Files
llvm/lldb/source/Core/EmulateInstruction.cpp

647 lines
23 KiB
C++
Raw Normal View History

//===-- EmulateInstruction.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/EmulateInstruction.h"
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
#include "lldb/Core/Address.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
Modified the PluginManager to be ready for loading plug-ins from a system LLDB plugin directory and a user LLDB plugin directory. We currently still need to work out at what layer the plug-ins will be, but at least we are prepared for plug-ins. Plug-ins will attempt to be loaded from the "/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins" folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on MacOSX. Each plugin will be scanned for: extern "C" bool LLDBPluginInitialize(void); extern "C" void LLDBPluginTerminate(void); If at least LLDBPluginInitialize is found, the plug-in will be loaded. The LLDBPluginInitialize function returns a bool that indicates if the plug-in should stay loaded or not (plug-ins might check the current OS, current hardware, or anything else and determine they don't want to run on the current host). The plug-in is uniqued by path and added to a static loaded plug-in map. The plug-in scanning happens during "lldb_private::Initialize()" which calls to the PluginManager::Initialize() function. Likewise with termination lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the plug-in directories is fetched through new Host calls: bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec); bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec); This way linux and other systems can define their own appropriate locations for plug-ins to be loaded. To allow dynamic shared library loading, the Host layer has also been modified to include shared library open, close and get symbol: static void * Host::DynamicLibraryOpen (const FileSpec &file_spec, Error &error); static Error Host::DynamicLibraryClose (void *dynamic_library_handle); static void * Host::DynamicLibraryGetSymbol (void *dynamic_library_handle, const char *symbol_name, Error &error); lldb_private::FileSpec also has been modified to support directory enumeration in an attempt to abstract the directory enumeration into one spot in the code. The directory enumertion function is static and takes a callback: typedef enum EnumerateDirectoryResult { eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not eEnumerateDirectoryResultExit, // Exit from the current directory at the current level. eEnumerateDirectoryResultQuit // Stop directory enumerations at any level }; typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton, FileSpec::FileType file_type, const FileSpec &spec); static FileSpec::EnumerateDirectoryResult FileSpec::EnumerateDirectory (const char *dir_path, bool find_directories, bool find_files, bool find_other, EnumerateDirectoryCallbackType callback, void *callback_baton); This allow clients to specify the directory to search, and specifies if only files, directories or other (pipe, symlink, fifo, etc) files will cause the callback to be called. The callback also gets to return with the action that should be performed after this directory entry. eEnumerateDirectoryResultNext specifies to continue enumerating through a directory with the next entry. eEnumerateDirectoryResultEnter specifies to recurse down into a directory entry, or if the file is not a directory or symlink/alias to a directory, then just iterate to the next entry. eEnumerateDirectoryResultExit specifies to exit the current directory and skip any entries that might be remaining, yet continue enumerating to the next entry in the parent directory. And finally eEnumerateDirectoryResultQuit means to abort all directory enumerations at all levels. Modified the Declaration class to not include column information currently since we don't have any compilers that currently support column based declaration information. Columns support can be re-enabled with the additions of a #define. Added the ability to find an EmulateInstruction plug-in given a target triple and optional plug-in name in the plug-in manager. Fixed a few cases where opendir/readdir was being used, but yet not closedir was being used. Soon these will be deprecated in favor of the new directory enumeration call that was added to the FileSpec class. llvm-svn: 124716
2011-02-02 02:24:04 +00:00
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Host/Endian.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "Plugins/Instruction/ARM/EmulateInstructionARM.h"
using namespace lldb;
using namespace lldb_private;
