Files
llvm/lldb/source/Interpreter/ScriptInterpreterPython.cpp

1994 lines
70 KiB
C++
Raw Normal View History

//===-- ScriptInterpreterPython.cpp -----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// In order to guarantee correct working with Python, Python.h *MUST* be
// the *FIRST* header file included here.
#ifdef LLDB_DISABLE_PYTHON
// Python is disabled in this build
#else
#if defined (__APPLE__)
#include <Python/Python.h>
#else
#include <Python.h>
#endif
#include "lldb/Interpreter/ScriptInterpreterPython.h"
#include <stdlib.h>
#include <stdio.h>
#include <string>
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
#include "lldb/API/SBValue.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Timer.h"
#include "lldb/Host/Host.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
static ScriptInterpreter::SWIGInitCallback g_swig_init_callback = NULL;
static ScriptInterpreter::SWIGBreakpointCallbackFunction g_swig_breakpoint_callback = NULL;
static ScriptInterpreter::SWIGPythonTypeScriptCallbackFunction g_swig_typescript_callback = NULL;
static ScriptInterpreter::SWIGPythonCreateSyntheticProvider g_swig_synthetic_script = NULL;
static ScriptInterpreter::SWIGPythonCalculateNumChildren g_swig_calc_children = NULL;
static ScriptInterpreter::SWIGPythonGetChildAtIndex g_swig_get_child_index = NULL;
static ScriptInterpreter::SWIGPythonGetIndexOfChildWithName g_swig_get_index_child = NULL;
static ScriptInterpreter::SWIGPythonCastPyObjectToSBValue g_swig_cast_to_sbvalue = NULL;
static ScriptInterpreter::SWIGPythonUpdateSynthProviderInstance g_swig_update_provider = NULL;
static ScriptInterpreter::SWIGPythonCallCommand g_swig_call_command = NULL;
static ScriptInterpreter::SWIGPythonCallModuleInit g_swig_call_module_init = NULL;
// these are the Pythonic implementations of the required callbacks
// these are scripting-language specific, which is why they belong here
// we still need to use function pointers to them instead of relying
// on linkage-time resolution because the SWIG stuff and this file
// get built at different times
extern "C" bool
LLDBSwigPythonBreakpointCallbackFunction
(
const char *python_function_name,
const char *session_dictionary_name,
const lldb::StackFrameSP& sb_frame,
const lldb::BreakpointLocationSP& sb_bp_loc
);
extern "C" bool
LLDBSwigPythonCallTypeScript
(
const char *python_function_name,
void *session_dictionary,
const lldb::ValueObjectSP& valobj_sp,
void** pyfunct_wrapper,
std::string& retval
);
extern "C" void*
LLDBSwigPythonCreateSyntheticProvider
(
const std::string python_class_name,
const char *session_dictionary_name,
const lldb::ValueObjectSP& valobj_sp
);
extern "C" uint32_t LLDBSwigPython_CalculateNumChildren (void *implementor);
extern "C" void* LLDBSwigPython_GetChildAtIndex (void *implementor, uint32_t idx);
extern "C" int LLDBSwigPython_GetIndexOfChildWithName (void *implementor, const char* child_name);
extern "C" void* LLDBSWIGPython_CastPyObjectToSBValue (void* data);
extern "C" bool LLDBSwigPython_UpdateSynthProviderInstance (void* implementor);
extern "C" bool LLDBSwigPythonCallCommand
(
const char *python_function_name,
const char *session_dictionary_name,
lldb::DebuggerSP& debugger,
const char* args,
std::string& err_msg,
lldb_private::CommandReturnObject& cmd_retobj
);
extern "C" bool LLDBSwigPythonCallModuleInit
(
const std::string python_module_name,
const char *session_dictionary_name,
lldb::DebuggerSP& debugger
);
static int
_check_and_flush (FILE *stream)
{
int prev_fail = ferror (stream);
return fflush (stream) || prev_fail ? EOF : 0;
}
static Predicate<lldb::tid_t> &
PythonMutexPredicate ()
{
static lldb_private::Predicate<lldb::tid_t> g_interpreter_is_running (LLDB_INVALID_THREAD_ID);
return g_interpreter_is_running;
}
bool
ScriptInterpreterPython::Locker::CurrentThreadHasPythonLock ()
{
TimeValue timeout;
timeout = TimeValue::Now(); // Don't wait any time.
return PythonMutexPredicate().WaitForValueEqualTo (Host::GetCurrentThreadID(), &timeout, NULL);
}
bool
ScriptInterpreterPython::Locker::TryGetPythonLock (uint32_t seconds_to_wait)
{
TimeValue timeout;
if (seconds_to_wait != UINT32_MAX)
{
timeout = TimeValue::Now();
timeout.OffsetWithSeconds (seconds_to_wait);
}
return PythonMutexPredicate().WaitForValueEqualToAndSetValueTo (LLDB_INVALID_THREAD_ID,
Host::GetCurrentThreadID(), &timeout, NULL);
}
void
ScriptInterpreterPython::Locker::ReleasePythonLock ()
{
PythonMutexPredicate().SetValue (LLDB_INVALID_THREAD_ID, eBroadcastAlways);
}
ScriptInterpreterPython::Locker::Locker (ScriptInterpreterPython *py_interpreter,
uint16_t on_entry,
uint16_t on_leave,
FILE* wait_msg_handle) :
m_need_session( (on_leave & TearDownSession) == TearDownSession ),
m_release_lock ( false ), // decide in constructor body
m_python_interpreter(py_interpreter),
m_tmp_fh(wait_msg_handle)
{
if (m_python_interpreter && !m_tmp_fh)
m_tmp_fh = (m_python_interpreter->m_dbg_stdout ? m_python_interpreter->m_dbg_stdout : stdout);
if ( (on_entry & AcquireLock) == AcquireLock )
{
if (CurrentThreadHasPythonLock())
{
if ( (on_leave & FreeLock) == FreeLock )
m_release_lock = true;
}
else
{
DoAcquireLock();
if ( (on_leave & FreeLock) == FreeLock )
m_release_lock = true;
if ( (on_leave & FreeAcquiredLock) == FreeAcquiredLock )
m_release_lock = true;
}
}
if ( (on_entry & InitSession) == InitSession )
DoInitSession();
}
bool
ScriptInterpreterPython::Locker::DoAcquireLock()
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
{
if (!CurrentThreadHasPythonLock())
{
while (!TryGetPythonLock (1))
if (m_tmp_fh)
fprintf (m_tmp_fh,
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
"Python interpreter locked on another thread; waiting to acquire lock...\n");
}
return true;
}
bool
ScriptInterpreterPython::Locker::DoInitSession()
{
if (!m_python_interpreter)
return false;
m_python_interpreter->EnterSession ();
return true;
}
bool
ScriptInterpreterPython::Locker::DoFreeLock()
{
ReleasePythonLock ();
return true;
}
bool
ScriptInterpreterPython::Locker::DoTearDownSession()
{
if (!m_python_interpreter)
return false;
m_python_interpreter->LeaveSession ();
return true;
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
}
ScriptInterpreterPython::Locker::~Locker()
{
if (m_need_session)
DoTearDownSession();
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
if (m_release_lock)
DoFreeLock();
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
}
class ForceDisableSyntheticChildren
{
public:
ForceDisableSyntheticChildren (Target* target) :
m_target(target)
{
m_old_value = target->GetSuppressSyntheticValue();
target->SetSuppressSyntheticValue(true);
}
~ForceDisableSyntheticChildren ()
{
m_target->SetSuppressSyntheticValue(m_old_value);
}
private:
Target* m_target;
bool m_old_value;
};
ScriptInterpreterPython::ScriptInterpreterPython (CommandInterpreter &interpreter) :
ScriptInterpreter (interpreter, eScriptLanguagePython),
m_embedded_python_pty (),
m_embedded_thread_input_reader_sp (),
m_dbg_stdout (interpreter.GetDebugger().GetOutputFile().GetStream()),
m_new_sysout (NULL),
m_old_sysout (NULL),
m_old_syserr (NULL),
m_run_one_line (NULL),
m_dictionary_name (interpreter.GetDebugger().GetInstanceName().AsCString()),
m_terminal_state (),
m_session_is_active (false),
m_valid_session (true)
{
static int g_initialized = false;
if (!g_initialized)
{
g_initialized = true;
ScriptInterpreterPython::InitializePrivate ();
}
Locker locker(this,
ScriptInterpreterPython::Locker::AcquireLock,
ScriptInterpreterPython::Locker::FreeAcquiredLock);
m_dictionary_name.append("_dict");
StreamString run_string;
run_string.Printf ("%s = dict()", m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear();
// Importing 'lldb' module calls SBDebugger::Initialize, which calls Debugger::Initialize, which increments a
// global debugger ref-count; therefore we need to check the ref-count before and after importing lldb, and if the
// ref-count increased we need to call Debugger::Terminate here to decrement the ref-count so that when the final
// call to Debugger::Terminate is made, the ref-count has the correct value.
