Files
llvm/mlir/lib/Transforms/Utils/LoopUtils.cpp

1062 lines
43 KiB
C++
Raw Normal View History

Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopUtils.h"
Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop unroll/unroll-and-jam more powerful; add additional affine expr builder methods - use previously added analysis/simplification to infer multiple of unroll factor trip counts, making loop unroll/unroll-and-jam more general. - for loop unroll, support bounds that are single result affine map's with the same set of operands. For unknown loop bounds, loop unroll will now work as long as trip count can be determined to be a multiple of unroll factor. - extend getConstantTripCount to deal with single result affine map's with the same operands. move it to mlir/Analysis/LoopAnalysis.cpp - add additional builder utility methods for affine expr arithmetic (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to use the utility methods. - move affine analysis routines to AffineAnalysis.cpp/.h from AffineStructures.cpp/.h. - Rename LoopUnrollJam to LoopUnrollAndJam to match class name. - add an additional simplification for simplifyFloorDiv, simplifyCeilDiv - Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does not have operands. Operands are passed to it through affine_apply, from loop bounds/if condition's, etc., operands are stored in the latter. This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU code generation, and can move to other analyses/transformations. Loop nests like these are now unrolled without any cleanup loop being generated. for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) { %x = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) { %y = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) { %x = "foo"() : () -> i32 } } TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor changes). PiperOrigin-RevId: 212661212
2018-09-12 10:21:23 -07:00
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop unroll/unroll-and-jam more powerful; add additional affine expr builder methods - use previously added analysis/simplification to infer multiple of unroll factor trip counts, making loop unroll/unroll-and-jam more general. - for loop unroll, support bounds that are single result affine map's with the same set of operands. For unknown loop bounds, loop unroll will now work as long as trip count can be determined to be a multiple of unroll factor. - extend getConstantTripCount to deal with single result affine map's with the same operands. move it to mlir/Analysis/LoopAnalysis.cpp - add additional builder utility methods for affine expr arithmetic (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to use the utility methods. - move affine analysis routines to AffineAnalysis.cpp/.h from AffineStructures.cpp/.h. - Rename LoopUnrollJam to LoopUnrollAndJam to match class name. - add an additional simplification for simplifyFloorDiv, simplifyCeilDiv - Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does not have operands. Operands are passed to it through affine_apply, from loop bounds/if condition's, etc., operands are stored in the latter. This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU code generation, and can move to other analyses/transformations. Loop nests like these are now unrolled without any cleanup loop being generated. for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) { %x = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) { %y = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) { %x = "foo"() : () -> i32 } } TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor changes). PiperOrigin-RevId: 212661212
2018-09-12 10:21:23 -07:00
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Operation.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/RegionUtils.h"
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
2019-02-25 09:53:05 -08:00
#include "mlir/IR/Module.h"
#define DEBUG_TYPE "LoopUtils"
using namespace mlir;
/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
void mlir::getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
AffineMap *map,
SmallVectorImpl<Value *> *operands,
OpBuilder &b) {
auto lbMap = forOp.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1) {
*map = AffineMap();
return;
}
AffineMap tripCountMap;
SmallVector<Value *, 4> tripCountOperands;
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
// Sometimes the trip count cannot be expressed as an affine expression.
if (!tripCountMap) {
*map = AffineMap();
return;
}
unsigned step = forOp.getStep();
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands);
// For each upper bound expr, get the range.
// Eg: affine.for %i = lb to min (ub1, ub2),
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
// these affine.apply's make up the cleanup loop lower bound.
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
SmallVector<Value *, 4> bumpValues(tripCountMap.getNumResults());
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
auto tripCountExpr = tripCountMap.getResult(i);
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
auto bumpMap = b.getAffineMap(tripCountMap.getNumDims(),
tripCountMap.getNumSymbols(), bumpExprs[i]);
bumpValues[i] =
b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
}
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);
operands->clear();
operands->push_back(lb);
operands->append(bumpValues.begin(), bumpValues.end());
*map = b.getAffineMap(1 + tripCountMap.getNumResults(), 0, newUbExprs);
// Simplify the map + operands.
fullyComposeAffineMapAndOperands(map, operands);
*map = simplifyAffineMap(*map);
canonicalizeMapAndOperands(map, operands);
// Remove any affine.apply's that became dead from the simplification above.