Modified the PluginManager to be ready for loading plug-ins from a system LLDB plugin directory and a user LLDB plugin directory. We currently still need to work out at what layer the plug-ins will be, but at least we are prepared for plug-ins. Plug-ins will attempt to be loaded from the "/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins" folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on MacOSX. Each plugin will be scanned for: extern "C" bool LLDBPluginInitialize(void); extern "C" void LLDBPluginTerminate(void); If at least LLDBPluginInitialize is found, the plug-in will be loaded. The LLDBPluginInitialize function returns a bool that indicates if the plug-in should stay loaded or not (plug-ins might check the current OS, current hardware, or anything else and determine they don't want to run on the current host). The plug-in is uniqued by path and added to a static loaded plug-in map. The plug-in scanning happens during "lldb_private::Initialize()" which calls to the PluginManager::Initialize() function. Likewise with termination lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the plug-in directories is fetched through new Host calls: bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec); bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec); This way linux and other systems can define their own appropriate locations for plug-ins to be loaded. To allow dynamic shared library loading, the Host layer has also been modified to include shared library open, close and get symbol: static void * Host::DynamicLibraryOpen (const FileSpec &file_spec, Error &error); static Error Host::DynamicLibraryClose (void *dynamic_library_handle); static void * Host::DynamicLibraryGetSymbol (void *dynamic_library_handle, const char *symbol_name, Error &error); lldb_private::FileSpec also has been modified to support directory enumeration in an attempt to abstract the directory enumeration into one spot in the code. The directory enumertion function is static and takes a callback: typedef enum EnumerateDirectoryResult { eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not eEnumerateDirectoryResultExit, // Exit from the current directory at the current level. eEnumerateDirectoryResultQuit // Stop directory enumerations at any level }; typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton, FileSpec::FileType file_type, const FileSpec &spec); static FileSpec::EnumerateDirectoryResult FileSpec::EnumerateDirectory (const char *dir_path, bool find_directories, bool find_files, bool find_other, EnumerateDirectoryCallbackType callback, void *callback_baton); This allow clients to specify the directory to search, and specifies if only files, directories or other (pipe, symlink, fifo, etc) files will cause the callback to be called. The callback also gets to return with the action that should be performed after this directory entry. eEnumerateDirectoryResultNext specifies to continue enumerating through a directory with the next entry. eEnumerateDirectoryResultEnter specifies to recurse down into a directory entry, or if the file is not a directory or symlink/alias to a directory, then just iterate to the next entry. eEnumerateDirectoryResultExit specifies to exit the current directory and skip any entries that might be remaining, yet continue enumerating to the next entry in the parent directory. And finally eEnumerateDirectoryResultQuit means to abort all directory enumerations at all levels. Modified the Declaration class to not include column information currently since we don't have any compilers that currently support column based declaration information. Columns support can be re-enabled with the additions of a #define. Added the ability to find an EmulateInstruction plug-in given a target triple and optional plug-in name in the plug-in manager. Fixed a few cases where opendir/readdir was being used, but yet not closedir was being used. Soon these will be deprecated in favor of the new directory enumeration call that was added to the FileSpec class. llvm-svn: 124716
2011-02-02 02:24:04 +00:00
EmulateInstruction*
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::FindPlugin (const ArchSpec &arch, InstructionType supported_inst_type, const char *plugin_name)
Modified the PluginManager to be ready for loading plug-ins from a system LLDB plugin directory and a user LLDB plugin directory. We currently still need to work out at what layer the plug-ins will be, but at least we are prepared for plug-ins. Plug-ins will attempt to be loaded from the "/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins" folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on MacOSX. Each plugin will be scanned for: extern "C" bool LLDBPluginInitialize(void); extern "C" void LLDBPluginTerminate(void); If at least LLDBPluginInitialize is found, the plug-in will be loaded. The LLDBPluginInitialize function returns a bool that indicates if the plug-in should stay loaded or not (plug-ins might check the current OS, current hardware, or anything else and determine they don't want to run on the current host). The plug-in is uniqued by path and added to