//
// Bonus question: Why doesn't the ref-count always increase? Because sometimes lldb has already been imported, in
// which case the code inside it, including the call to SBDebugger::Initialize(), does not get executed.
int old_count = Debugger::TestDebuggerRefCount();
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 08:09:32 +00:00
Part 1 of a series of fixes meant to improve reliability and increase ease of bug fixing for data formatter issues. We are introducing a new Logger class on the Python side. This has the same purpose, but is unrelated, to the C++ logging facility The Pythonic logging can be enabled by using the following scripting commands: (lldb) script Logger._lldb_formatters_debug_level = {0,1,2,...} 0 = no logging 1 = do log 2 = flush after logging each line - slower but safer 3 or more = each time a Logger is constructed, log the function that has created it more log levels may be added, each one being more log-active than the previous by default, the log output will come out on your screen, to direct it to a file: (lldb) script Logger._lldb_formatters_debug_filename = 'filename' that will make the output go to the file - set to None to disable the file output and get screen logging back Logging has been enabled for the C++ STL formatters and for Cocoa class NSData - more logging will follow synthetic children providers for classes list and map (both libstdcpp and libcxx) now have internal capping for safety reasons this will fix crashers where a malformed list or map would not ever meet our termination conditions to set the cap to a different value: (lldb) script {gnu_libstdcpp|libcxx}.{map|list}_capping_size = new_cap (by default, it is 255) you can optionally disable the loop detection algorithm for lists (lldb) script {gnu_libstdcpp|libcxx}.list_uses_loop_detector = False llvm-svn: 153676
2012-03-29 19:29:45 +00:00
run_string.Printf ("run_one_line (%s, 'import copy, os, re, sys, uuid, lldb, gnu_libstdcpp, libcxx, objc, Logger')", m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
// WARNING: temporary code that loads Cocoa formatters - this should be done on a per-platform basis rather than loading the whole set
// and letting the individual formatter classes exploit APIs to check whether they can/cannot do their task
run_string.Clear();
run_string.Printf ("run_one_line (%s, 'import CFString, CFArray, CFDictionary, NSData, NSMachPort, NSSet, NSNotification, NSException, CFBag, CFBinaryHeap, NSURL, NSBundle, NSNumber, NSDate, NSIndexSet, Selector, Class, CFBitVector')", m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 08:09:32 +00:00
int new_count = Debugger::TestDebuggerRefCount();
if (new_count > old_count)
Debugger::Terminate();
run_string.Clear();
run_string.Printf ("run_one_line (%s, 'lldb.debugger_unique_id = %llu')", m_dictionary_name.c_str(),
interpreter.GetDebugger().GetID());
PyRun_SimpleString (run_string.GetData());
if (m_dbg_stdout != NULL)
{
m_new_sysout = PyFile_FromFile (m_dbg_stdout, (char *) "", (char *) "w", _check_and_flush);
}
}
ScriptInterpreterPython::~ScriptInterpreterPython ()
{
Debugger &debugger = GetCommandInterpreter().GetDebugger();
if (m_embedded_thread_input_reader_sp.get() != NULL)
{
m_embedded_thread_input_reader_sp->SetIsDone (true);
m_embedded_python_pty.CloseSlaveFileDescriptor();
const InputReaderSP reader_sp = m_embedded_thread_input_reader_sp;
m_embedded_thread_input_reader_sp.reset();
debugger.PopInputReader (reader_sp);
}
if (m_new_sysout)
{
Locker locker(this,
ScriptInterpreterPython::Locker::AcquireLock,
ScriptInterpreterPython::Locker::FreeLock);
Py_DECREF ((PyObject*)m_new_sysout);
}
}
void
ScriptInterpreterPython::ResetOutputFileHandle (FILE *fh)
{
if (fh == NULL)
return;
m_dbg_stdout = fh;
Locker locker(this,
ScriptInterpreterPython::Locker::AcquireLock,
ScriptInterpreterPython::Locker::FreeAcquiredLock);
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
m_new_sysout = PyFile_FromFile (m_dbg_stdout, (char *) "", (char *) "w", _check_and_flush);
}
void
ScriptInterpreterPython::SaveTerminalState (int fd)
{
// Python mucks with the terminal state of STDIN. If we can possibly avoid
// this by setting the file handles up correctly prior to entering the
// interpreter we should. For now we save and restore the terminal state
// on the input file handle.
m_terminal_state.Save (fd, false);
}
void
ScriptInterpreterPython::RestoreTerminalState ()
{
// Python mucks with the terminal state of STDIN. If we can possibly avoid
// this by setting the file handles up correctly prior to entering the
// interpreter we should. For now we save and restore the terminal state
// on the input file handle.
m_terminal_state.Restore();
}
void
ScriptInterpreterPython::LeaveSession ()
{
// checking that we have a valid thread state - since we use our own threading and locking
// in some (rare) cases during cleanup Python may end up believing we have no thread state
// and PyImport_AddModule will crash if that is the case - since that seems to only happen
// when destroying the SBDebugger, we can make do without clearing up stdout and stderr
if (PyThreadState_Get())
{
PyObject *sysmod = PyImport_AddModule ("sys");
PyObject *sysdict = PyModule_GetDict (sysmod);
if (m_new_sysout && sysmod && sysdict)
{
if (m_old_sysout)
PyDict_SetItemString (sysdict, "stdout", (PyObject*)m_old_sysout);
if (m_old_syserr)
PyDict_SetItemString (sysdict, "stderr", (PyObject*)m_old_syserr);
}
}
m_session_is_active = false;
}
void
ScriptInterpreterPython::EnterSession ()
{
// If we have already entered the session, without having officially 'left' it, then there is no need to
// 'enter' it again.
if (m_session_is_active)
return;
m_session_is_active = true;
StreamString run_string;
run_string.Printf ( "run_one_line (%s, 'lldb.debugger_unique_id = %llu", m_dictionary_name.c_str(), GetCommandInterpreter().GetDebugger().GetID());
run_string.Printf ( "; lldb.debugger = lldb.SBDebugger.FindDebuggerWithID (%llu)", GetCommandInterpreter().GetDebugger().GetID());
run_string.PutCString ("; lldb.target = lldb.debugger.GetSelectedTarget()");
run_string.PutCString ("; lldb.process = lldb.target.GetProcess()");
run_string.PutCString ("; lldb.thread = lldb.process.GetSelectedThread ()");
run_string.PutCString ("; lldb.frame = lldb.thread.GetSelectedFrame ()");
// Make sure STDIN is closed since when we run this as an embedded
// interpreter we don't want someone to call "line = sys.stdin.readline()"
// and lock up. We don't have multiple windows and when the interpreter is
// embedded we don't know we should be feeding input to the embedded
// interpreter or to the python sys.stdin. We also don't want to let python
// play with the real stdin from this process, so we need to close it...
//run_string.PutCString ("; sys.stdin.close()");
run_string.PutCString ("')");
PyRun_SimpleString (run_string.GetData());
run_string.Clear();
PyObject *sysmod = PyImport_AddModule ("sys");
PyObject *sysdict = PyModule_GetDict (sysmod);
if (m_new_sysout && sysmod && sysdict)
{
m_old_sysout = PyDict_GetItemString(sysdict, "stdout");
m_old_syserr = PyDict_GetItemString(sysdict, "stderr");
if (m_new_sysout)
{
PyDict_SetItemString (sysdict, "stdout", (PyObject*)m_new_sysout);
PyDict_SetItemString (sysdict, "stderr", (PyObject*)m_new_sysout);
}
}
if (PyErr_Occurred())
PyErr_Clear ();
}
static PyObject*
FindSessionDictionary (const char* dict_name)
{
static std::map<ConstString,PyObject*> g_dict_map;
ConstString dict(dict_name);
std::map<ConstString,PyObject*>::iterator iter = g_dict_map.find(dict);
if (iter != g_dict_map.end())
return iter->second;
PyObject *main_mod = PyImport_AddModule ("__main__");
if (main_mod != NULL)
{
PyObject *main_dict = PyModule_GetDict (main_mod);
if ((main_dict != NULL)
&& PyDict_Check (main_dict))
{
// Go through the main dictionary looking for the correct python script interpreter dictionary
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next (main_dict, &pos, &key, &value))
{
// We have stolen references to the key and value objects in the dictionary; we need to increment
// them now so that Python's garbage collector doesn't collect them out from under us.
Py_INCREF (key);
Py_INCREF (value);
if (strcmp (PyString_AsString (key), dict_name) == 0)
{
g_dict_map[dict] = value;
return value;
}
}
}
}
return NULL;
}
static std::string
GenerateUniqueName (const char* base_name_wanted,
uint32_t& functions_counter,
void* name_token = NULL)
{
StreamString sstr;
if (!base_name_wanted)
return std::string();
if (!name_token)
sstr.Printf ("%s_%d", base_name_wanted, functions_counter++);
else
sstr.Printf ("%s_%p", base_name_wanted, name_token);
return sstr.GetString();
}
bool
ScriptInterpreterPython::ExecuteOneLine (const char *command, CommandReturnObject *result)
{
if (!m_valid_session)
return false;
// We want to call run_one_line, passing in the dictionary and the command string. We cannot do this through
// PyRun_SimpleString here because the command string may contain escaped characters, and putting it inside
// another string to pass to PyRun_SimpleString messes up the escaping. So we use the following more complicated
// method to pass the command string directly down to Python.