for (auto *v : bumpValues) {
if (v->use_empty()) {
v->getDefiningOp()->erase();
}
}
if (lb.use_empty())
lb.erase();
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop unroll/unroll-and-jam more powerful; add additional affine expr builder methods - use previously added analysis/simplification to infer multiple of unroll factor trip counts, making loop unroll/unroll-and-jam more general. - for loop unroll, support bounds that are single result affine map's with the same set of operands. For unknown loop bounds, loop unroll will now work as long as trip count can be determined to be a multiple of unroll factor. - extend getConstantTripCount to deal with single result affine map's with the same operands. move it to mlir/Analysis/LoopAnalysis.cpp - add additional builder utility methods for affine expr arithmetic (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to use the utility methods. - move affine analysis routines to AffineAnalysis.cpp/.h from AffineStructures.cpp/.h. - Rename LoopUnrollJam to LoopUnrollAndJam to match class name. - add an additional simplification for simplifyFloorDiv, simplifyCeilDiv - Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does not have operands. Operands are passed to it through affine_apply, from loop bounds/if condition's, etc., operands are stored in the latter. This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU code generation, and can move to other analyses/transformations. Loop nests like these are now unrolled without any cleanup loop being generated. for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) { %x = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) { %y = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) { %x = "foo"() : () -> i32 } } TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor changes). PiperOrigin-RevId: 212661212
2018-09-12 10:21:23 -07:00
// TODO(bondhugula): extend this for arbitrary affine bounds.
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount.hasValue() || tripCount.getValue() != 1)
return failure();
// TODO(mlir-team): there is no builder for a max.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// Replaces all IV uses to its single iteration value.
auto *iv = forOp.getInductionVar();
Operation *op = forOp.getOperation();
if (!iv->use_empty()) {
if (forOp.hasConstantLowerBound()) {
OpBuilder topBuilder(op->getParentOfType<FuncOp>().getBody());
auto constOp = topBuilder.create<ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv->replaceAllUsesWith(constOp);
} else {
AffineBound lb = forOp.getLowerBound();
SmallVector<Value *, 4> lbOperands(lb.operand_begin(), lb.operand_end());
OpBuilder builder(op->getBlock(), Block::iterator(op));
if (lb.getMap() == builder.getDimIdentityMap()) {
// No need of generating an affine.apply.
iv->replaceAllUsesWith(lbOperands[0]);
} else {
auto affineApplyOp = builder.create<AffineApplyOp>(
op->getLoc(), lb.getMap(), lbOperands);
iv->replaceAllUsesWith(affineApplyOp);
}
}
}
// Move the loop body operations, except for terminator, to the loop's
// containing block.
auto *block = op->getBlock();
forOp.getBody()->getOperations().back().erase();
block->getOperations().splice(Block::iterator(op),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Promotes all single iteration for op's in the FuncOp, i.e., moves
/// their body into the containing Block.
void mlir::promoteSingleIterationLoops(FuncOp f) {
// Gathers all innermost loops through a post order pruned walk.
f.walk<AffineForOp>(
[](AffineForOp forOp) { promoteIfSingleIteration(forOp); });
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
/// Generates a 'affine.for' op with the specified lower and upper bounds
/// while generating the right IV remappings for the shifted operations. The
/// operation blocks that go into the loop are specified in instGroupQueue
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the shift applied to that group of operations; note
/// that the shift is multiplied by the loop step before being applied. Returns
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
/// nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp
generateLoop(AffineMap lbMap, AffineMap ubMap,
const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>>
&instGroupQueue,
unsigned offset, AffineForOp srcForInst, OpBuilder b) {
SmallVector<Value *, 4> lbOperands(srcForInst.getLowerBoundOperands());
SmallVector<Value *, 4> ubOperands(srcForInst.getUpperBoundOperands());
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
assert(lbMap.getNumInputs() == lbOperands.size());
assert(ubMap.getNumInputs() == ubOperands.size());
auto loopChunk =
b.create<AffineForOp>(srcForInst.getLoc(), lbOperands, lbMap, ubOperands,
ubMap, srcForInst.getStep());
auto *loopChunkIV = loopChunk.getInductionVar();
auto *srcIV = srcForInst.getInductionVar();
BlockAndValueMapping operandMap;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
OpBuilder bodyBuilder = loopChunk.getBodyBuilder();
for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
it != e; ++it) {
uint64_t shift = it->first;
auto insts = it->second;
// All 'same shift' operations get added with their operands being
// remapped to results of cloned operations, and their IV used remapped.