a static loaded plug-in map. The plug-in scanning happens during "lldb_private::Initialize()" which calls to the PluginManager::Initialize() function. Likewise with termination lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the plug-in directories is fetched through new Host calls: bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec); bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec); This way linux and other systems can define their own appropriate locations for plug-ins to be loaded. To allow dynamic shared library loading, the Host layer has also been modified to include shared library open, close and get symbol: static void * Host::DynamicLibraryOpen (const FileSpec &file_spec, Error &error); static Error Host::DynamicLibraryClose (void *dynamic_library_handle); static void * Host::DynamicLibraryGetSymbol (void *dynamic_library_handle, const char *symbol_name, Error &error); lldb_private::FileSpec also has been modified to support directory enumeration in an attempt to abstract the directory enumeration into one spot in the code. The directory enumertion function is static and takes a callback: typedef enum EnumerateDirectoryResult { eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not eEnumerateDirectoryResultExit, // Exit from the current directory at the current level. eEnumerateDirectoryResultQuit // Stop directory enumerations at any level }; typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton, FileSpec::FileType file_type, const FileSpec &spec); static FileSpec::EnumerateDirectoryResult FileSpec::EnumerateDirectory (const char *dir_path, bool find_directories, bool find_files, bool find_other, EnumerateDirectoryCallbackType callback, void *callback_baton); This allow clients to specify the directory to search, and specifies if only files, directories or other (pipe, symlink, fifo, etc) files will cause the callback to be called. The callback also gets to return with the action that should be performed after this directory entry. eEnumerateDirectoryResultNext specifies to continue enumerating through a directory with the next entry. eEnumerateDirectoryResultEnter specifies to recurse down into a directory entry, or if the file is not a directory or symlink/alias to a directory, then just iterate to the next entry. eEnumerateDirectoryResultExit specifies to exit the current directory and skip any entries that might be remaining, yet continue enumerating to the next entry in the parent directory. And finally eEnumerateDirectoryResultQuit means to abort all directory enumerations at all levels. Modified the Declaration class to not include column information currently since we don't have any compilers that currently support column based declaration information. Columns support can be re-enabled with the additions of a #define. Added the ability to find an EmulateInstruction plug-in given a target triple and optional plug-in name in the plug-in manager. Fixed a few cases where opendir/readdir was being used, but yet not closedir was being used. Soon these will be deprecated in favor of the new directory enumeration call that was added to the FileSpec class. llvm-svn: 124716
2011-02-02 02:24:04 +00:00
{
EmulateInstructionCreateInstance create_callback = NULL;
if (plugin_name)
{
create_callback = PluginManager::GetEmulateInstructionCreateCallbackForPluginName (plugin_name);
if (create_callback)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction *emulate_insn_ptr = create_callback(arch, supported_inst_type);
if (emulate_insn_ptr)
return emulate_insn_ptr;
Modified the PluginManager to be ready for loading plug-ins from a system LLDB plugin directory and a user LLDB plugin directory. We currently still need to work out at what layer the plug-ins will be, but at least we are prepared for plug-ins. Plug-ins will attempt to be loaded from the "/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins" folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on MacOSX. Each plugin will be scanned for: extern "C" bool LLDBPluginInitialize(void); extern "C" void LLDBPluginTerminate(void); If at least LLDBPluginInitialize is found, the plug-in will be loaded. The LLDBPluginInitialize function returns a bool that indicates if the plug-in should stay loaded or not (plug-ins might check the current OS, current hardware, or anything else and determine they don't want to run on the current host). The plug-in is uniqued by path and added to a static loaded plug-in map. The plug-in scanning happens during "lldb_private::Initialize()" which calls to the PluginManager::Initialize() function. Likewise with termination lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the plug-in directories is fetched through new Host calls: bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec); bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec); This way linux and other systems