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::success);
}
TEST_F(KernelHelperTest, GivenScratchSizeGreaterThanMaxScratchSizeWhenCheckingIfThereIsEnaughSpaceThenInvalidKernelIsReturned) {
KernelDescriptor::KernelAttributes attributes = {};
auto &gfxCoreHelper = pDevice->getRootDeviceEnvironment().getHelper<NEO::GfxCoreHelper>();
auto &productHelper = pDevice->getProductHelper();
uint32_t maxScratchSize = gfxCoreHelper.getMaxScratchSize(productHelper);
attributes.perHwThreadPrivateMemorySize = 0x10;
attributes.perThreadScratchSize[0] = maxScratchSize + 1;
attributes.perThreadScratchSize[1] = 0x10;
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::invalidKernel);
}
TEST_F(KernelHelperTest, GivenScratchPrivateSizeGreaterThanMaxScratchSizeWhenCheckingIfThereIsEnaughSpaceThenInvalidKernelIsReturned) {
KernelDescriptor::KernelAttributes attributes = {};
auto &gfxCoreHelper = pDevice->getRootDeviceEnvironment().getHelper<NEO::GfxCoreHelper>();
auto &productHelper = pDevice->getProductHelper();
uint32_t maxScratchSize = gfxCoreHelper.getMaxScratchSize(productHelper);
attributes.perHwThreadPrivateMemorySize = 0x10;
attributes.perThreadScratchSize[0] = 0x10;
attributes.perThreadScratchSize[1] = maxScratchSize + 1;
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::invalidKernel);
}
TEST_F(KernelHelperTest, GivenScratchAndEqualsZeroWhenCheckingIfThereIsEnaughSpaceThenSuccessIsReturned) {
KernelDescriptor::KernelAttributes attributes = {};
attributes.perHwThreadPrivateMemorySize = 0;
attributes.perThreadScratchSize[0] = 0;
attributes.perThreadScratchSize[1] = 0;
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::success);
}
TEST_F(KernelHelperTest, GivenScratchEqualsZeroAndPrivetGreaterThanZeroWhenCheckingIfThereIsEnaughSpaceThenSuccessIsReturned) {
KernelDescriptor::KernelAttributes attributes = {};
attributes.perHwThreadPrivateMemorySize = 0x10;
attributes.perThreadScratchSize[0] = 0;
attributes.perThreadScratchSize[1] = 0;
EXPECT_EQ(KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(attributes, pDevice), KernelHelper::ErrorCode::success);
}
TEST_F(KernelHelperTest, GivenNoPtrByValueWhenCheckingIsAnyArgumentPtrByValueThenFalseIsReturned) {
KernelDescriptor kernelDescriptor;
auto pointerArg = ArgDescriptor(ArgDescriptor::argTPointer);
auto valueArg = ArgDescriptor(ArgDescriptor::argTValue);
ArgDescValue::Element element;
element.isPtr = false;
valueArg.as<ArgDescValue>().elements.push_back(element);
kernelDescriptor.payloadMappings.explicitArgs.push_back(pointerArg);
kernelDescriptor.payloadMappings.explicitArgs.push_back(valueArg);
EXPECT_FALSE(KernelHelper::isAnyArgumentPtrByValue(kernelDescriptor));
}
TEST_F(KernelHelperTest, GivenPtrByValueWhenCheckingIsAnyArgumentPtrByValueThenTrueIsReturned) {
KernelDescriptor kernelDescriptor;
auto pointerArg = ArgDescriptor(ArgDescriptor::argTPointer);
auto valueArg = ArgDescriptor(ArgDescriptor::argTValue);
ArgDescValue::Element element;
element.isPtr = true;
valueArg.as<ArgDescValue>().elements.push_back(element);
kernelDescriptor.payloadMappings.explicitArgs.push_back(pointerArg);
kernelDescriptor.payloadMappings.explicitArgs.push_back(valueArg);
EXPECT_TRUE(KernelHelper::isAnyArgumentPtrByValue(kernelDescriptor));
}