// Generate the remapping if the shift is not zero: remappedIV = newIV -
// shift.
if (!srcIV->use_empty() && shift != 0) {
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
srcForInst.getLoc(),
bodyBuilder.getSingleDimShiftAffineMap(
-static_cast<int64_t>(srcForInst.getStep() * shift)),
loopChunkIV);
operandMap.map(srcIV, ivRemap);
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
} else {
operandMap.map(srcIV, loopChunkIV);
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
for (auto *op : insts) {
if (!isa<AffineTerminatorOp>(op))
bodyBuilder.clone(*op, operandMap);
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
};
if (succeeded(promoteIfSingleIteration(loopChunk)))
return AffineForOp();
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
return loopChunk;
}
/// Skew the operations in the body of a 'affine.for' operation with the
/// specified operation-wise shifts. The shifts are with respect to the
/// original execution order, and are multiplied by the loop 'step' before being
/// applied. A shift of zero for each operation will lead to no change.
// The skewing of operations with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of operations
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of operations.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of operations
// in the body of the for loop - (using the 'sweep line' paradigm). This method
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based depedence preservation check rests with the users of this
// method.
LogicalResult mlir::instBodySkew(AffineForOp forOp, ArrayRef<uint64_t> shifts,
bool unrollPrologueEpilogue) {
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return success();
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
return success();
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(isInstwiseShiftValid(forOp, shifts) &&
"shifts will lead to an invalid transformation\n");
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
int64_t step = forOp.getStep();
unsigned numChildInsts = forOp.getBody()->getOperations().size();
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// Do a linear time (counting) sort for the shifts.
uint64_t maxShift = 0;
for (unsigned i = 0; i < numChildInsts; i++) {
maxShift = std::max(maxShift, shifts[i]);
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
// Such large shifts are not the typical use case.
if (maxShift >= numChildInsts) {
forOp.emitWarning("not shifting because shifts are unrealistically large");
return success();
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// An array of operation groups sorted by shift amount; each group has all
// operations with the same shift in the order in which they appear in the
// body of the 'affine.for' op.
std::vector<std::vector<Operation *>> sortedInstGroups(maxShift + 1);
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
unsigned pos = 0;
for (auto &op : *forOp.getBody()) {
auto shift = shifts[pos++];
sortedInstGroups[shift].push_back(&op);
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
AffineForOp prologue;
AffineForOp epilogue;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// Do a sweep over the sorted shifts while storing open groups in a
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// vector, and generating loop portions as necessary during the sweep. A block
// of operations is paired with its shift.
std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> instGroupQueue;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
auto origLbMap = forOp.getLowerBoundMap();
uint64_t lbShift = 0;
OpBuilder b(forOp.getOperation());
for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
// If nothing is shifted by d, continue.
if (sortedInstGroups[d].empty())
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
continue;
if (!instGroupQueue.empty()) {
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
assert(d >= 1 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// [lbShift, min(lbShift + tripCount, d)) and the body of the
// loop needs to have all operations in instQueue in that order.
AffineForOp res;
if (lbShift + tripCount * step < d * step) {
res = generateLoop(
b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
instGroupQueue, 0, forOp, b);
// Entire loop for the queued op groups generated, empty it.
instGroupQueue.clear();
lbShift += tripCount * step;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
} else {
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
0, forOp, b);
lbShift = d * step;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
if (!prologue && res)
prologue = res;
epilogue = res;
} else {
// Start of first interval.
lbShift = d * step;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
// Augment the list of operations that get into the current open interval.
instGroupQueue.push_back({d, sortedInstGroups[d]});
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
// Those operations groups left in the queue now need to be processed (FIFO)
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
// and their loops completed.
for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, ubShift),
instGroupQueue, i, forOp, b);
lbShift = ubShift;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
if (!prologue)
prologue = epilogue;
}
// Erase the original for op.
forOp.erase();
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue &&
epilogue.getOperation() != prologue.getOperation())
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
loopUnrollFull(epilogue);
return success();
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-28 12:17:26 -07:00
}
// Collect perfectly nested loops starting from `rootForOps`. Loops are
// perfectly nested if each loop is the first and only non-terminator operation
// in the parent loop. Collect at most `maxLoops` loops and append them to
// `forOps`.
template <typename T>
void getPerfectlyNestedLoopsImpl(
SmallVectorImpl<T> &forOps, T rootForOp,
unsigned maxLoops = std::numeric_limits<unsigned>::max()) {
for (unsigned i = 0; i < maxLoops; ++i) {
forOps.push_back(rootForOp);
// FIXME: ForOp and AffineForOp currently provide different names to access
// the region ("region" and "getRegion"). Remove this generic access when
// AffineForOp moves to ODS and also gets "region".