can define their own appropriate locations for plug-ins to be loaded. To allow dynamic shared library loading, the Host layer has also been modified to include shared library open, close and get symbol: static void * Host::DynamicLibraryOpen (const FileSpec &file_spec, Error &error); static Error Host::DynamicLibraryClose (void *dynamic_library_handle); static void * Host::DynamicLibraryGetSymbol (void *dynamic_library_handle, const char *symbol_name, Error &error); lldb_private::FileSpec also has been modified to support directory enumeration in an attempt to abstract the directory enumeration into one spot in the code. The directory enumertion function is static and takes a callback: typedef enum EnumerateDirectoryResult { eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not eEnumerateDirectoryResultExit, // Exit from the current directory at the current level. eEnumerateDirectoryResultQuit // Stop directory enumerations at any level }; typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton, FileSpec::FileType file_type, const FileSpec &spec); static FileSpec::EnumerateDirectoryResult FileSpec::EnumerateDirectory (const char *dir_path, bool find_directories, bool find_files, bool find_other, EnumerateDirectoryCallbackType callback, void *callback_baton); This allow clients to specify the directory to search, and specifies if only files, directories or other (pipe, symlink, fifo, etc) files will cause the callback to be called. The callback also gets to return with the action that should be performed after this directory entry. eEnumerateDirectoryResultNext specifies to continue enumerating through a directory with the next entry. eEnumerateDirectoryResultEnter specifies to recurse down into a directory entry, or if the file is not a directory or symlink/alias to a directory, then just iterate to the next entry. eEnumerateDirectoryResultExit specifies to exit the current directory and skip any entries that might be remaining, yet continue enumerating to the next entry in the parent directory. And finally eEnumerateDirectoryResultQuit means to abort all directory enumerations at all levels. Modified the Declaration class to not include column information currently since we don't have any compilers that currently support column based declaration information. Columns support can be re-enabled with the additions of a #define. Added the ability to find an EmulateInstruction plug-in given a target triple and optional plug-in name in the plug-in manager. Fixed a few cases where opendir/readdir was being used, but yet not closedir was being used. Soon these will be deprecated in favor of the new directory enumeration call that was added to the FileSpec class. llvm-svn: 124716
2011-02-02 02:24:04 +00:00
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetEmulateInstructionCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction *emulate_insn_ptr = create_callback(arch, supported_inst_type);
if (emulate_insn_ptr)
return emulate_insn_ptr;
Modified the PluginManager to be ready for loading plug-ins from a system LLDB plugin directory and a user LLDB plugin directory. We currently still need to work out at what layer the plug-ins will be, but at least we are prepared for plug-ins. Plug-ins will attempt to be loaded from the "/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins" folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on MacOSX. Each plugin will be scanned for: extern "C" bool LLDBPluginInitialize(void); extern "C" void LLDBPluginTerminate(void); If at least LLDBPluginInitialize is found, the plug-in will be loaded. The LLDBPluginInitialize function returns a bool that indicates if the plug-in should stay loaded or not (plug-ins might check the current OS, current hardware, or anything else and determine they don't want to run on the current host). The plug-in is uniqued by path and added to a static loaded plug-in map. The plug-in scanning happens during "lldb_private::Initialize()" which calls to the PluginManager::Initialize() function. Likewise with termination lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the plug-in directories is fetched through new Host calls: bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec); bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec); This way linux and other systems can define their own appropriate locations for plug-ins to be loaded. To allow dynamic shared library loading, the Host layer has also been modified to include shared library open, close and get symbol: static void * Host::DynamicLibraryOpen (const FileSpec &file_spec, Error &error); static Error Host::DynamicLibraryClose (void *dynamic_library_handle); static void * Host::DynamicLibraryGetSymbol (void *dynamic_library_handle, const char *symbol_name, Error &error); lldb_private::FileSpec also has been modified to support directory enumeration in an attempt