2023-10-26 17:57:46 -07:00
|
|
|
//===- SparseReinterpretMap.cpp - reinterpret sparse tensor maps ----------===//
|
|
|
|
|
//
|
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
|
//
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
2023-10-30 16:04:41 -07:00
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
2023-10-31 16:19:27 -07:00
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
|
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
2023-10-26 17:57:46 -07:00
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
|
|
|
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
2023-10-30 16:04:41 -07:00
|
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
|
|
|
#include "mlir/IR/AffineMap.h"
|
|
|
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
|
using namespace mlir::sparse_tensor;
|
2023-10-26 17:57:46 -07:00
|
|
|
|
2023-10-31 16:19:27 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
2023-11-01 12:11:47 -07:00
|
|
|
// File Local Helper methods.
|
2023-10-31 16:19:27 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
// Translates a "simple" map according to an identity lvl-map.
|
|
|
|
|
static AffineMap translateMap(OpBuilder &builder, SparseTensorType stt,
|
|
|
|
|
AffineMap map) {
|
|
|
|
|
unsigned lvlRank = stt.getLvlRank();
|
|
|
|
|
AffineMap lvl2dim = stt.getLvlToDim();
|
|
|
|
|
assert(lvl2dim.getNumInputs() == lvlRank);
|
|
|
|
|
SmallVector<AffineExpr> exps;
|
|
|
|
|
for (unsigned i = 0, n = map.getNumResults(); i < n; i++) {
|
|
|
|
|
unsigned pos = map.getResult(i).cast<AffineDimExpr>().getPosition();
|
|
|
|
|
exps.push_back(lvl2dim.getResult(pos));
|
|
|
|
|
}
|
|
|
|
|
return AffineMap::get(lvlRank, 0, exps, builder.getContext());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Generates a "de"mapping reinterpretation of the map.
|
|
|
|
|
static Value genDemap(OpBuilder &builder, SparseTensorEncodingAttr enc,
|
|
|
|
|
Value val) {
|
|
|
|
|
return builder.create<ReinterpretMapOp>(val.getLoc(), enc.withoutDimToLvl(),
|
|
|
|
|
val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Generates a "re"mapping reinterpretation of the map.
|
|
|
|
|
static Value genRemap(OpBuilder &builder, SparseTensorEncodingAttr enc,
|
|
|
|
|
Value val) {
|
|
|
|
|
return builder.create<ReinterpretMapOp>(val.getLoc(), enc, val);
|
|
|
|
|
}
|
|
|
|
|
|
2023-11-01 12:11:47 -07:00
|
|
|
static SmallVector<Value> remapValueRange(OpBuilder &rewriter, TypeRange types,
|
|
|
|
|
ValueRange outs) {
|
|
|
|
|
SmallVector<Value> ret(outs);
|
|
|
|
|
assert(outs.size() == types.size());
|
|
|
|
|
for (auto [r, t] : llvm::zip(ret, types))
|
|
|
|
|
if (r.getType() != t)
|
|
|
|
|
r = rewriter.create<ReinterpretMapOp>(r.getLoc(), t, r);
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Whether the operation has any sparse tensor with non-identity dim2lvl maps.
|
|
|
|
|
static bool hasNonIdentityOperandsOrResults(Operation *op) {
|
|
|
|
|
auto hasNonIdentityMap = [](Value v) {
|
|
|
|
|
auto stt = tryGetSparseTensorType(v);
|
|
|
|
|
return stt && !stt->isIdentity();
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
return llvm::any_of(op->getOperands(), hasNonIdentityMap) ||
|
|
|
|
|
llvm::any_of(op->getResults(), hasNonIdentityMap);
|
|
|
|
|
}
|
|
|
|
|
|
2023-10-31 16:19:27 -07:00
|
|
|
// Generates a clone of the given linalg generic operation, but with
|
|
|
|
|
// remapped arguments, index maps, and iteration types.
|
|
|
|
|
//
|
|
|
|
|
// TODO: As decribed below, this is proof-of-concept code which makes a lot
|
|
|
|
|
// of simplifying assumptions for now.