Block &body = rootForOp.getOperation()->getRegion(0).front();
if (body.begin() != std::prev(body.end(), 2))
return;
rootForOp = dyn_cast<T>(&body.front());
if (!rootForOp)
return;
}
}
/// Get perfectly nested sequence of loops starting at root of loop nest
/// (the first op being another AffineFor, and the second op - a terminator).
/// A loop is perfectly nested iff: the first op in the loop's body is another
/// AffineForOp, and the second op is a terminator).
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<AffineForOp> &nestedLoops,
AffineForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<loop::ForOp> &nestedLoops,
loop::ForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
/// Unrolls this loop completely.
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue()) {
uint64_t tripCount = mayBeConstantTripCount.getValue();
if (tripCount == 1) {
return promoteIfSingleIteration(forOp);
}
return loopUnrollByFactor(forOp, tripCount);
}
return failure();
}
/// Unrolls and jams this loop by the specified factor or by the trip count (if
/// constant) whichever is lower.
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
uint64_t unrollFactor) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
return loopUnrollByFactor(forOp, unrollFactor);
}
/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
uint64_t unrollFactor) {
assert(unrollFactor >= 1 && "unroll factor should be >= 1");
if (unrollFactor == 1)
return promoteIfSingleIteration(forOp);
if (forOp.getBody()->empty() ||
forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return failure();
// Loops where the lower bound is a max expression isn't supported for
// unrolling since the trip count can be expressed as an affine function when
// both the lower bound and the upper bound are multi-result maps. However,
// one meaningful way to do such unrolling would be to specialize the loop for
// the 'hotspot' case and unroll that hotspot.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// If the trip count is lower than the unroll factor, no unrolled body.
// TODO(bondhugula): option to specify cleanup loop unrolling.
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return failure();
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
Operation *op = forOp.getOperation();
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
OpBuilder builder(op->getBlock(), ++Block::iterator(op));
auto cleanupForInst = cast<AffineForOp>(builder.clone(*op));
AffineMap cleanupMap;
SmallVector<Value *, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
builder);
assert(cleanupMap &&
"cleanup loop lower bound map for single result lower bound maps "
"can always be determined");
cleanupForInst.setLowerBound(cleanupOperands, cleanupMap);
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(cleanupForInst);
// Adjust upper bound of the original loop; this is the same as the lower
// bound of the cleanup loop.
forOp.setUpperBound(cleanupOperands, cleanupMap);
}
// Scale the step of loop being unrolled by unroll factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollFactor);
// Builder to insert unrolled bodies just before the terminator of the body of
// 'forOp'.
OpBuilder builder = forOp.getBodyBuilder();
// Keep a pointer to the last non-terminator operation in the original block
// so that we know what to clone (since we are doing this in-place).
Block::iterator srcBlockEnd = std::prev(forOp.getBody()->end(), 2);
// Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
auto *forOpIV = forOp.getInductionVar();
for (unsigned i = 1; i < unrollFactor; i++) {
BlockAndValueMapping operandMap;
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV->use_empty()) {
// iv' = iv + 1/2/3...unrollFactor-1;
auto d0 = builder.getAffineDimExpr(0);
auto bumpMap = builder.getAffineMap(1, 0, {d0 + i * step});
auto ivUnroll =
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the original body of 'forOp'.
for (auto it = forOp.getBody()->begin(); it != std::next(srcBlockEnd);
it++) {
builder.clone(*it, operandMap);
}
}
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
auto *forOpAInst = forOpA.getOperation();
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
auto &forOpABody = forOpA.getBody()->getOperations();
auto &forOpBBody = forOpB.getBody()->getOperations();
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
// body containing only the terminator.
forOpAInst->getBlock()->getOperations().splice(Block::iterator(forOpAInst),
forOpABody, forOpABody.begin(),
std::prev(forOpABody.end()));
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
// body (this leaves forOpB's body containing only the terminator).