to abstract the directory enumeration into one spot in the code. The directory enumertion function is static and takes a callback: typedef enum EnumerateDirectoryResult { eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not eEnumerateDirectoryResultExit, // Exit from the current directory at the current level. eEnumerateDirectoryResultQuit // Stop directory enumerations at any level }; typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton, FileSpec::FileType file_type, const FileSpec &spec); static FileSpec::EnumerateDirectoryResult FileSpec::EnumerateDirectory (const char *dir_path, bool find_directories, bool find_files, bool find_other, EnumerateDirectoryCallbackType callback, void *callback_baton); This allow clients to specify the directory to search, and specifies if only files, directories or other (pipe, symlink, fifo, etc) files will cause the callback to be called. The callback also gets to return with the action that should be performed after this directory entry. eEnumerateDirectoryResultNext specifies to continue enumerating through a directory with the next entry. eEnumerateDirectoryResultEnter specifies to recurse down into a directory entry, or if the file is not a directory or symlink/alias to a directory, then just iterate to the next entry. eEnumerateDirectoryResultExit specifies to exit the current directory and skip any entries that might be remaining, yet continue enumerating to the next entry in the parent directory. And finally eEnumerateDirectoryResultQuit means to abort all directory enumerations at all levels. Modified the Declaration class to not include column information currently since we don't have any compilers that currently support column based declaration information. Columns support can be re-enabled with the additions of a #define. Added the ability to find an EmulateInstruction plug-in given a target triple and optional plug-in name in the plug-in manager. Fixed a few cases where opendir/readdir was being used, but yet not closedir was being used. Soon these will be deprecated in favor of the new directory enumeration call that was added to the FileSpec class. llvm-svn: 124716
2011-02-02 02:24:04 +00:00
}
}
return NULL;
}
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::EmulateInstruction (const ArchSpec &arch) :
m_arch (arch),
m_baton (NULL),
m_read_mem_callback (&ReadMemoryDefault),
m_write_mem_callback (&WriteMemoryDefault),
m_read_reg_callback (&ReadRegisterDefault),
m_write_reg_callback (&WriteRegisterDefault),
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
m_opcode_pc (LLDB_INVALID_ADDRESS)
{
::memset (&m_opcode, 0, sizeof (m_opcode));
}
uint64_t
EmulateInstruction::ReadRegisterUnsigned (uint32_t reg_kind, uint32_t reg_num, uint64_t fail_value, bool *success_ptr)
{
uint64_t uval64 = 0;
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
bool success = m_read_reg_callback (this, m_baton, reg_kind, reg_num, uval64);
if (success_ptr)
*success_ptr = success;
if (!success)
uval64 = fail_value;
return uval64;
}
bool
EmulateInstruction::WriteRegisterUnsigned (const Context &context, uint32_t reg_kind, uint32_t reg_num, uint64_t reg_value)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
return m_write_reg_callback (this, m_baton, context, reg_kind, reg_num, reg_value);
}
uint64_t
EmulateInstruction::ReadMemoryUnsigned (const Context &context, lldb::addr_t addr, size_t byte_size, uint64_t fail_value, bool *success_ptr)
{
uint64_t uval64 = 0;
bool success = false;
if (byte_size <= 8)
{
uint8_t buf[sizeof(uint64_t)];
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
size_t bytes_read = m_read_mem_callback (this, m_baton, context, addr, buf, byte_size);
if (bytes_read == byte_size)
{
uint32_t offset = 0;
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
DataExtractor data (buf, byte_size, GetByteOrder(), GetAddressByteSize());
uval64 = data.GetMaxU64 (&offset, byte_size);
success = true;
}
}
if (success_ptr)
*success_ptr = success;
if (!success)
uval64 = fail_value;
return uval64;
}
bool
EmulateInstruction::WriteMemoryUnsigned (const Context &context,
lldb::addr_t addr,
uint64_t uval,
size_t uval_byte_size)
{
StreamString strm(Stream::eBinary, GetAddressByteSize(), GetByteOrder());
strm.PutMaxHex64 (uval, uval_byte_size);
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
size_t bytes_written = m_write_mem_callback (this, m_baton, context, addr, strm.GetData(), uval_byte_size);
if (bytes_written == uval_byte_size)
return true;
return false;
}
void
EmulateInstruction::SetBaton (void *baton)
{
m_baton = baton;
}
void
EmulateInstruction::SetCallbacks (ReadMemory read_mem_callback,
WriteMemory write_mem_callback,
ReadRegister read_reg_callback,
WriteRegister write_reg_callback)
{
m_read_mem_callback = read_mem_callback;
m_write_mem_callback = write_mem_callback;
m_read_reg_callback = read_reg_callback;
m_write_reg_callback = write_reg_callback;