|
|
|
|
|
//
|
|
|
|
|
static linalg::GenericOp genGenericLinalg(PatternRewriter &rewriter,
|
|
|
|
|
linalg::GenericOp linalgOp,
|
|
|
|
|
SparseTensorType stt, Value out) {
|
|
|
|
|
unsigned dimRank = stt.getDimRank();
|
|
|
|
|
unsigned lvlRank = stt.getLvlRank();
|
|
|
|
|
SmallVector<Value> inputOps = linalgOp.getInputs();
|
|
|
|
|
SmallVector<Value> outputOps = {out};
|
|
|
|
|
SmallVector<AffineMap> indexMaps;
|
|
|
|
|
SmallVector<utils::IteratorType> iterTypes;
|
|
|
|
|
// Translate the index maps, except output map, which is lvl-identity.
|
|
|
|
|
auto maps = linalgOp.getIndexingMapsArray();
|
|
|
|
|
for (unsigned i = 0, n = maps.size() - 1; i < n; i++)
|
|
|
|
|
indexMaps.push_back(translateMap(rewriter, stt, maps[i]));
|
|
|
|
|
indexMaps.push_back(
|
|
|
|
|
AffineMap::getMultiDimIdentityMap(lvlRank, rewriter.getContext()));
|
|
|
|
|
// Add additional "parallel" iteration types at the top.
|
|
|
|
|
for (unsigned i = 0, diff = lvlRank = dimRank; i < diff; i++)
|
|
|
|
|
iterTypes.push_back(utils::IteratorType::parallel);
|
|
|
|
|
for (auto &i : linalgOp.getIteratorTypesArray())
|
|
|
|
|
iterTypes.push_back(i);
|
|
|
|
|
// Generate the new linalg generic operation and clone body.
|
|
|
|
|
auto newOp = rewriter.create<linalg::GenericOp>(
|
|
|
|
|
linalgOp.getLoc(), out.getType(), inputOps, outputOps, indexMaps,
|
|
|
|
|
iterTypes);
|
|
|
|
|
rewriter.cloneRegionBefore(linalgOp.getRegion(), newOp.getRegion(),
|
|
|
|
|
newOp.getRegion().begin());
|
|
|
|
|
return newOp;
|
|
|
|
|
}
|
|
|
|
|
|
2023-11-01 12:11:47 -07:00
|
|
|
namespace {
|
|
|
|
|
|
2023-10-31 16:19:27 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// Rewriting rules for linalg generic ops.
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
/// Sparse rewriting rule for the generic `linalg` operation.
|
|
|
|
|
struct GenericOpReinterpretMap : public OpRewritePattern<linalg::GenericOp> {
|
|
|
|
|
public:
|
|
|
|
|
GenericOpReinterpretMap(MLIRContext *context)
|
|
|
|
|
: OpRewritePattern<linalg::GenericOp>(context) {}
|
|
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(linalg::GenericOp linalgOp,
|
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
|
// Only rewrite single output operations with pure tensor semantics.
|
|
|
|
|
if (linalgOp.getNumDpsInits() != 1 || !linalgOp.hasTensorSemantics())
|
|
|
|
|
return failure();
|
|
|
|
|
// Scan all operands, inspect sparse tensors.
|
|
|
|
|
//
|
|
|
|
|
// TODO: generalize this proof-of-concept algorithm, since the current
|
|
|
|
|
// implementation accepts only simple indexing maps, and one
|
|
|
|
|
// non-permutation sparse tensor, which must have an identity
|
|
|
|
|
// indexing map and be the output.
|
|
|
|
|
//
|
|
|
|
|
OpOperand *tx = nullptr;
|
|
|
|
|
for (OpOperand &t : linalgOp->getOpOperands()) {
|
|
|
|
|
// Ensure every index map is "simple".
|
|
|
|
|
const auto map = linalgOp.getMatchingIndexingMap(&t);
|
|
|
|
|
for (unsigned i = 0, n = map.getNumResults(); i < n; i++)
|
|
|
|
|
if (map.getResult(i).getKind() != AffineExprKind::DimId)
|
|
|
|
|
return failure();
|
|
|
|
|
// Inspect sparse operands.