Locker locker(this,
ScriptInterpreterPython::Locker::AcquireLock | ScriptInterpreterPython::Locker::InitSession,
ScriptInterpreterPython::Locker::FreeAcquiredLock | ScriptInterpreterPython::Locker::TearDownSession);
bool success = false;
if (command)
{
// Find the correct script interpreter dictionary in the main module.
PyObject *script_interpreter_dict = FindSessionDictionary(m_dictionary_name.c_str());
if (script_interpreter_dict != NULL)
{
PyObject *pfunc = (PyObject*)m_run_one_line;
PyObject *pmod = PyImport_AddModule ("embedded_interpreter");
if (pmod != NULL)
{
PyObject *pmod_dict = PyModule_GetDict (pmod);
if ((pmod_dict != NULL)
&& PyDict_Check (pmod_dict))
{
if (!pfunc)
{
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next (pmod_dict, &pos, &key, &value))
{
Py_INCREF (key);
Py_INCREF (value);
if (strcmp (PyString_AsString (key), "run_one_line") == 0)
{
pfunc = value;
break;
}
}
m_run_one_line = pfunc;
}
if (pfunc && PyCallable_Check (pfunc))
{
PyObject *pargs = Py_BuildValue("(Os)",script_interpreter_dict,command);
if (pargs != NULL)
{
PyObject *pvalue = PyObject_CallObject (pfunc, pargs);
Py_DECREF (pargs);
if (pvalue != NULL)
{
Py_DECREF (pvalue);
success = true;
}
else if (PyErr_Occurred ())
{
PyErr_Print();
PyErr_Clear();
}
}
}
}
}
Py_INCREF (script_interpreter_dict);
}
if (success)
return true;
// The one-liner failed. Append the error message.
if (result)
result->AppendErrorWithFormat ("python failed attempting to evaluate '%s'\n", command);
return false;
}
if (result)
result->AppendError ("empty command passed to python\n");
return false;
}
size_t
ScriptInterpreterPython::InputReaderCallback
(
void *baton,
InputReader &reader,
InputReaderAction notification,
const char *bytes,
size_t bytes_len
)
{
lldb::thread_t embedded_interpreter_thread;
LogSP log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SCRIPT));
if (baton == NULL)
return 0;
ScriptInterpreterPython *script_interpreter = (ScriptInterpreterPython *) baton;
if (script_interpreter->m_script_lang != eScriptLanguagePython)
return 0;
StreamSP out_stream = reader.GetDebugger().GetAsyncOutputStream();
bool batch_mode = reader.GetDebugger().GetCommandInterpreter().GetBatchCommandMode();
switch (notification)
{
case eInputReaderActivate:
{
if (!batch_mode)
{
out_stream->Printf ("Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or Ctrl-D.\n");
out_stream->Flush();
}
// Save terminal settings if we can
int input_fd = reader.GetDebugger().GetInputFile().GetDescriptor();
if (input_fd == File::kInvalidDescriptor)
Added a new Host call to find LLDB related paths: static bool Host::GetLLDBPath (lldb::PathType path_type, FileSpec &file_spec); This will fill in "file_spec" with an appropriate path that is appropriate for the current Host OS. MacOSX will return paths within the LLDB.framework, and other unixes will return the paths they want. The current PathType enums are: typedef enum PathType { ePathTypeLLDBShlibDir, // The directory where the lldb.so (unix) or LLDB mach-o file in LLDB.framework (MacOSX) exists ePathTypeSupportExecutableDir, // Find LLDB support executable directory (debugserver, etc) ePathTypeHeaderDir, // Find LLDB header file directory ePathTypePythonDir // Find Python modules (PYTHONPATH) directory } PathType; All places that were finding executables are and python paths are now updated to use this Host call. Added another new host call to launch the inferior in a terminal. This ability will be very host specific and doesn't need to be supported on all systems. MacOSX currently will create a new .command file and tell Terminal.app to open the .command file. It also uses the new "darwin-debug" app which is a small app that uses posix to exec (no fork) and stop at the entry point of the program. The GDB remote plug-in is almost able launch a process and attach to it, it currently will spawn the process, but it won't attach to it just yet. This will let LLDB not have to share the terminal with another process and a new terminal window will pop up when you launch. This won't get hooked up until we work out all of the kinks. The new Host function is: static lldb::pid_t Host::LaunchInNewTerminal ( const char **argv, // argv[0] is executable const char **envp, const ArchSpec *arch_spec, bool stop_at_entry, bool disable_aslr); Cleaned up FileSpec::GetPath to not use strncpy() as it was always zero filling the entire path buffer. Fixed an issue with the dynamic checker function where I missed a '$' prefix that should have been added. llvm-svn: 116690
2010-10-17 22:03:32 +00:00
input_fd = STDIN_FILENO;
script_interpreter->SaveTerminalState(input_fd);
{
ScriptInterpreterPython::Locker locker(script_interpreter,
ScriptInterpreterPython::Locker::AcquireLock | ScriptInterpreterPython::Locker::InitSession,
ScriptInterpreterPython::Locker::FreeAcquiredLock);
}
char error_str[1024];
if (script_interpreter->m_embedded_python_pty.OpenFirstAvailableMaster (O_RDWR|O_NOCTTY, error_str,
sizeof(error_str)))
{
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, Activate, succeeded in opening master pty (fd = %d).",
script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor());
embedded_interpreter_thread = Host::ThreadCreate ("<lldb.script-interpreter.embedded-python-loop>",
ScriptInterpreterPython::RunEmbeddedPythonInterpreter,
script_interpreter, NULL);
if (IS_VALID_LLDB_HOST_THREAD(embedded_interpreter_thread))
{
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, Activate, succeeded in creating thread (thread_t = %p)", embedded_interpreter_thread);
Error detach_error;
Host::ThreadDetach (embedded_interpreter_thread, &detach_error);
}
else
{
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, Activate, failed in creating thread");
reader.SetIsDone (true);
}
}
else
{
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, Activate, failed to open master pty ");
reader.SetIsDone (true);
}
}
break;
case eInputReaderDeactivate:
// When another input reader is pushed, don't leave the session...
//script_interpreter->LeaveSession ();
break;
case eInputReaderReactivate:
{
// Don't try and acquire the interpreter lock here because code like
// this:
//
// (lldb) script
// >>> v = lldb.frame.EvaluateExpression("collection->get_at_index(12)")
//
// This will cause the process to run. The interpreter lock is taken
// by the input reader for the "script" command. If we try and acquire
// the lock here, when the process runs it might deactivate this input
// reader (if STDIN is hooked up to the inferior process) and
// reactivate it when the process stops which will deadlock.
//ScriptInterpreterPython::Locker locker(script_interpreter,
// ScriptInterpreterPython::Locker::AcquireLock | ScriptInterpreterPython::Locker::InitSession,
// ScriptInterpreterPython::Locker::FreeAcquiredLock);
}
break;
case eInputReaderAsynchronousOutputWritten:
break;
case eInputReaderInterrupt:
::write (script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor(), "raise KeyboardInterrupt\n", 24);
break;
case eInputReaderEndOfFile:
::write (script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor(), "quit()\n", 7);
break;
case eInputReaderGotToken:
if (script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor() != -1)
{
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, GotToken, bytes='%s', byte_len = %lu", bytes,
bytes_len);
if (bytes && bytes_len)
{
if ((int) bytes[0] == 4)
::write (script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor(), "quit()", 6);
else
::write (script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor(), bytes, bytes_len);
}
::write (script_interpreter->m_embedded_python_pty.GetMasterFileDescriptor(), "\n", 1);
}
else
{
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, GotToken, bytes='%s', byte_len = %lu, Master File Descriptor is bad.",
bytes,
bytes_len);
reader.SetIsDone (true);
}
break;
case eInputReaderDone:
script_interpreter->LeaveSession ();
// Restore terminal settings if they were validly saved
if (log)
log->Printf ("ScriptInterpreterPython::InputReaderCallback, Done, closing down input reader.");
script_interpreter->RestoreTerminalState ();
script_interpreter->m_embedded_python_pty.CloseMasterFileDescriptor();
break;
}
return bytes_len;
}
void
ScriptInterpreterPython::ExecuteInterpreterLoop ()
{
Timer scoped_timer (__PRETTY_FUNCTION__, __PRETTY_FUNCTION__);
Debugger &debugger = GetCommandInterpreter().GetDebugger();
// At the moment, the only time the debugger does not have an input file handle is when this is called
// directly from Python, in which case it is both dangerous and unnecessary (not to mention confusing) to
// try to embed a running interpreter loop inside the already running Python interpreter loop, so we won't
// do it.