}
void
EmulateInstruction::SetReadMemCallback (ReadMemory read_mem_callback)
{
m_read_mem_callback = read_mem_callback;
}
void
EmulateInstruction::SetWriteMemCallback (WriteMemory write_mem_callback)
{
m_write_mem_callback = write_mem_callback;
}
void
EmulateInstruction::SetReadRegCallback (ReadRegister read_reg_callback)
{
m_read_reg_callback = read_reg_callback;
}
void
EmulateInstruction::SetWriteRegCallback (WriteRegister write_reg_callback)
{
m_write_reg_callback = write_reg_callback;
}
//
// Read & Write Memory and Registers callback functions.
//
size_t
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::ReadMemoryFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
if (!baton)
return 0;
StackFrame *frame = (StackFrame *) baton;
DataBufferSP data_sp (new DataBufferHeap (length, '\0'));
Error error;
size_t bytes_read = frame->GetThread().GetProcess().ReadMemory (addr, data_sp->GetBytes(), data_sp->GetByteSize(),
error);
if (bytes_read > 0)
((DataBufferHeap *) data_sp.get())->CopyData (dst, length);
return bytes_read;
}
size_t
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::WriteMemoryFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
if (!baton)
return 0;
StackFrame *frame = (StackFrame *) baton;
lldb::DataBufferSP data_sp (new DataBufferHeap (dst, length));
if (data_sp)
{
length = data_sp->GetByteSize();
if (length > 0)
{
Error error;
size_t bytes_written = frame->GetThread().GetProcess().WriteMemory (addr, data_sp->GetBytes(), length,
error);
return bytes_written;
}
}
return 0;
}
bool
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::ReadRegisterFrame (EmulateInstruction *instruction,
void *baton,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t &reg_value)
{
if (!baton)
return false;
StackFrame *frame = (StackFrame *) baton;
RegisterContext *reg_context = frame->GetRegisterContext().get();
Scalar value;
uint32_t internal_reg_num = reg_context->ConvertRegisterKindToRegisterNumber (reg_kind, reg_num);
if (internal_reg_num == LLDB_INVALID_REGNUM)
return false;
if (reg_context->ReadRegisterValue (internal_reg_num, value))
{
reg_value = value.GetRawBits64 (0);
return true;
}
return false;
}
bool
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::WriteRegisterFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t reg_value)
{
if (!baton)
return false;
StackFrame *frame = (StackFrame *) baton;
RegisterContext *reg_context = frame->GetRegisterContext().get();
Scalar value (reg_value);
uint32_t internal_reg_num = reg_context->ConvertRegisterKindToRegisterNumber (reg_kind, reg_num);
if (internal_reg_num != LLDB_INVALID_REGNUM)
return reg_context->WriteRegisterValue (internal_reg_num, value);
else
return false;
}
size_t
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::ReadMemoryDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
PrintContext ("Read from memory", context);
fprintf (stdout, " Read from Memory (address = %p, length = %d)\n",(void *) addr, (uint32_t) length);
*((uint64_t *) dst) = 0xdeadbeef;
return length;
}
size_t
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::WriteMemoryDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
PrintContext ("Write to memory", context);
fprintf (stdout, " Write to Memory (address = %p, length = %d)\n", (void *) addr, (uint32_t) length);
return length;
}
bool
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::ReadRegisterDefault (EmulateInstruction *instruction,
void *baton,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t &reg_value)
{
std::string reg_name;
TranslateRegister (reg_kind, reg_num, reg_name);
fprintf (stdout, " Read Register (%s)\n", reg_name.c_str());
reg_value = 24;
return true;
}
bool
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
EmulateInstruction::WriteRegisterDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t reg_value)
{
PrintContext ("Write to register", context);
std::string reg_name;
TranslateRegister (reg_kind, reg_num, reg_name);
fprintf (stdout, " Write to Register (%s), value = 0x%llx\n", reg_name.c_str(), reg_value);
return true;
}
void
EmulateInstruction::PrintContext (const char *context_type, const Context &context)
{
switch (context.type)
{
case eContextReadOpcode:
fprintf (stdout, " %s context: Reading an Opcode\n", context_type);
break;
case eContextImmediate:
fprintf (stdout, " %s context: Immediate\n", context_type);
break;
case eContextPushRegisterOnStack:
fprintf (stdout, " %s context: Pushing a register onto the stack.\n", context_type);
break;
case eContextPopRegisterOffStack:
fprintf (stdout, " %s context: Popping a register off the stack.\n", context_type);
break;
case eContextAdjustStackPointer:
fprintf (stdout, " %s context: Adjusting the stack pointer.\n", context_type);
break;
case eContextAdjustBaseRegister:
fprintf (stdout, " %s context: Adjusting (writing value back to) a base register.\n", context_type);
break;