|
2023-11-01 10:01:22 -07:00
|
|
|
auto stt = tryGetSparseTensorType(t.get());
|
|
|
|
|
if (stt && stt->hasEncoding()) {
|
|
|
|
|
if (stt->isPermutation())
|
2023-10-31 16:19:27 -07:00
|
|
|
continue;
|
2023-11-01 10:01:22 -07:00
|
|
|
assert(stt->getDimRank() < stt->getLvlRank()); // only allowed non-perm
|
2023-10-31 16:19:27 -07:00
|
|
|
if (tx)
|
|
|
|
|
return failure(); // more than one non-perm
|
|
|
|
|
if (!map.isIdentity())
|
|
|
|
|
return failure(); // no ID indexing map on the non-perm
|
|
|
|
|
tx = &t;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Found a non-permutation, rewrite when this is the output.
|
|
|
|
|
if (tx && tx == linalgOp.getDpsInitOperand(0)) {
|
|
|
|
|
auto stt = getSparseTensorType(tx->get());
|
|
|
|
|
auto demap = genDemap(rewriter, stt.getEncoding(), tx->get());
|
|
|
|
|
auto newOp = genGenericLinalg(rewriter, linalgOp, stt, demap);
|
|
|
|
|
auto remap = genRemap(rewriter, stt.getEncoding(), newOp.getResult(0));
|
|
|
|
|
rewriter.replaceOp(linalgOp, remap);
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
return failure();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
2023-11-01 12:11:47 -07:00
|
|
|
// Reinterpret Map Rewriters for operations other than linalg.generics
|
2023-10-31 16:19:27 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
2023-10-26 17:57:46 -07:00
|
|
|
|
2023-11-01 12:11:47 -07:00
|
|
|
// CRTP to help implementing a rewriter that demaps all its inputs.
|
2023-10-31 12:35:52 -07:00
|
|
|
template <typename SubClass, typename SourceOp>
|
2023-11-01 12:11:47 -07:00
|
|
|
struct DemapInsRewriter : public OpRewritePattern<SourceOp> {
|
2023-10-31 12:35:52 -07:00
|
|
|
using OpRewritePattern<SourceOp>::OpRewritePattern;
|
|
|
|
|
using OpAdaptor = typename SourceOp::Adaptor;
|
|
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(SourceOp op,
|
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
|
// Demaps non-trivial inputs.
|
|
|
|
|
SmallVector<Value> deMappedIns(op->getOperands());
|
|
|
|
|
for (Value &in : deMappedIns)
|
|
|
|
|
if (auto stt = tryGetSparseTensorType(in); stt && !stt->isIdentity())
|
|
|
|
|
in = rewriter.create<ReinterpretMapOp>(loc, stt->getDemappedType(), in);
|
|
|
|
|
|
|
|
|
|
// CRTP call.
|
|
|
|
|
OpAdaptor adaptor(deMappedIns);
|
2023-11-01 12:11:47 -07:00
|
|
|
return static_cast<const SubClass *>(this)->rewriteOp(op, adaptor,
|
|
|
|
|
rewriter);
|
2023-10-31 12:35:52 -07:00
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
2023-11-01 12:11:47 -07:00
|
|
|
struct TensorInsertDemapper
|
|
|
|
|
: public DemapInsRewriter<TensorInsertDemapper, tensor::InsertOp> {
|
|
|
|
|
using DemapInsRewriter::DemapInsRewriter;
|
|
|
|
|
LogicalResult rewriteOp(tensor::InsertOp op, OpAdaptor adaptor,
|
|
|
|
|
PatternRewriter &rewriter) const {
|
|
|
|
|
if (!hasAnySparseResult(op))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
|
auto stt = getSparseTensorType(op.getResult());
|
|
|
|
|
ValueRange lvlCrd = stt.translateCrds(rewriter, loc, op.getIndices(),
|
|
|
|
|
CrdTransDirectionKind::dim2lvl);
|
|
|
|
|
auto insertOp = rewriter.create<sparse_tensor::InsertOp>(
|
|
|
|
|
loc, op.getScalar(), adaptor.getDest(), lvlCrd);
|
|
|
|
|
|
|
|
|
|
Value out = genRemap(rewriter, stt.getEncoding(), insertOp.getResult());
|
|
|
|
|
rewriter.replaceOp(op, out);
|
2023-10-30 16:04:41 -07:00
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
2023-11-01 12:11:47 -07:00
|
|
|
struct ForeachOpDemapper
|
|
|
|
|
: public DemapInsRewriter<ForeachOpDemapper, ForeachOp> {
|
|
|
|
|
using DemapInsRewriter::DemapInsRewriter;
|
|
|
|
|
LogicalResult rewriteOp(ForeachOp op, OpAdaptor adaptor,
|
|
|
|
|
PatternRewriter &rewriter) const {
|
|
|
|
|
// Only handle operations with sparse input/output with non-identity dim2lvl
|
|
|
|
|
// maps.