if (!debugger.GetInputFile().IsValid())
return;
InputReaderSP reader_sp (new InputReader(debugger));
if (reader_sp)
{
Error error (reader_sp->Initialize (ScriptInterpreterPython::InputReaderCallback,
this, // baton
eInputReaderGranularityLine, // token size, to pass to callback function
NULL, // end token
NULL, // prompt
true)); // echo input
if (error.Success())
{
debugger.PushInputReader (reader_sp);
m_embedded_thread_input_reader_sp = reader_sp;
}
}
}
bool
ScriptInterpreterPython::ExecuteOneLineWithReturn (const char *in_string,
ScriptInterpreter::ScriptReturnType return_type,
void *ret_value)
{
Locker locker(this,
ScriptInterpreterPython::Locker::AcquireLock | ScriptInterpreterPython::Locker::InitSession,
ScriptInterpreterPython::Locker::FreeAcquiredLock | ScriptInterpreterPython::Locker::TearDownSession);
PyObject *py_return = NULL;
PyObject *mainmod = PyImport_AddModule ("__main__");
PyObject *globals = PyModule_GetDict (mainmod);
PyObject *locals = NULL;
PyObject *py_error = NULL;
bool ret_success = false;
bool should_decrement_locals = false;
int success;
locals = FindSessionDictionary(m_dictionary_name.c_str());
if (locals == NULL)
{
locals = PyObject_GetAttrString (globals, m_dictionary_name.c_str());
should_decrement_locals = true;
}
if (locals == NULL)
{
locals = globals;
should_decrement_locals = false;
}
py_error = PyErr_Occurred();
if (py_error != NULL)
PyErr_Clear();
if (in_string != NULL)
{
py_return = PyRun_String (in_string, Py_eval_input, globals, locals);
if (py_return == NULL)
{
py_error = PyErr_Occurred ();
if (py_error != NULL)
PyErr_Clear ();
py_return = PyRun_String (in_string, Py_single_input, globals, locals);
}
if (locals != NULL
&& should_decrement_locals)
Py_DECREF (locals);
if (py_return != NULL)
{
switch (return_type)
{
case eScriptReturnTypeCharPtr: // "char *"
{
const char format[3] = "s#";
success = PyArg_Parse (py_return, format, (char **) ret_value);
break;
}
case eScriptReturnTypeCharStrOrNone: // char* or NULL if py_return == Py_None
{
const char format[3] = "z";
success = PyArg_Parse (py_return, format, (char **) ret_value);
break;
}
case eScriptReturnTypeBool:
{
const char format[2] = "b";
success = PyArg_Parse (py_return, format, (bool *) ret_value);
break;
}
case eScriptReturnTypeShortInt:
{
const char format[2] = "h";
success = PyArg_Parse (py_return, format, (short *) ret_value);
break;
}
case eScriptReturnTypeShortIntUnsigned:
{
const char format[2] = "H";
success = PyArg_Parse (py_return, format, (unsigned short *) ret_value);
break;
}
case eScriptReturnTypeInt:
{
const char format[2] = "i";
success = PyArg_Parse (py_return, format, (int *) ret_value);
break;
}
case eScriptReturnTypeIntUnsigned:
{
const char format[2] = "I";
success = PyArg_Parse (py_return, format, (unsigned int *) ret_value);
break;
}
case eScriptReturnTypeLongInt:
{
const char format[2] = "l";
success = PyArg_Parse (py_return, format, (long *) ret_value);
break;
}
case eScriptReturnTypeLongIntUnsigned:
{
const char format[2] = "k";
success = PyArg_Parse (py_return, format, (unsigned long *) ret_value);
break;
}
case eScriptReturnTypeLongLong:
{
const char format[2] = "L";
success = PyArg_Parse (py_return, format, (long long *) ret_value);
break;
}
case eScriptReturnTypeLongLongUnsigned:
{
const char format[2] = "K";
success = PyArg_Parse (py_return, format, (unsigned long long *) ret_value);
break;
}
case eScriptReturnTypeFloat:
{
const char format[2] = "f";
success = PyArg_Parse (py_return, format, (float *) ret_value);
break;
}
case eScriptReturnTypeDouble:
{
const char format[2] = "d";
success = PyArg_Parse (py_return, format, (double *) ret_value);
break;
}
case eScriptReturnTypeChar:
{
const char format[2] = "c";
success = PyArg_Parse (py_return, format, (char *) ret_value);
break;
}
default:
{}
}
Py_DECREF (py_return);
if (success)
ret_success = true;
else
ret_success = false;
}
}
py_error = PyErr_Occurred();
if (py_error != NULL)
{
if (PyErr_GivenExceptionMatches (py_error, PyExc_SyntaxError))
PyErr_Print ();
PyErr_Clear();
ret_success = false;
}
return ret_success;
}
bool
ScriptInterpreterPython::ExecuteMultipleLines (const char *in_string)
{
Locker locker(this,
ScriptInterpreterPython::Locker::AcquireLock | ScriptInterpreterPython::Locker::InitSession,
ScriptInterpreterPython::Locker::FreeAcquiredLock | ScriptInterpreterPython::Locker::TearDownSession);
bool success = false;
PyObject *py_return = NULL;
PyObject *mainmod = PyImport_AddModule ("__main__");
PyObject *globals = PyModule_GetDict (mainmod);
PyObject *locals = NULL;
PyObject *py_error = NULL;
bool should_decrement_locals = false;
locals = FindSessionDictionary(m_dictionary_name.c_str());
if (locals == NULL)
{
locals = PyObject_GetAttrString (globals, m_dictionary_name.c_str());
should_decrement_locals = true;
}
if (locals == NULL)
{
locals = globals;
should_decrement_locals = false;
}
py_error = PyErr_Occurred();
if (py_error != NULL)
PyErr_Clear();
if (in_string != NULL)
{
struct _node *compiled_node = PyParser_SimpleParseString (in_string, Py_file_input);
if (compiled_node)
{
PyCodeObject *compiled_code = PyNode_Compile (compiled_node, "temp.py");
if (compiled_code)
{
py_return = PyEval_EvalCode (compiled_code, globals, locals);
if (py_return != NULL)
{
success = true;
Py_DECREF (py_return);
}
if (locals && should_decrement_locals)
Py_DECREF (locals);
}
}
}
py_error = PyErr_Occurred ();
if (py_error != NULL)
{
if (PyErr_GivenExceptionMatches (py_error, PyExc_SyntaxError))
PyErr_Print ();
PyErr_Clear();
success = false;
}
return success;
}
static const char *g_reader_instructions = "Enter your Python command(s). Type 'DONE' to end.";
size_t
ScriptInterpreterPython::GenerateBreakpointOptionsCommandCallback
(
void *baton,
InputReader &reader,
InputReaderAction notification,
const char *bytes,
size_t bytes_len
)
{
static StringList commands_in_progress;
StreamSP out_stream = reader.GetDebugger().GetAsyncOutputStream();
bool batch_mode = reader.GetDebugger().GetCommandInterpreter().GetBatchCommandMode();
switch (notification)
{
case eInputReaderActivate:
{
commands_in_progress.Clear();
if (!batch_mode)
{
out_stream->Printf ("%s\n", g_reader_instructions);
if (reader.GetPrompt())
out_stream->Printf ("%s", reader.GetPrompt());
out_stream->Flush ();
}
}
break;
case eInputReaderDeactivate:
break;
case eInputReaderReactivate:
if (reader.GetPrompt() && !batch_mode)
{
out_stream->Printf ("%s", reader.GetPrompt());
out_stream->Flush ();
}
break;
case eInputReaderAsynchronousOutputWritten:
break;
case eInputReaderGotToken:
{
std::string temp_string (bytes, bytes_len);
commands_in_progress.AppendString (temp_string.c_str());
if (!reader.IsDone() && reader.GetPrompt() && !batch_mode)
{
out_stream->Printf ("%s", reader.GetPrompt());
out_stream->Flush ();
}
}
break;
case eInputReaderEndOfFile:
case eInputReaderInterrupt:
// Control-c (SIGINT) & control-d both mean finish & exit.
reader.SetIsDone(true);
// Control-c (SIGINT) ALSO means cancel; do NOT create a breakpoint command.
if (notification == eInputReaderInterrupt)
commands_in_progress.Clear();
// Fall through here...
case eInputReaderDone:
{
BreakpointOptions *bp_options = (BreakpointOptions *)baton;
std::auto_ptr<BreakpointOptions::CommandData> data_ap(new BreakpointOptions::CommandData());
data_ap->user_source.AppendList (commands_in_progress);
if (data_ap.get())
{
ScriptInterpreter *interpreter = reader.GetDebugger().GetCommandInterpreter().GetScriptInterpreter();
if (interpreter)
{
if (interpreter->GenerateBreakpointCommandCallbackData (data_ap->user_source,
data_ap->script_source))
{
BatonSP baton_sp (new BreakpointOptions::CommandBaton (data_ap.release()));
bp_options->SetCallback (ScriptInterpreterPython::BreakpointCallbackFunction, baton_sp);
}
else if (!batch_mode)
{
out_stream->Printf ("Warning: No command attached to breakpoint.\n");
out_stream->Flush();
}
}
else
{
if (!batch_mode)
{
out_stream->Printf ("Warning: Unable to find script intepreter; no command attached to breakpoint.\n");
out_stream->Flush();
}
}
}
}
break;
}
return bytes_len;
}
void
ScriptInterpreterPython::CollectDataForBreakpointCommandCallback (BreakpointOptions *bp_options,
CommandReturnObject &result)
{
Debugger &debugger = GetCommandInterpreter().GetDebugger();
InputReaderSP reader_sp (new InputReader (debugger));
if (reader_sp)
{
Error err = reader_sp->Initialize (
ScriptInterpreterPython::GenerateBreakpointOptionsCommandCallback,
bp_options, // baton
eInputReaderGranularityLine, // token size, for feeding data to callback function
"DONE", // end token
"> ", // prompt
true); // echo input
if (err.Success())
debugger.PushInputReader (reader_sp);
else
{
result.AppendError (err.AsCString());
result.SetStatus (eReturnStatusFailed);
}
}
else
{
result.AppendError("out of memory");
result.SetStatus (eReturnStatusFailed);
}
}
2010-09-11 00:23:59 +00:00
// Set a Python one-liner as the callback for the breakpoint.