case eContextRegisterPlusOffset:
fprintf (stdout, " %s context: Register plus offset\n", context_type);
break;
case eContextRegisterStore:
fprintf (stdout, " %s context: Storing a register.\n", context_type);
break;
case eContextRegisterLoad:
fprintf (stdout, " %s context: Loading a register.\n", context_type);
break;
case eContextRelativeBranchImmediate:
fprintf (stdout, " %s context: Relative branch immediate\n", context_type);
break;
case eContextAbsoluteBranchRegister:
fprintf (stdout, " %s context: Absolute branch register\n", context_type);
break;
case eContextSupervisorCall:
fprintf (stdout, " %s context: Performing a supervisor call.\n", context_type);
break;
case eContextTableBranchReadMemory:
fprintf (stdout, " %s context: Table branch read memory\n", context_type);
break;
case eContextWriteRegisterRandomBits:
fprintf (stdout, " %s context: Write random bits to a register\n", context_type);
break;
case eContextWriteMemoryRandomBits:
fprintf (stdout, " %s context: Write random bits to a memory address\n", context_type);
break;
case eContextMultiplication:
fprintf (stdout, " %s context: Performing a multiplication\n", context_type);
break;
case eContextAddition:
fprintf (stdout, " %s context: Performing an addition\n", context_type);
break;
case eContextReturnFromException:
fprintf (stdout, " %s context: Returning from an exception\n", context_type);
break;
default:
fprintf (stdout, " %s context: Unrecognized context.\n", context_type);
break;
}
switch (context.info_type)
{
case eInfoTypeRegisterPlusOffset:
{
std::string reg_name;
TranslateRegister (context.info.RegisterPlusOffset.reg.kind,
context.info.RegisterPlusOffset.reg.num,
reg_name);
fprintf (stdout, " Info type: Register plus offset (%s +/- %lld)\n", reg_name.c_str(),
context.info.RegisterPlusOffset.signed_offset);
}
break;
case eInfoTypeRegisterPlusIndirectOffset:
{
std::string base_reg_name;
std::string offset_reg_name;
TranslateRegister (context.info.RegisterPlusIndirectOffset.base_reg.kind,
context.info.RegisterPlusIndirectOffset.base_reg.num,
base_reg_name);
TranslateRegister (context.info.RegisterPlusIndirectOffset.offset_reg.kind,
context.info.RegisterPlusIndirectOffset.offset_reg.num,
offset_reg_name);
fprintf (stdout, " Info type: Register plus indirect offset (%s +/- %s)\n",
base_reg_name.c_str(),
offset_reg_name.c_str());
}
break;
case eInfoTypeRegisterToRegisterPlusOffset:
{
std::string base_reg_name;
std::string data_reg_name;
TranslateRegister (context.info.RegisterToRegisterPlusOffset.base_reg.kind,
context.info.RegisterToRegisterPlusOffset.base_reg.num,
base_reg_name);
TranslateRegister (context.info.RegisterToRegisterPlusOffset.data_reg.kind,
context.info.RegisterToRegisterPlusOffset.data_reg.num,
data_reg_name);
fprintf (stdout, " Info type: Register plus offset (%s +/- %lld) and data register (%s)\n",
base_reg_name.c_str(), context.info.RegisterToRegisterPlusOffset.offset,
data_reg_name.c_str());
}
break;
case eInfoTypeRegisterToRegisterPlusIndirectOffset:
{
std::string base_reg_name;
std::string offset_reg_name;
std::string data_reg_name;
TranslateRegister (context.info.RegisterToRegisterPlusIndirectOffset.base_reg.kind,
context.info.RegisterToRegisterPlusIndirectOffset.base_reg.num,
base_reg_name);
TranslateRegister (context.info.RegisterToRegisterPlusIndirectOffset.offset_reg.kind,
context.info.RegisterToRegisterPlusIndirectOffset.offset_reg.num,
offset_reg_name);
TranslateRegister (context.info.RegisterToRegisterPlusIndirectOffset.data_reg.kind,
context.info.RegisterToRegisterPlusIndirectOffset.data_reg.num,
data_reg_name);
fprintf (stdout, " Info type: Register plus indirect offset (%s +/- %s) and data register (%s)\n",
base_reg_name.c_str(), offset_reg_name.c_str(), data_reg_name.c_str());
}
break;
case eInfoTypeRegisterRegisterOperands:
{
std::string op1_reg_name;
std::string op2_reg_name;
TranslateRegister (context.info.RegisterRegisterOperands.operand1.kind,
context.info.RegisterRegisterOperands.operand1.num,
op1_reg_name);
TranslateRegister (context.info.RegisterRegisterOperands.operand2.kind,
context.info.RegisterRegisterOperands.operand2.num,
op2_reg_name);
fprintf (stdout, " Info type: Register operands for binary op (%s, %s)\n",
op1_reg_name.c_str(),
op2_reg_name.c_str());
}
break;
case eInfoTypeOffset:
fprintf (stdout, " Info type: signed offset (%lld)\n", context.info.signed_offset);
break;
case eInfoTypeRegister:
{
std::string reg_name;
TranslateRegister (context.info.reg.kind, context.info.reg.num, reg_name);
fprintf (stdout, " Info type: Register (%s)\n", reg_name.c_str());
}
break;
case eInfoTypeImmediate:
fprintf (stdout, " Info type: Immediate (%lld)\n", context.info.immediate);
break;
case eInfoTypeImmediateSigned:
fprintf (stdout, " Info type: Signed immediate (%lld)\n", context.info.signed_immediate);
break;
case eInfoTypeAddress:
fprintf (stdout, " Info type: Address (%p)\n", (void *) context.info.address);