|
|
|
|
|
if (!hasNonIdentityOperandsOrResults(op))
|
|
|
|
|
return failure();
|
2023-10-30 16:04:41 -07:00
|
|
|
|
2023-11-01 12:11:47 -07:00
|
|
|
// TODO: demap constant as well.
|
|
|
|
|
if (auto constOp = op.getTensor().getDefiningOp<arith::ConstantOp>())
|
|
|
|
|
if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue()))
|
|
|
|
|
return failure();
|
2023-10-31 12:35:52 -07:00
|
|
|
|
2023-10-30 16:04:41 -07:00
|
|
|
Location loc = op.getLoc();
|
2023-11-01 12:11:47 -07:00
|
|
|
// Cache the type information since we update the foreach op in-place.
|
|
|
|
|
auto srcStt = getSparseTensorType(op.getTensor());
|
|
|
|
|
SmallVector<Type> prevRetTps(op.getResultTypes());
|
|
|
|
|
|
|
|
|
|
rewriter.startRootUpdate(op);
|
|
|
|
|
op.getTensorMutable().assign(adaptor.getTensor());
|
|
|
|
|
op.getInitArgsMutable().assign(adaptor.getInitArgs());
|
|
|
|
|
// Update results' types.
|
|
|
|
|
for (auto r : op.getResults())
|
|
|
|
|
if (auto stt = tryGetSparseTensorType(r); stt && !stt->isIdentity())
|
|
|
|
|
r.setType(stt->getDemappedType());
|
|
|
|
|
|
|
|
|
|
Level lvlRank = getSparseTensorType(adaptor.getTensor()).getLvlRank();
|
|
|
|
|
// Update the foreach body.
|
|
|
|
|
SmallVector<Type> blockArgTps(lvlRank, rewriter.getIndexType());
|
|
|
|
|
blockArgTps.push_back(srcStt.getElementType());
|
|
|
|
|
blockArgTps.append(adaptor.getInitArgs().getTypes().begin(),
|
|
|
|
|
adaptor.getInitArgs().getTypes().end());
|
|
|
|
|
Block *body = op.getBody();
|
|
|
|
|
// Block Args: [dimCrd, val, initArgs]
|
|
|
|
|
unsigned preArgNum = body->getNumArguments();
|
|
|
|
|
for (Type t : blockArgTps)
|
|
|
|
|
body->addArgument(t, loc);
|
|
|
|
|
|
|
|
|
|
// Block Args: [dimCrd, val, initArgs, lvlCrds, val, DemappedArgs]
|
|
|
|
|
rewriter.setInsertionPointToStart(body);
|
|
|
|
|
ValueRange lvlCrds = body->getArguments().slice(preArgNum, lvlRank);
|
|
|
|
|
|
|
|
|
|
ValueRange dimCrds = srcStt.translateCrds(rewriter, loc, lvlCrds,
|
|
|
|
|
CrdTransDirectionKind::lvl2dim);
|
|
|
|
|
rewriter.replaceAllUsesWith(
|
|
|
|
|
body->getArguments().take_front(srcStt.getDimRank()), dimCrds);
|
|
|
|
|
body->eraseArguments(0, srcStt.getDimRank());
|
|
|
|
|
// Block Args: [val, initArgs, lvlCrds, val, DemappedArgs]
|
|
|
|
|
unsigned numInitArgs = op.getInitArgs().size();
|
|
|
|
|
rewriter.replaceAllUsesWith(body->getArgument(0),
|
|
|
|
|
body->getArgument(lvlRank + numInitArgs + 1));
|
|
|
|
|
body->eraseArgument(0);
|
|
|
|
|
// Block Args: [initArgs, lvlCrds, val, DemappedArgs]
|
|
|
|
|
ValueRange srcArgs = body->getArguments().take_front(numInitArgs);
|
|
|
|
|
ValueRange dstArgs = body->getArguments().take_back(numInitArgs);
|
|
|
|
|
// Remap back before replacement.