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
std::prev(forOpBBody.end()));
// 3) Splice forOpA into the beginning of forOpB's body.
forOpBBody.splice(forOpBBody.begin(), forOpAInst->getBlock()->getOperations(),
Block::iterator(forOpAInst));
}
// Checks each dependence component against the permutation to see if the
// desired loop interchange would violate dependences by making the
// dependence componenent lexicographically negative.
static bool checkLoopInterchangeDependences(
const std::vector<llvm::SmallVector<DependenceComponent, 2>> &depCompsVec,
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
// Invert permutation map.
unsigned maxLoopDepth = loops.size();
llvm::SmallVector<unsigned, 4> loopPermMapInv;
loopPermMapInv.resize(maxLoopDepth);
for (unsigned i = 0; i < maxLoopDepth; ++i)
loopPermMapInv[loopPermMap[i]] = i;
// Check each dependence component against the permutation to see if the
// desired loop interchange permutation would make the dependence vectors
// lexicographically negative.
// Example 1: [-1, 1][0, 0]
// Example 2: [0, 0][-1, 1]
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
const llvm::SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
// Check if the first non-zero dependence component is positive.
// This iterates through loops in the desired order.
for (unsigned j = 0; j < maxLoopDepth; ++j) {
unsigned permIndex = loopPermMapInv[j];
assert(depComps[permIndex].lb.hasValue());
int64_t depCompLb = depComps[permIndex].lb.getValue();
if (depCompLb > 0)
break;
if (depCompLb < 0)
return false;
}
}
return true;
}
/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
/// nested sequence of loops in 'loops' would violate dependences.
bool mlir::isValidLoopInterchangePermutation(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
assert(loopPermMap.size() == loops.size());
unsigned maxLoopDepth = loops.size();
std::vector<llvm::SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
}
/// Performs a sequence of loop interchanges of loops in perfectly nested
/// sequence of loops in 'loops', as specified by permutation in 'loopPermMap'.
unsigned mlir::interchangeLoops(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
Optional<unsigned> loopNestRootIndex;
for (int i = loops.size() - 1; i >= 0; --i) {
int permIndex = static_cast<int>(loopPermMap[i]);
// Store the index of the for loop which will be the new loop nest root.
if (permIndex == 0)
loopNestRootIndex = i;
if (permIndex > i) {
// Sink loop 'i' by 'permIndex - i' levels deeper into the loop nest.
sinkLoop(loops[i], permIndex - i);
}
}
assert(loopNestRootIndex.hasValue());
return loopNestRootIndex.getValue();
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) {
SmallVector<AffineForOp, 4> loops;
getPerfectlyNestedLoops(loops, forOp);
if (loops.size() < 2)
return forOp;
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
unsigned maxLoopDepth = loops.size();
std::vector<llvm::SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
// Mark loops as either parallel or sequential.
llvm::SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
llvm::SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
for (unsigned j = 0; j < maxLoopDepth; ++j) {
DependenceComponent &depComp = depComps[j];
assert(depComp.lb.hasValue() && depComp.ub.hasValue());
if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0)
isParallelLoop[j] = false;
}
}
// Count the number of parallel loops.
unsigned numParallelLoops = 0;
for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
if (isParallelLoop[i])
++numParallelLoops;
// Compute permutation of loops that sinks sequential loops (and thus raises
// parallel loops) while preserving relative order.
llvm::SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
unsigned nextSequentialLoop = numParallelLoops;
unsigned nextParallelLoop = 0;
for (unsigned i = 0; i < maxLoopDepth; ++i) {
if (isParallelLoop[i]) {
loopPermMap[i] = nextParallelLoop++;
} else {
loopPermMap[i] = nextSequentialLoop++;
}
}
// Check if permutation 'loopPermMap' would violate dependences.
if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
return forOp;
// Perform loop interchange according to permutation 'loopPermMap'.
unsigned loopNestRootIndex = interchangeLoops(loops, loopPermMap);
return loops[loopNestRootIndex];
}
/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
/// deeper in the loop nest.
void mlir::sinkLoop(AffineForOp forOp, unsigned loopDepth) {
for (unsigned i = 0; i < loopDepth; ++i) {
AffineForOp nextForOp = cast<AffineForOp>(forOp.getBody()->front());
interchangeLoops(forOp, nextForOp);
}
}
2019-02-25 09:53:05 -08:00
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
// ...