Added the capability to specify a one-liner Python script as the callback command for a breakpoint, for example: (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" The ScriptInterpreter interface has an extra method: /// Set a one-liner as the callback for the breakpoint command. virtual void SetBreakpointCommandCallback (CommandInterpreter &interpreter, BreakpointOptions *bp_options, const char *oneliner); to accomplish the above. Also added a test case to demonstrate lldb's use of breakpoint callback command to stop at function c() only when its immediate caller is function a(). The following session shows the user entering the following commands: 1) command source .lldb (set up executable, breakpoint, and breakpoint command) 2) run (the callback mechanism will skip two breakpoints where c()'s immeidate caller is not a()) 3) bt (to see that indeed c()'s immediate caller is a()) 4) c (to continue and finish the program) test/conditional_break $ ../../build/Debug/lldb (lldb) command source .lldb Executing commands in '.lldb'. (lldb) file a.out Current executable set to 'a.out' (x86_64). (lldb) breakpoint set -n c Breakpoint created: 1: name = 'c', locations = 1 (lldb) script import sys, os (lldb) script sys.path.append(os.path.join(os.getcwd(), os.pardir)) (lldb) script import conditional_break (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" (lldb) run run Launching '/Volumes/data/lldb/svn/trunk/test/conditional_break/a.out' (x86_64) (lldb) Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`a at main.c:25 frame #3: a.out`main at main.c:44 frame #4: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`main at main.c:47 frame #3: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`a at main.c:27 frame #2: a.out`main at main.c:50 frame #3: a.out`start c called from a Stopped at c() with immediate caller as a(). a(1) returns 4 b(2) returns 5 Process 20420 Stopped * thread #1: tid = 0x2e03, 0x0000000100000de8 a.out`c + 7 at main.c:39, stop reason = breakpoint 1.1, queue = com.apple.main-thread 36 37 int c(int val) 38 { 39 -> return val + 3; 40 } 41 42 int main (int argc, char const *argv[]) (lldb) bt bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: 0x0000000100000de8 a.out`c + 7 at main.c:39 frame #1: 0x0000000100000dbc a.out`a + 44 at main.c:27 frame #2: 0x0000000100000e4b a.out`main + 91 at main.c:50 frame #3: 0x0000000100000d88 a.out`start + 52 (lldb) c c Resuming process 20420 Process 20420 Exited a(3) returns 6 (lldb) llvm-svn: 113596
2010-09-10 18:21:10 +00:00
void
ScriptInterpreterPython::SetBreakpointCommandCallback (BreakpointOptions *bp_options,
Added the capability to specify a one-liner Python script as the callback command for a breakpoint, for example: (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" The ScriptInterpreter interface has an extra method: /// Set a one-liner as the callback for the breakpoint command. virtual void SetBreakpointCommandCallback (CommandInterpreter &interpreter, BreakpointOptions *bp_options, const char *oneliner); to accomplish the above. Also added a test case to demonstrate lldb's use of breakpoint callback command to stop at function c() only when its immediate caller is function a(). The following session shows the user entering the following commands: 1) command source .lldb (set up executable, breakpoint, and breakpoint command) 2) run (the callback mechanism will skip two breakpoints where c()'s immeidate caller is not a()) 3) bt (to see that indeed c()'s immediate caller is a()) 4) c (to continue and finish the program) test/conditional_break $ ../../build/Debug/lldb (lldb) command source .lldb Executing commands in '.lldb'. (lldb) file a.out Current executable set to 'a.out' (x86_64). (lldb) breakpoint set -n c Breakpoint created: 1: name = 'c', locations = 1 (lldb) script import sys, os (lldb) script sys.path.append(os.path.join(os.getcwd(), os.pardir)) (lldb) script import conditional_break (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" (lldb) run run Launching '/Volumes/data/lldb/svn/trunk/test/conditional_break/a.out' (x86_64) (lldb) Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`a at main.c:25 frame #3: a.out`main at main.c:44 frame #4: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`main at main.c:47 frame #3: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`a at main.c:27 frame #2: a.out`main at main.c:50 frame #3: a.out`start c called from a Stopped at c() with immediate caller as a(). a(1) returns 4 b(2) returns 5 Process 20420 Stopped * thread #1: tid = 0x2e03, 0x0000000100000de8 a.out`c + 7 at main.c:39, stop reason = breakpoint 1.1, queue = com.apple.main-thread 36 37 int c(int val) 38 { 39 -> return val + 3; 40 } 41 42 int main (int argc, char const *argv[]) (lldb) bt bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: 0x0000000100000de8 a.out`c + 7 at main.c:39 frame #1: 0x0000000100000dbc a.out`a + 44 at main.c:27 frame #2: 0x0000000100000e4b a.out`main + 91 at main.c:50 frame #3: 0x0000000100000d88 a.out`start + 52 (lldb) c c Resuming process 20420 Process 20420 Exited a(3) returns 6 (lldb) llvm-svn: 113596
2010-09-10 18:21:10 +00:00
const char *oneliner)
{
std::auto_ptr<BreakpointOptions::CommandData> data_ap(new BreakpointOptions::CommandData());
// It's necessary to set both user_source and script_source to the oneliner.
// The former is used to generate callback description (as in breakpoint command list)
// while the latter is used for Python to interpret during the actual callback.
data_ap->user_source.AppendString (oneliner);
Added the capability to specify a one-liner Python script as the callback command for a breakpoint, for example: (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" The ScriptInterpreter interface has an extra method: /// Set a one-liner as the callback for the breakpoint command. virtual void SetBreakpointCommandCallback (CommandInterpreter &interpreter, BreakpointOptions *bp_options, const char *oneliner); to accomplish the above. Also added a test case to demonstrate lldb's use of breakpoint callback command to stop at function c() only when its immediate caller is function a(). The following session shows the user entering the following commands: 1) command source .lldb (set up executable, breakpoint, and breakpoint command) 2) run (the callback mechanism will skip two breakpoints where c()'s immeidate caller is not a()) 3) bt (to see that indeed c()'s immediate caller is a()) 4) c (to continue and finish the program) test/conditional_break $ ../../build/Debug/lldb (lldb) command source .lldb Executing commands in '.lldb'. (lldb) file a.out Current executable set to 'a.out' (x86_64). (lldb) breakpoint set -n c Breakpoint created: 1: name = 'c', locations = 1 (lldb) script import sys, os (lldb) script sys.path.append(os.path.join(os.getcwd(), os.pardir)) (lldb) script import conditional_break (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" (lldb) run run Launching '/Volumes/data/lldb/svn/trunk/test/conditional_break/a.out' (x86_64) (lldb) Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`a at main.c:25 frame #3: a.out`main at main.c:44 frame #4: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`main at main.c:47 frame #3: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`a at main.c:27 frame #2: a.out`main at main.c:50 frame #3: a.out`start c called from a Stopped at c() with immediate caller as a(). a(1) returns 4 b(2) returns 5 Process 20420 Stopped * thread #1: tid = 0x2e03, 0x0000000100000de8 a.out`c + 7 at main.c:39, stop reason = breakpoint 1.1, queue = com.apple.main-thread 36 37 int c(int val) 38 { 39 -> return val + 3; 40 } 41 42 int main (int argc, char const *argv[]) (lldb) bt bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: 0x0000000100000de8 a.out`c + 7 at main.c:39 frame #1: 0x0000000100000dbc a.out`a + 44 at main.c:27 frame #2: 0x0000000100000e4b a.out`main + 91 at main.c:50 frame #3: 0x0000000100000d88 a.out`start + 52 (lldb) c c Resuming process 20420 Process 20420 Exited a(3) returns 6 (lldb) llvm-svn: 113596
2010-09-10 18:21:10 +00:00
if (GenerateBreakpointCommandCallbackData (data_ap->user_source, data_ap->script_source))
{
BatonSP baton_sp (new BreakpointOptions::CommandBaton (data_ap.release()));
bp_options->SetCallback (ScriptInterpreterPython::BreakpointCallbackFunction, baton_sp);
}
Added the capability to specify a one-liner Python script as the callback command for a breakpoint, for example: (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" The ScriptInterpreter interface has an extra method: /// Set a one-liner as the callback for the breakpoint command. virtual void SetBreakpointCommandCallback (CommandInterpreter &interpreter, BreakpointOptions *bp_options, const char *oneliner); to accomplish the above. Also added a test case to demonstrate lldb's use of breakpoint callback command to stop at function c() only when its immediate caller is function a(). The following session shows the user entering the following commands: 1) command source .lldb (set up executable, breakpoint, and breakpoint command) 2) run (the callback mechanism will skip two breakpoints where c()'s immeidate caller is not a()) 3) bt (to see that indeed c()'s immediate caller is a()) 4) c (to continue and finish the program) test/conditional_break $ ../../build/Debug/lldb (lldb) command source .lldb Executing commands in '.lldb'. (lldb) file a.out Current executable set to 'a.out' (x86_64). (lldb) breakpoint set -n c Breakpoint created: 1: name = 'c', locations = 1 (lldb) script import sys, os (lldb) script sys.path.append(os.path.join(os.getcwd(), os.pardir)) (lldb) script import conditional_break (lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()" (lldb) run run Launching '/Volumes/data/lldb/svn/trunk/test/conditional_break/a.out' (x86_64) (lldb) Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`a at main.c:25 frame #3: a.out`main at main.c:44 frame #4: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`b at main.c:34 frame #2: a.out`main at main.c:47 frame #3: a.out`start c called from b Continuing... Checking call frames... Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread: frame #0: a.out`c at main.c:39 frame #1: a.out`a at main.c:27 frame #2: a.out`main at main.c:50 frame #3: a.out`start c called from a Stopped at c() with immediate caller as a(). a(1) returns 4 b(2) returns 5 Process 20420 Stopped * thread #1: tid = 0x2e03, 0x0000000100000de8 a.out`c + 7 at main.c:39, stop reason = breakpoint 1.1, queue = com.apple.main-thread 36 37 int c(int val) 38 { 39 -> return val + 3; 40 } 41 42 int main (int argc, char const *argv[]) (lldb) bt bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: 0x0000000100000de8 a.out`c + 7 at main.c:39 frame #1: 0x0000000100000dbc a.out`a + 44 at main.c:27 frame #2: 0x0000000100000e4b a.out`main + 91 at main.c:50 frame #3: 0x0000000100000d88 a.out`start + 52 (lldb) c c Resuming process 20420 Process 20420 Exited a(3) returns 6 (lldb) llvm-svn: 113596
2010-09-10 18:21:10 +00:00
return;
}
bool
ScriptInterpreterPython::ExportFunctionDefinitionToInterpreter (StringList &function_def)
{
// Convert StringList to one long, newline delimited, const char *.