|
|
|
|
|
SmallVector<Value> reMappedArgs =
|
|
|
|
|
remapValueRange(rewriter, srcArgs.getTypes(), dstArgs);
|
|
|
|
|
rewriter.replaceAllUsesWith(srcArgs, reMappedArgs);
|
|
|
|
|
body->eraseArguments(0, numInitArgs);
|
|
|
|
|
// Block Args: [lvlCrds, DemappedArgs] and we are done.
|
|
|
|
|
|
|
|
|
|
// Update yield operations.
|
|
|
|
|
if (numInitArgs != 0) {
|
|
|
|
|
rewriter.setInsertionPointToEnd(body);
|
|
|
|
|
auto yield = llvm::cast<YieldOp>(body->getTerminator());
|
|
|
|
|
if (auto stt = tryGetSparseTensorType(yield.getResult());
|
|
|
|
|
stt && !stt->isIdentity()) {
|
|
|
|
|
Value y = genDemap(rewriter, stt->getEncoding(), yield.getResult());
|
|
|
|
|
rewriter.create<YieldOp>(loc, y);
|
|
|
|
|
rewriter.eraseOp(yield);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
rewriter.finalizeRootUpdate(op);
|
|
|
|
|
|
|
|
|
|
rewriter.setInsertionPointAfter(op);
|
|
|
|
|
SmallVector<Value> outs =
|
|
|
|
|
remapValueRange(rewriter, prevRetTps, op.getResults());
|
|
|
|
|
|
|
|
|
|
// Replace all the uses of the foreach results, expect the use in
|
|
|
|
|
// reinterpret_map used to remap the output.
|
|
|
|
|
for (auto [from, to] : llvm::zip(op.getResults(), outs))
|
|
|
|
|
rewriter.replaceAllUsesExcept(from, to, to.getDefiningOp());
|
|
|
|
|
|
|
|
|
|
return success();
|
2023-10-30 16:04:41 -07:00
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
2023-10-26 17:57:46 -07:00
|
|
|
} // namespace
|
|
|
|
|
|
2023-10-27 14:14:09 -07:00
|
|
|
void mlir::populateSparseReinterpretMap(RewritePatternSet &patterns,
|
2023-10-30 16:04:41 -07:00
|
|
|
ReinterpretMapScope scope) {
|
2023-10-31 16:19:27 -07:00
|
|
|
if (scope == ReinterpretMapScope::kAll ||
|
|
|
|
|
scope == ReinterpretMapScope::kGenericOnly) {
|
|
|
|
|
patterns.add<GenericOpReinterpretMap>(patterns.getContext());
|
|
|
|
|
}
|
2023-10-30 16:04:41 -07:00
|
|
|
if (scope == ReinterpretMapScope::kAll ||
|
|
|
|
|
scope == ReinterpretMapScope::kExceptGeneric) {
|
2023-11-01 12:11:47 -07:00
|
|
|
patterns.add<TensorInsertDemapper, ForeachOpDemapper>(
|
2023-10-30 16:04:41 -07:00
|
|
|
patterns.getContext());
|
|
|
|
|
}
|
|
|
|
|
}
|