// }
// ```
static void augmentMapAndBounds(OpBuilder &b, Value *iv, AffineMap *map,
2019-02-25 09:53:05 -08:00
SmallVector<Value *, 4> *operands,
int64_t offset = 0) {
auto bounds = llvm::to_vector<4>(map->getResults());
bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
operands->insert(operands->begin() + map->getNumDims(), iv);
*map = b.getAffineMap(map->getNumDims() + 1, map->getNumSymbols(), bounds);
2019-02-25 09:53:05 -08:00
canonicalizeMapAndOperands(map, operands);
}
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
ArrayRef<AffineForOp> targets) {
auto originalStep = forOp.getStep();
2019-02-25 09:53:05 -08:00
auto scaledStep = originalStep * factor;
forOp.setStep(scaledStep);
2019-02-25 09:53:05 -08:00
auto *op = forOp.getOperation();
OpBuilder b(op->getBlock(), ++Block::iterator(op));
2019-02-25 09:53:05 -08:00
// Lower-bound map creation.
auto lbMap = forOp.getLowerBoundMap();
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);
2019-02-25 09:53:05 -08:00
// Upper-bound map creation.
auto ubMap = forOp.getUpperBoundMap();
SmallVector<Value *, 4> ubOperands(forOp.getUpperBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
2019-02-25 09:53:05 -08:00
/*offset=*/scaledStep);
auto *iv = forOp.getInductionVar();
SmallVector<AffineForOp, 8> innerLoops;
2019-02-25 09:53:05 -08:00
for (auto t : targets) {
// Insert newForOp before the terminator of `t`.
OpBuilder b = t.getBodyBuilder();
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, originalStep);
auto begin = t.getBody()->begin();
// Skip terminator and `newForOp` which is just before the terminator.
auto nOps = t.getBody()->getOperations().size() - 2;
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
2019-02-25 09:53:05 -08:00
}
return innerLoops;
}
static Loops stripmineSink(loop::ForOp forOp, Value *factor,
ArrayRef<loop::ForOp> targets) {
auto *originalStep = forOp.step();
auto *iv = forOp.getInductionVar();
OpBuilder b(forOp);
forOp.setStep(b.create<MulIOp>(forOp.getLoc(), originalStep, factor));
Loops innerLoops;
for (auto t : targets) {
// Save information for splicing ops out of t when done
auto begin = t.getBody()->begin();
auto nOps = t.getBody()->getOperations().size();
// Insert newForOp before the terminator of `t`.
OpBuilder b(t.getBodyBuilder());
Value *stepped = b.create<AddIOp>(t.getLoc(), iv, forOp.step());
Value *less = b.create<CmpIOp>(t.getLoc(), CmpIPredicate::SLT,
forOp.upperBound(), stepped);
Value *ub =
b.create<SelectOp>(t.getLoc(), less, forOp.upperBound(), stepped);
// Splice [begin, begin + nOps - 1) into `newForOp` and replace uses.
auto newForOp = b.create<loop::ForOp>(t.getLoc(), iv, ub, originalStep);
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps - 1));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
2019-02-25 09:53:05 -08:00
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
template <typename ForType, typename SizeType>
static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) {
// TODO(ntv): Use cheap structural assertions that targets are nested under
// forOp and that targets are not nested under each other when DominanceInfo
// exposes the capability. It seems overkill to construct a whole function
// dominance tree at this point.
auto res = stripmineSink(forOp, factor, ArrayRef<ForType>{target});
2019-02-25 09:53:05 -08:00
assert(res.size() == 1 && "Expected 1 inner forOp");
return res[0];
}
template <typename ForType, typename SizeType>
static SmallVector<SmallVector<ForType, 8>, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes,
ArrayRef<ForType> targets) {
SmallVector<SmallVector<ForType, 8>, 8> res;
SmallVector<ForType, 8> currentTargets(targets.begin(), targets.end());
2019-02-25 09:53:05 -08:00
for (auto it : llvm::zip(forOps, sizes)) {
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
res.push_back(step);
currentTargets = step;
}
return res;
}
SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
ArrayRef<AffineForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
SmallVector<Loops, 8> mlir::tile(ArrayRef<loop::ForOp> forOps,
ArrayRef<Value *> sizes,
ArrayRef<loop::ForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
template <typename ForType, typename SizeType>
static SmallVector<ForType, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes, ForType target) {
SmallVector<ForType, 8> res;
for (auto loops : tile(forOps, sizes, ArrayRef<ForType>{target})) {
assert(loops.size() == 1);
res.push_back(loops[0]);
}
return res;
}
SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
ArrayRef<uint64_t> sizes,
AffineForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tile(ArrayRef<loop::ForOp> forOps, ArrayRef<Value *> sizes,
loop::ForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tilePerfectlyNested(loop::ForOp rootForOp,
ArrayRef<Value *> sizes) {
// Collect prefectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<loop::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
return ::tile(forOps, sizes, forOps.back());
}
// Build the IR that performs ceil division of a positive value by a constant:
// ceildiv(a, B) = divis(a + (B-1), B)
// where divis is roundning-to-zero division.