break;
case eInfoTypeModeAndImmediate:
{
std::string mode_name;
if (context.info.ModeAndImmediate.mode == EmulateInstructionARM::eModeARM)
mode_name = "ARM";
else if (context.info.ModeAndImmediate.mode == EmulateInstructionARM::eModeThumb)
mode_name = "Thumb";
else
mode_name = "Unknown mode";
fprintf (stdout, " Info type: Mode (%s) and immediate (%d)\n", mode_name.c_str(),
context.info.ModeAndImmediate.data_value);
}
break;
case eInfoTypeModeAndImmediateSigned:
{
std::string mode_name;
if (context.info.ModeAndImmediateSigned.mode == EmulateInstructionARM::eModeARM)
mode_name = "ARM";
else if (context.info.ModeAndImmediateSigned.mode == EmulateInstructionARM::eModeThumb)
mode_name = "Thumb";
else
mode_name = "Unknown mode";
fprintf (stdout, " Info type: Mode (%s) and signed immediate (%d)\n", mode_name.c_str(),
context.info.ModeAndImmediateSigned.signed_data_value);
}
break;
case eInfoTypeMode:
{
std::string mode_name;
if (context.info.mode == EmulateInstructionARM::eModeARM)
mode_name = "ARM";
else if (context.info.mode == EmulateInstructionARM::eModeThumb)
mode_name = "Thumb";
else
mode_name = "Unknown mode";
fprintf (stdout, " Info type: Mode (%s)\n", mode_name.c_str());
}
break;
case eInfoTypeNoArgs:
fprintf (stdout, " Info type: no arguments\n");
break;
default:
break;
}
}
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
bool
EmulateInstruction::SetInstruction (const Opcode &opcode, const Address &inst_addr, Target *target)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
m_opcode = opcode;
m_opcode_pc = LLDB_INVALID_ADDRESS;
if (inst_addr.IsValid())
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
if (target)
m_opcode_pc = inst_addr.GetLoadAddress (target);
if (m_opcode_pc == LLDB_INVALID_ADDRESS)
m_opcode_pc = inst_addr.GetFileAddress ();
}
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
return true;
}
const char *
EmulateInstruction::TranslateRegister (uint32_t kind, uint32_t num, std::string &name)
{
if (kind == eRegisterKindGeneric)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
switch (num)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
case LLDB_REGNUM_GENERIC_PC: name = "pc"; break;
case LLDB_REGNUM_GENERIC_SP: name = "sp"; break;
case LLDB_REGNUM_GENERIC_FP: name = "fp"; break;
case LLDB_REGNUM_GENERIC_RA: name = "ra"; break;
case LLDB_REGNUM_GENERIC_FLAGS: name = "flags"; break;
default: name.clear(); break;
}
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
if (!name.empty())
return name.c_str();
}
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
const char *kind_cstr = NULL;
switch (kind)
{
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
case eRegisterKindGCC: // the register numbers seen in eh_frame
kind_cstr = "gcc";
break;
case eRegisterKindDWARF: // the register numbers seen DWARF
kind_cstr = "dwarf";
break;
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
case eRegisterKindGeneric: // insn ptr reg, stack ptr reg, etc not specific to any particular target
kind_cstr = "generic";
break;
case eRegisterKindGDB: // the register numbers gdb uses (matches stabs numbers?)
kind_cstr = "gdb";
break;
case eRegisterKindLLDB: // lldb's internal register numbers
kind_cstr = "lldb";
break;
}
Changed the emulate instruction function to take emulate options which are defined as enumerations. Current bits include: eEmulateInstructionOptionAutoAdvancePC eEmulateInstructionOptionIgnoreConditions Modified the EmulateInstruction class to have a few more pure virtuals that can help clients understand how many instructions the emulator can handle: virtual bool SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0; Where instruction types are defined as: //------------------------------------------------------------------ /// Instruction types //------------------------------------------------------------------ typedef enum InstructionType { eInstructionTypeAny, // Support for any instructions at all (at least one) eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer eInstructionTypeAll // All instructions of any kind } InstructionType; This allows use to tell what an emulator can do and also allows us to request these abilities when we are finding the plug-in interface. Added the ability for an EmulateInstruction class to get the register names for any registers that are part of the emulation. This helps with being able to dump and log effectively. The UnwindAssembly class now stores the architecture it was created with in case it is needed later in the unwinding process. Added a function that can tell us DWARF register names for ARM that goes along with the source/Utility/ARM_DWARF_Registers.h file: source/Utility/ARM_DWARF_Registers.c Took some of plug-ins out of the lldb_private namespace. llvm-svn: 130189
2011-04-26 04:39:08 +00:00
StreamString sstr;
sstr.Printf ("%s(%u)", kind_cstr, num);
name.swap (sstr.GetString());
return name.c_str();
}