std::string function_def_string(function_def.CopyList());
return ExecuteMultipleLines (function_def_string.c_str());
}
bool
ScriptInterpreterPython::GenerateFunction(const char *signature, const StringList &input)
{
int num_lines = input.GetSize ();
if (num_lines == 0)
return false;
if (!signature || *signature == 0)
return false;
StreamString sstr;
StringList auto_generated_function;
auto_generated_function.AppendString (signature);
auto_generated_function.AppendString (" global_dict = globals()"); // Grab the global dictionary
auto_generated_function.AppendString (" new_keys = dict.keys()"); // Make a list of keys in the session dict
auto_generated_function.AppendString (" old_keys = global_dict.keys()"); // Save list of keys in global dict
auto_generated_function.AppendString (" global_dict.update (dict)"); // Add the session dictionary to the
// global dictionary.
// Wrap everything up inside the function, increasing the indentation.
for (int i = 0; i < num_lines; ++i)
{
sstr.Clear ();
sstr.Printf (" %s", input.GetStringAtIndex (i));
auto_generated_function.AppendString (sstr.GetData());
}
auto_generated_function.AppendString (" for key in new_keys:"); // Iterate over all the keys from session dict
auto_generated_function.AppendString (" dict[key] = global_dict[key]"); // Update session dict values
auto_generated_function.AppendString (" if key not in old_keys:"); // If key was not originally in global dict
auto_generated_function.AppendString (" del global_dict[key]"); // ...then remove key/value from global dict
// Verify that the results are valid Python.
if (!ExportFunctionDefinitionToInterpreter (auto_generated_function))
return false;
return true;
}
bool
ScriptInterpreterPython::GenerateTypeScriptFunction (StringList &user_input, std::string& output, void* name_token)
{
static uint32_t num_created_functions = 0;
user_input.RemoveBlankLines ();
StreamString sstr;
// Check to see if we have any data; if not, just return.
if (user_input.GetSize() == 0)
return false;
// Take what the user wrote, wrap it all up inside one big auto-generated Python function, passing in the
// ValueObject as parameter to the function.
std::string auto_generated_function_name(GenerateUniqueName("lldb_autogen_python_type_print_func", num_created_functions, name_token));
sstr.Printf ("def %s (valobj, dict):", auto_generated_function_name.c_str());
if (!GenerateFunction(sstr.GetData(), user_input))
return false;
// Store the name of the auto-generated function to be called.
output.assign(auto_generated_function_name);
return true;
}
bool
ScriptInterpreterPython::GenerateScriptAliasFunction (StringList &user_input, std::string &output)
{
static uint32_t num_created_functions = 0;
user_input.RemoveBlankLines ();
StreamString sstr;
// Check to see if we have any data; if not, just return.
if (user_input.GetSize() == 0)
return false;
std::string auto_generated_function_name(GenerateUniqueName("lldb_autogen_python_cmd_alias_func", num_created_functions));
sstr.Printf ("def %s (debugger, args, result, dict):", auto_generated_function_name.c_str());
if (!GenerateFunction(sstr.GetData(),user_input))
return false;
// Store the name of the auto-generated function to be called.
output.assign(auto_generated_function_name);
return true;
}
bool
ScriptInterpreterPython::GenerateTypeSynthClass (StringList &user_input, std::string &output, void* name_token)
{
static uint32_t num_created_classes = 0;
user_input.RemoveBlankLines ();
int num_lines = user_input.GetSize ();
StreamString sstr;
// Check to see if we have any data; if not, just return.
if (user_input.GetSize() == 0)
return false;
// Wrap all user input into a Python class
std::string auto_generated_class_name(GenerateUniqueName("lldb_autogen_python_type_synth_class",num_created_classes,name_token));
StringList auto_generated_class;
// Create the function name & definition string.
sstr.Printf ("class %s:", auto_generated_class_name.c_str());
auto_generated_class.AppendString (sstr.GetData());
// Wrap everything up inside the class, increasing the indentation.
for (int i = 0; i < num_lines; ++i)
{
sstr.Clear ();
sstr.Printf (" %s", user_input.GetStringAtIndex (i));
auto_generated_class.AppendString (sstr.GetData());
}
// Verify that the results are valid Python.
// (even though the method is ExportFunctionDefinitionToInterpreter, a class will actually be exported)
// (TODO: rename that method to ExportDefinitionToInterpreter)
if (!ExportFunctionDefinitionToInterpreter (auto_generated_class))
return false;
// Store the name of the auto-generated class
output.assign(auto_generated_class_name);
return true;
}
lldb::ScriptInterpreterObjectSP
ScriptInterpreterPython::CreateSyntheticScriptedProvider (std::string class_name,
lldb::ValueObjectSP valobj)
{
if (class_name.empty())
return lldb::ScriptInterpreterObjectSP();
if (!valobj.get())
return lldb::ScriptInterpreterObjectSP();
ExecutionContext exe_ctx (valobj->GetExecutionContextRef());
Target *target = exe_ctx.GetTargetPtr();
if (!target)
return lldb::ScriptInterpreterObjectSP();
Debugger &debugger = target->GetDebugger();
ScriptInterpreter *script_interpreter = debugger.GetCommandInterpreter().GetScriptInterpreter();
ScriptInterpreterPython *python_interpreter = (ScriptInterpreterPython *) script_interpreter;
if (!script_interpreter)
return lldb::ScriptInterpreterObjectSP();
void* ret_val;
{
Locker py_lock(this);
ForceDisableSyntheticChildren no_synthetics(target);
ret_val = g_swig_synthetic_script (class_name,
python_interpreter->m_dictionary_name.c_str(),
valobj);
}
return MakeScriptObject(ret_val);
}
bool
ScriptInterpreterPython::GenerateTypeScriptFunction (const char* oneliner, std::string& output, void* name_token)
{
StringList input;
input.SplitIntoLines(oneliner, strlen(oneliner));
return GenerateTypeScriptFunction(input, output, name_token);
}
bool
ScriptInterpreterPython::GenerateTypeSynthClass (const char* oneliner, std::string& output, void* name_token)
{
StringList input;
input.SplitIntoLines(oneliner, strlen(oneliner));
return GenerateTypeSynthClass(input, output, name_token);
}
bool
ScriptInterpreterPython::GenerateBreakpointCommandCallbackData (StringList &user_input, std::string& output)
{
static uint32_t num_created_functions = 0;
user_input.RemoveBlankLines ();
StreamString sstr;
if (user_input.GetSize() == 0)
return false;
std::string auto_generated_function_name(GenerateUniqueName("lldb_autogen_python_bp_callback_func_",num_created_functions));
sstr.Printf ("def %s (frame, bp_loc, dict):", auto_generated_function_name.c_str());
if (!GenerateFunction(sstr.GetData(), user_input))
return false;
// Store the name of the auto-generated function to be called.