static Value *ceilDivPositive(OpBuilder &builder, Location loc, Value *dividend,
int64_t divisor) {
assert(divisor > 0 && "expected positive divisor");
assert(dividend->getType().isIndex() && "expected index-typed value");
Value *divisorMinusOneCst = builder.create<ConstantIndexOp>(loc, divisor - 1);
Value *divisorCst = builder.create<ConstantIndexOp>(loc, divisor);
Value *sum = builder.create<AddIOp>(loc, dividend, divisorMinusOneCst);
return builder.create<DivISOp>(loc, sum, divisorCst);
}
// Build the IR that performs ceil division of a positive value by another
// positive value:
// ceildiv(a, b) = divis(a + (b - 1), b)
// where divis is rounding-to-zero division.
static Value *ceilDivPositive(OpBuilder &builder, Location loc, Value *dividend,
Value *divisor) {
assert(dividend->getType().isIndex() && "expected index-typed value");
Value *cstOne = builder.create<ConstantIndexOp>(loc, 1);
Value *divisorMinusOne = builder.create<SubIOp>(loc, divisor, cstOne);
Value *sum = builder.create<AddIOp>(loc, dividend, divisorMinusOne);
return builder.create<DivISOp>(loc, sum, divisor);
}
TileLoops mlir::extractFixedOuterLoops(loop::ForOp rootForOp,
ArrayRef<int64_t> sizes) {
// Collect prefectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<loop::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
// Compute the tile sizes such that i-th outer loop executes size[i]
// iterations. Given that the loop current executes
// numIterations = ceildiv((upperBound - lowerBound), step)
// iterations, we need to tile with size ceildiv(numIterations, size[i]).
SmallVector<Value *, 4> tileSizes;
tileSizes.reserve(sizes.size());
for (unsigned i = 0, e = sizes.size(); i < e; ++i) {
assert(sizes[i] > 0 && "expected strictly positive size for strip-mining");
auto forOp = forOps[i];
OpBuilder builder(forOp);
auto loc = forOp.getLoc();
Value *diff =
builder.create<SubIOp>(loc, forOp.upperBound(), forOp.lowerBound());
Value *numIterations = ceilDivPositive(builder, loc, diff, forOp.step());
Value *iterationsPerBlock =
ceilDivPositive(builder, loc, numIterations, sizes[i]);
tileSizes.push_back(iterationsPerBlock);
}
// Call parametric tiling with the given sizes.
auto intraTile = tile(forOps, tileSizes, forOps.back());
return std::make_pair(forOps, intraTile);
}
// Replaces all uses of `orig` with `replacement` except if the user is listed
// in `exceptions`.
static void
replaceAllUsesExcept(Value *orig, Value *replacement,
const SmallPtrSetImpl<Operation *> &exceptions) {
for (auto &use : orig->getUses()) {
if (exceptions.count(use.getOwner()) == 0)
use.set(replacement);
}
}
// Transform a loop with a strictly positive step
// for %i = %lb to %ub step %s
// into a 0-based loop with step 1
// for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 {
// %i = %ii * %s + %lb
// Insert the induction variable remapping in the body of `inner`, which is
// expected to be either `loop` or another loop perfectly nested under `loop`.
// Insert the definition of new bounds immediate before `outer`, which is
// expected to be either `loop` or its parent in the loop nest.
static void normalizeLoop(loop::ForOp loop, loop::ForOp outer,
loop::ForOp inner) {
OpBuilder builder(outer);
Location loc = loop.getLoc();
// Check if the loop is already known to have a constant zero lower bound or
// a constant one step.
bool isZeroBased = false;
if (auto ubCst =
dyn_cast_or_null<ConstantIndexOp>(loop.lowerBound()->getDefiningOp()))
isZeroBased = ubCst.getValue() == 0;
bool isStepOne = false;
if (auto stepCst =
dyn_cast_or_null<ConstantIndexOp>(loop.step()->getDefiningOp()))
isStepOne = stepCst.getValue() == 1;
if (isZeroBased && isStepOne)
return;
// Compute the number of iterations the loop executes: ceildiv(ub - lb, step)
// assuming the step is strictly positive. Update the bounds and the step
// of the loop to go from 0 to the number of iterations, if necessary.