output.assign(auto_generated_function_name);
return true;
}
bool
ScriptInterpreterPython::GetScriptedSummary (const char *python_function_name,
lldb::ValueObjectSP valobj,
lldb::ScriptInterpreterObjectSP& callee_wrapper_sp,
std::string& retval)
{
Timer scoped_timer (__PRETTY_FUNCTION__, __PRETTY_FUNCTION__);
if (!valobj.get())
{
retval.assign("<no object>");
return false;
}
void* old_callee = (callee_wrapper_sp ? callee_wrapper_sp->GetObject() : NULL);
void* new_callee = old_callee;
bool ret_val;
if (python_function_name
&& *python_function_name)
{
{
Locker py_lock(this);
{
Timer scoped_timer ("g_swig_typescript_callback","g_swig_typescript_callback");
ret_val = g_swig_typescript_callback (python_function_name,
FindSessionDictionary(m_dictionary_name.c_str()),
valobj,
&new_callee,
retval);
}
}
}
else
{
retval.assign("<no function name>");
return false;
}
if (new_callee && old_callee != new_callee)
callee_wrapper_sp = MakeScriptObject(new_callee);
return ret_val;
}
bool
ScriptInterpreterPython::BreakpointCallbackFunction
(
void *baton,
StoppointCallbackContext *context,
user_id_t break_id,
user_id_t break_loc_id
)
{
BreakpointOptions::CommandData *bp_option_data = (BreakpointOptions::CommandData *) baton;
const char *python_function_name = bp_option_data->script_source.c_str();
if (!context)
return true;
ExecutionContext exe_ctx (context->exe_ctx_ref);
Target *target = exe_ctx.GetTargetPtr();
if (!target)
return true;
Debugger &debugger = target->GetDebugger();
ScriptInterpreter *script_interpreter = debugger.GetCommandInterpreter().GetScriptInterpreter();
ScriptInterpreterPython *python_interpreter = (ScriptInterpreterPython *) script_interpreter;
if (!script_interpreter)
return true;
if (python_function_name != NULL
&& python_function_name[0] != '\0')
{
const StackFrameSP stop_frame_sp (exe_ctx.GetFrameSP());
BreakpointSP breakpoint_sp = target->GetBreakpointByID (break_id);
if (breakpoint_sp)
{
const BreakpointLocationSP bp_loc_sp (breakpoint_sp->FindLocationByID (break_loc_id));
if (stop_frame_sp && bp_loc_sp)
{
bool ret_val = true;
{
Locker py_lock(python_interpreter);
ret_val = g_swig_breakpoint_callback (python_function_name,
python_interpreter->m_dictionary_name.c_str(),
stop_frame_sp,
bp_loc_sp);
}
return ret_val;
}
}
}
// We currently always true so we stop in case anything goes wrong when
// trying to call the script function
return true;
}
lldb::thread_result_t
ScriptInterpreterPython::RunEmbeddedPythonInterpreter (lldb::thread_arg_t baton)
{
ScriptInterpreterPython *script_interpreter = (ScriptInterpreterPython *) baton;
LogSP log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SCRIPT));
if (log)
log->Printf ("%p ScriptInterpreterPython::RunEmbeddedPythonInterpreter () thread starting...", baton);
char error_str[1024];
const char *pty_slave_name = script_interpreter->m_embedded_python_pty.GetSlaveName (error_str, sizeof (error_str));
Locker locker(script_interpreter,
ScriptInterpreterPython::Locker::AcquireLock | ScriptInterpreterPython::Locker::InitSession,
ScriptInterpreterPython::Locker::FreeAcquiredLock | ScriptInterpreterPython::Locker::TearDownSession);
if (pty_slave_name != NULL)
{
StreamString run_string;
run_string.Printf ("run_one_line (%s, 'save_stderr = sys.stderr')", script_interpreter->m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear ();
run_string.Printf ("run_one_line (%s, 'sys.stderr = sys.stdout')", script_interpreter->m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear ();
run_string.Printf ("run_one_line (%s, 'save_stdin = sys.stdin')", script_interpreter->m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear ();
run_string.Printf ("run_one_line (%s, \"sys.stdin = open ('%s', 'r')\")", script_interpreter->m_dictionary_name.c_str(),
pty_slave_name);
PyRun_SimpleString (run_string.GetData());
run_string.Clear ();
// The following call drops into the embedded interpreter loop and stays there until the
// user chooses to exit from the Python interpreter.
// When in the embedded interpreter, the user can call arbitrary system and Python stuff, which may require
// the ability to run multi-threaded stuff, so we need to surround the call to the embedded interpreter with
// calls to Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS.
// We ALSO need to surround the call to the embedded interpreter with calls to PyGILState_Ensure and
// PyGILState_Release. This is because this embedded interpreter is being run on a DIFFERENT THREAD than
// the thread on which the call to Py_Initialize (and PyEval_InitThreads) was called. Those initializations
// called PyGILState_Ensure on *that* thread, but it also needs to be called on *this* thread. Otherwise,
// if the user calls Python code that does threading stuff, the interpreter state will be off, and things could
// hang (it's happened before).
Py_BEGIN_ALLOW_THREADS
PyGILState_STATE gstate = PyGILState_Ensure();
run_string.Printf ("run_python_interpreter (%s)", script_interpreter->m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear ();
PyGILState_Release (gstate);
Py_END_ALLOW_THREADS
run_string.Printf ("run_one_line (%s, 'sys.stdin = save_stdin')", script_interpreter->m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear();
run_string.Printf ("run_one_line (%s, 'sys.stderr = save_stderr')", script_interpreter->m_dictionary_name.c_str());
PyRun_SimpleString (run_string.GetData());
run_string.Clear();
}
if (script_interpreter->m_embedded_thread_input_reader_sp)
script_interpreter->m_embedded_thread_input_reader_sp->SetIsDone (true);
script_interpreter->m_embedded_python_pty.CloseSlaveFileDescriptor();
log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SCRIPT);
if (log)
log->Printf ("%p ScriptInterpreterPython::RunEmbeddedPythonInterpreter () thread exiting...", baton);
// Clean up the input reader and make the debugger pop it off the stack.
Debugger &debugger = script_interpreter->GetCommandInterpreter().GetDebugger();
const InputReaderSP reader_sp = script_interpreter->m_embedded_thread_input_reader_sp;
script_interpreter->m_embedded_thread_input_reader_sp.reset();
debugger.PopInputReader (reader_sp);
return NULL;
}
uint32_t
ScriptInterpreterPython::CalculateNumChildren (const lldb::ScriptInterpreterObjectSP& implementor_sp)
{
if (!implementor_sp)
return 0;
void* implementor = implementor_sp->GetObject();
if (!implementor)
return 0;
if (!g_swig_calc_children)
return 0;
uint32_t ret_val = 0;
{
Locker py_lock(this);
ForceDisableSyntheticChildren no_synthetics(GetCommandInterpreter().GetDebugger().GetSelectedTarget().get());
ret_val = g_swig_calc_children (implementor);
}
return ret_val;
}
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
lldb::ValueObjectSP
ScriptInterpreterPython::GetChildAtIndex (const lldb::ScriptInterpreterObjectSP& implementor_sp, uint32_t idx)
{
if (!implementor_sp)
return lldb::ValueObjectSP();
void* implementor = implementor_sp->GetObject();
if (!implementor)
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
return lldb::ValueObjectSP();
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
if (!g_swig_get_child_index || !g_swig_cast_to_sbvalue)
return lldb::ValueObjectSP();
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
void* child_ptr = NULL;
lldb::SBValue* value_sb = NULL;
lldb::ValueObjectSP ret_val;
{
Locker py_lock(this);
ForceDisableSyntheticChildren no_synthetics(GetCommandInterpreter().GetDebugger().GetSelectedTarget().get());
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-06 19:20:51 +00:00
child_ptr = g_swig_get_child_index (implementor,idx);
if (child_ptr != NULL && child_ptr != Py_None)
{
value_sb = (lldb::SBValue*)g_swig_cast_to_sbvalue(child_ptr);
if (value_sb == NULL)
Py_XDECREF(child_ptr);
else
ret_val = value_sb->get_sp();
}
else
{
Py_XDECREF(child_ptr);
}
}
return ret_val;
}
int
ScriptInterpreterPython::GetIndexOfChildWithName (const lldb::ScriptInterpreterObjectSP& implementor_sp, const char* child_name)
{
if (!implementor_sp)
return UINT32_MAX;
void* implementor = implementor_sp->GetObject();
if (!implementor)
return UINT32_MAX;
if (!g_swig_get_index_child)
return UINT32_MAX;
int ret_val = UINT32_MAX;
{
Locker py_lock(this);
ForceDisableSyntheticChildren no_synthetics(GetCommandInterpreter().GetDebugger().GetSelectedTarget().get());
ret_val = g_swig_get_index_child (implementor, child_name);
}
return ret_val;
}
bool
ScriptInterpreterPython::UpdateSynthProviderInstance (const lldb::ScriptInterpreterObjectSP& implementor_sp)
{
bool ret_val = false;
if (!implementor_sp)
return ret_val;
void* implementor = implementor_sp->GetObject();
if (!implementor)
return ret_val;
if (!g_swig_update_provider)
return ret_val;
{
Locker py_lock(this);
ForceDisableSyntheticChildren no_synthetics(GetCommandInterpreter().GetDebugger().GetSelectedTarget().get());
ret_val = g_swig_update_provider (implementor);
}
return ret_val;
}
bool
ScriptInterpreterPython::LoadScriptingModule (const char* pathname,
bool can_reload,
lldb_private::Error& error)
{
if (!pathname || !pathname[0])
{
error.SetErrorString("invalid pathname");
return false;
}
if (!g_swig_call_module_init)
{
error.SetErrorString("internal helper function missing");
return false;
}
lldb::DebuggerSP debugger_sp = m_interpreter.GetDebugger().shared_from_this();
{
Locker py_lock(this);
FileSpec target_file(pathname, true);
// TODO: would we want to reject any other value?