// TODO(zinenko): introduce support for negative steps or emit dynamic asserts
// on step positivity, whatever gets implemented first.
Value *diff =
builder.create<SubIOp>(loc, loop.upperBound(), loop.lowerBound());
Value *numIterations = ceilDivPositive(builder, loc, diff, loop.step());
loop.setUpperBound(numIterations);
Value *lb = loop.lowerBound();
if (!isZeroBased) {
Value *cst0 = builder.create<ConstantIndexOp>(loc, 0);
loop.setLowerBound(cst0);
}
Value *step = loop.step();
if (!isStepOne) {
Value *cst1 = builder.create<ConstantIndexOp>(loc, 1);
loop.setStep(cst1);
}
// Insert code computing the value of the original loop induction variable
// from the "normalized" one.
builder.setInsertionPointToStart(inner.getBody());
Value *scaled =
isStepOne ? loop.getInductionVar()
: builder.create<MulIOp>(loc, loop.getInductionVar(), step);
Value *shifted =
isZeroBased ? scaled : builder.create<AddIOp>(loc, scaled, lb);
SmallPtrSet<Operation *, 2> preserve{scaled->getDefiningOp(),
shifted->getDefiningOp()};
replaceAllUsesExcept(loop.getInductionVar(), shifted, preserve);
}
void mlir::coalesceLoops(MutableArrayRef<loop::ForOp> loops) {
if (loops.size() < 2)
return;
loop::ForOp innermost = loops.back();
loop::ForOp outermost = loops.front();
// 1. Make sure all loops iterate from 0 to upperBound with step 1. This
// allows the following code to assume upperBound is the number of iterations.
for (auto loop : loops)
normalizeLoop(loop, outermost, innermost);
// 2. Emit code computing the upper bound of the coalesced loop as product
// of the number of iterations of all loops.
OpBuilder builder(outermost);
Location loc = outermost.getLoc();
Value *upperBound = outermost.upperBound();
for (auto loop : loops.drop_front())
upperBound = builder.create<MulIOp>(loc, upperBound, loop.upperBound());
outermost.setUpperBound(upperBound);
builder.setInsertionPointToStart(outermost.getBody());
// 3. Remap induction variables. For each original loop, the value of the
// induction variable can be obtained by dividing the induction variable of
// the linearized loop by the total number of iterations of the loops nested
// in it modulo the number of iterations in this loop (remove the values
// related to the outer loops):
// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
// Compute these iteratively from the innermost loop by creating a "running
// quotient" of division by the range.
Value *previous = outermost.getInductionVar();
for (unsigned i = 0, e = loops.size(); i < e; ++i) {
unsigned idx = loops.size() - i - 1;
if (i != 0)
previous =
builder.create<DivISOp>(loc, previous, loops[idx + 1].upperBound());
Value *iv = (i == e - 1) ? previous
: builder.create<RemISOp>(loc, previous,
loops[idx].upperBound());
replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv,
loops.back().region());
}
// 4. Move the operations from the innermost just above the second-outermost
// loop, delete the extra terminator and the second-outermost loop.
loop::ForOp second = loops[1];
innermost.getBody()->back().erase();
outermost.getBody()->getOperations().splice(
Block::iterator(second.getOperation()),
innermost.getBody()->getOperations());
second.erase();
}
void mlir::mapLoopToProcessorIds(loop::ForOp forOp,
ArrayRef<Value *> processorId,
ArrayRef<Value *> numProcessors) {
assert(processorId.size() == numProcessors.size());
if (processorId.empty())
return;
OpBuilder b(forOp);
Location loc(forOp.getLoc());
Value *mul = processorId.front();
for (unsigned i = 1, e = processorId.size(); i < e; ++i)
mul = b.create<AddIOp>(loc, b.create<MulIOp>(loc, mul, numProcessors[i]),
processorId[i]);
Value *lb = b.create<AddIOp>(loc, forOp.lowerBound(), mul);
forOp.setLowerBound(lb);
Value *step = numProcessors.front();
for (auto *numProcs : numProcessors.drop_front())
step = b.create<MulIOp>(loc, step, numProcs);
forOp.setStep(step);
}