if (target_file.GetFileType() == FileSpec::eFileTypeInvalid ||
target_file.GetFileType() == FileSpec::eFileTypeUnknown)
{
error.SetErrorString("invalid pathname");
return false;
}
const char* directory = target_file.GetDirectory().GetCString();
std::string basename(target_file.GetFilename().GetCString());
// now make sure that Python has "directory" in the search path
StreamString command_stream;
command_stream.Printf("if not (sys.path.__contains__('%s')):\n sys.path.append('%s');\n\n",
directory,
directory);
bool syspath_retval = ExecuteMultipleLines(command_stream.GetData());
if (!syspath_retval)
{
error.SetErrorString("Python sys.path handling failed");
return false;
}
// strip .py or .pyc extension
ConstString extension = target_file.GetFileNameExtension();
if (::strcmp(extension.GetCString(), "py") == 0)
basename.resize(basename.length()-3);
else if(::strcmp(extension.GetCString(), "pyc") == 0)
basename.resize(basename.length()-4);
// check if the module is already import-ed
command_stream.Clear();
command_stream.Printf("sys.getrefcount(%s)",basename.c_str());
int refcount = 0;
// this call will fail if the module does not exist (because the parameter to it is not a string
// but an actual Python module object, which is non-existant if the module was not imported before)
bool was_imported = (ExecuteOneLineWithReturn(command_stream.GetData(),
ScriptInterpreterPython::eScriptReturnTypeInt, &refcount) && refcount > 0);
if (was_imported == true && can_reload == false)
{
error.SetErrorString("module already imported");
return false;
}
// now actually do the import
command_stream.Clear();
command_stream.Printf("import %s",basename.c_str());
bool import_retval = ExecuteOneLine(command_stream.GetData(), NULL);
if (!import_retval)
{
error.SetErrorString("Python import statement failed");
return false;
}
// call __lldb_init_module(debugger,dict)
if (!g_swig_call_module_init (basename,
m_dictionary_name.c_str(),
debugger_sp))
{
error.SetErrorString("calling __lldb_init_module failed");
return false;
}
return true;
}
}
lldb::ScriptInterpreterObjectSP
ScriptInterpreterPython::MakeScriptObject (void* object)
{
return lldb::ScriptInterpreterObjectSP(new ScriptInterpreterPythonObject(object));
}
ScriptInterpreterPython::SynchronicityHandler::SynchronicityHandler (lldb::DebuggerSP debugger_sp,
ScriptedCommandSynchronicity synchro) :
m_debugger_sp(debugger_sp),
m_synch_wanted(synchro),
m_old_asynch(debugger_sp->GetAsyncExecution())
{
if (m_synch_wanted == eScriptedCommandSynchronicitySynchronous)
m_debugger_sp->SetAsyncExecution(false);
else if (m_synch_wanted == eScriptedCommandSynchronicityAsynchronous)
m_debugger_sp->SetAsyncExecution(true);
}
ScriptInterpreterPython::SynchronicityHandler::~SynchronicityHandler()
{
if (m_synch_wanted != eScriptedCommandSynchronicityCurrentValue)
m_debugger_sp->SetAsyncExecution(m_old_asynch);
}
bool
ScriptInterpreterPython::RunScriptBasedCommand(const char* impl_function,
const char* args,
ScriptedCommandSynchronicity synchronicity,
lldb_private::CommandReturnObject& cmd_retobj,
Error& error)
{
if (!impl_function)
{
error.SetErrorString("no function to execute");
return false;
}
if (!g_swig_call_command)
{
error.SetErrorString("no helper function to run scripted commands");
return false;
}
lldb::DebuggerSP debugger_sp = m_interpreter.GetDebugger().shared_from_this();
if (!debugger_sp.get())
{
error.SetErrorString("invalid Debugger pointer");
return false;
}
bool ret_val;
std::string err_msg;
{
Locker py_lock(this);
SynchronicityHandler synch_handler(debugger_sp,
synchronicity);
ret_val = g_swig_call_command (impl_function,
m_dictionary_name.c_str(),
debugger_sp,
args,
err_msg,
cmd_retobj);
}
if (!ret_val)
error.SetErrorString(err_msg.c_str());
else
error.Clear();
return ret_val;
}
// in Python, a special attribute __doc__ contains the docstring
// for an object (function, method, class, ...) if any is defined
// Otherwise, the attribute's value is None
std::string
ScriptInterpreterPython::GetDocumentationForItem(const char* item)
{
std::string command(item);
command += ".__doc__";
char* result_ptr = NULL; // Python is going to point this to valid data if ExecuteOneLineWithReturn returns successfully
if (ExecuteOneLineWithReturn (command.c_str(),
ScriptInterpreter::eScriptReturnTypeCharStrOrNone,
&result_ptr) && result_ptr)
{
return std::string(result_ptr);
}
else
return std::string("");
}
void
ScriptInterpreterPython::InitializeInterpreter (SWIGInitCallback python_swig_init_callback)
{
g_swig_init_callback = python_swig_init_callback;
g_swig_breakpoint_callback = LLDBSwigPythonBreakpointCallbackFunction;
g_swig_typescript_callback = LLDBSwigPythonCallTypeScript;
g_swig_synthetic_script = LLDBSwigPythonCreateSyntheticProvider;
g_swig_calc_children = LLDBSwigPython_CalculateNumChildren;
g_swig_get_child_index = LLDBSwigPython_GetChildAtIndex;
g_swig_get_index_child = LLDBSwigPython_GetIndexOfChildWithName;
g_swig_cast_to_sbvalue = LLDBSWIGPython_CastPyObjectToSBValue;
g_swig_update_provider = LLDBSwigPython_UpdateSynthProviderInstance;
g_swig_call_command = LLDBSwigPythonCallCommand;
g_swig_call_module_init = LLDBSwigPythonCallModuleInit;
}
void
ScriptInterpreterPython::InitializePrivate ()
{
Timer scoped_timer (__PRETTY_FUNCTION__, __PRETTY_FUNCTION__);
// Python will muck with STDIN terminal state, so save off any current TTY
// settings so we can restore them.
TerminalState stdin_tty_state;
stdin_tty_state.Save(STDIN_FILENO, false);
PyEval_InitThreads ();
Py_InitializeEx (0);
// Initialize SWIG after setting up python
assert (g_swig_init_callback != NULL);
g_swig_init_callback ();
// Update the path python uses to search for modules to include the current directory.
PyRun_SimpleString ("import sys");
PyRun_SimpleString ("sys.path.append ('.')");
// Find the module that owns this code and use that path we get to
// set the sys.path appropriately.
FileSpec file_spec;
char python_dir_path[PATH_MAX];
if (Host::GetLLDBPath (ePathTypePythonDir, file_spec))
{
std::string python_path("sys.path.insert(0,\"");
size_t orig_len = python_path.length();
if (file_spec.GetPath(python_dir_path, sizeof (python_dir_path)))
{
python_path.append (python_dir_path);
python_path.append ("\")");
PyRun_SimpleString (python_path.c_str());
python_path.resize (orig_len);
}
if (Host::GetLLDBPath (ePathTypeLLDBShlibDir, file_spec))
{
if (file_spec.GetPath(python_dir_path, sizeof (python_dir_path)))
{
python_path.append (python_dir_path);
python_path.append ("\")");
PyRun_SimpleString (python_path.c_str());
python_path.resize (orig_len);
}
}
}
PyRun_SimpleString ("sys.dont_write_bytecode = 1");
PyRun_SimpleString ("import embedded_interpreter");
PyRun_SimpleString ("from embedded_interpreter import run_python_interpreter");
PyRun_SimpleString ("from embedded_interpreter import run_one_line");
PyRun_SimpleString ("from termios import *");
stdin_tty_state.Restore();
}
//void
//ScriptInterpreterPython::Terminate ()
//{
// // We are intentionally NOT calling Py_Finalize here (this would be the logical place to call it). Calling
// // Py_Finalize here causes test suite runs to seg fault: The test suite runs in Python. It registers
// // SBDebugger::Terminate to be called 'at_exit'. When the test suite Python harness finishes up, it calls
// // Py_Finalize, which calls all the 'at_exit' registered functions. SBDebugger::Terminate calls Debugger::Terminate,
// // which calls lldb::Terminate, which calls ScriptInterpreter::Terminate, which calls
// // ScriptInterpreterPython::Terminate. So if we call Py_Finalize here, we end up with Py_Finalize being called from
// // within Py_Finalize, which results in a seg fault.
// //
// // Since this function only gets called when lldb is shutting down and going away anyway, the fact that we don't
// // actually call Py_Finalize should not cause any problems (everything should shut down/go away anyway when the
// // process exits).
// //
//// Py_Finalize ();
//}
#endif // #ifdef LLDB_DISABLE_PYTHON