Files
llvm/lldb/source/Plugins/Process/Utility/UnwindLLDB.cpp

452 lines
16 KiB
C++
Raw Normal View History

//===-- UnwindLLDB.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Module.h"
#include "lldb/Core/Log.h"
#include "lldb/Symbol/FuncUnwinders.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "UnwindLLDB.h"
#include "RegisterContextLLDB.h"
using namespace lldb;
using namespace lldb_private;
UnwindLLDB::UnwindLLDB (Thread &thread) :
Unwind (thread),
m_frames(),
m_unwind_complete(false),
m_user_supplied_trap_handler_functions()
{
ProcessSP process_sp(thread.GetProcess());
if (process_sp)
{
Args args;
process_sp->GetTarget().GetUserSpecifiedTrapHandlerNames (args);
size_t count = args.GetArgumentCount();
for (size_t i = 0; i < count; i++)
{
const char *func_name = args.GetArgumentAtIndex(i);
m_user_supplied_trap_handler_functions.push_back (ConstString (func_name));
}
}
}
uint32_t
UnwindLLDB::DoGetFrameCount()
{
if (!m_unwind_complete)
{
//#define DEBUG_FRAME_SPEED 1
#if DEBUG_FRAME_SPEED
Put more smarts into the RegisterContext base class. Now the base class has a method: void RegisterContext::InvalidateIfNeeded (bool force); Each time this function is called, when "force" is false, it will only call the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if the register context's stop ID doesn't match that of the process. When the stop ID doesn't match, or "force" is true, the base class will clear its cached registers and the RegisterContext will update its stop ID to match that of the process. This helps make it easier to correctly flush the register context (possibly from multiple locations depending on when and where new registers are availabe) without inadvertently clearing the register cache when it doesn't need to be. Modified the ProcessGDBRemote plug-in to be much more efficient when it comes to: - caching the expedited registers in the stop reply packets (we were ignoring these before and it was causing us to read at least three registers every time we stopped that were already supplied in the stop reply packet). - When a thread has no stop reason, don't keep asking for the thread stopped info. Prior to this fix we would continually send a qThreadStopInfo packet over and over when any thread stop info was requested. We now note the stop ID that the stop info was requested for and avoid multiple requests. Cleaned up some of the expression code to not look for ClangExpressionVariable objects up by name since they are now shared pointers and we can just look for the exact pointer match and avoid possible errors. Fixed an bug in the ValueObject code that would cause children to not be displayed. llvm-svn: 123127
2011-01-09 21:07:35 +00:00
#define FRAME_COUNT 10000
TimeValue time_value (TimeValue::Now());
#endif
if (!AddFirstFrame ())
return 0;
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
ProcessSP process_sp (m_thread.GetProcess());
ABI *abi = process_sp ? process_sp->GetABI().get() : NULL;
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
while (AddOneMoreFrame (abi))
{
#if DEBUG_FRAME_SPEED
Put more smarts into the RegisterContext base class. Now the base class has a method: void RegisterContext::InvalidateIfNeeded (bool force); Each time this function is called, when "force" is false, it will only call the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if the register context's stop ID doesn't match that of the process. When the stop ID doesn't match, or "force" is true, the base class will clear its cached registers and the RegisterContext will update its stop ID to match that of the process. This helps make it easier to correctly flush the register context (possibly from multiple locations depending on when and where new registers are availabe) without inadvertently clearing the register cache when it doesn't need to be. Modified the ProcessGDBRemote plug-in to be much more efficient when it comes to: - caching the expedited registers in the stop reply packets (we were ignoring these before and it was causing us to read at least three registers every time we stopped that were already supplied in the stop reply packet). - When a thread has no stop reason, don't keep asking for the thread stopped info. Prior to this fix we would continually send a qThreadStopInfo packet over and over when any thread stop info was requested. We now note the stop ID that the stop info was requested for and avoid multiple requests. Cleaned up some of the expression code to not look for ClangExpressionVariable objects up by name since they are now shared pointers and we can just look for the exact pointer match and avoid possible errors. Fixed an bug in the ValueObject code that would cause children to not be displayed. llvm-svn: 123127
2011-01-09 21:07:35 +00:00
if ((m_frames.size() % FRAME_COUNT) == 0)
{
TimeValue now(TimeValue::Now());
uint64_t delta_t = now - time_value;
printf ("%u frames in %" PRIu64 ".%09llu ms (%g frames/sec)\n",
Put more smarts into the RegisterContext base class. Now the base class has a method: void RegisterContext::InvalidateIfNeeded (bool force); Each time this function is called, when "force" is false, it will only call the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if the register context's stop ID doesn't match that of the process. When the stop ID doesn't match, or "force" is true, the base class will clear its cached registers and the RegisterContext will update its stop ID to match that of the process. This helps make it easier to correctly flush the register context (possibly from multiple locations depending on when and where new registers are availabe) without inadvertently clearing the register cache when it doesn't need to be. Modified the ProcessGDBRemote plug-in to be much more efficient when it comes to: - caching the expedited registers in the stop reply packets (we were ignoring these before and it was causing us to read at least three registers every time we stopped that were already supplied in the stop reply packet). - When a thread has no stop reason, don't keep asking for the thread stopped info. Prior to this fix we would continually send a qThreadStopInfo packet over and over when any thread stop info was requested. We now note the stop ID that the stop info was requested for and avoid multiple requests. Cleaned up some of the expression code to not look for ClangExpressionVariable objects up by name since they are now shared pointers and we can just look for the exact pointer match and avoid possible errors. Fixed an bug in the ValueObject code that would cause children to not be displayed. llvm-svn: 123127
2011-01-09 21:07:35 +00:00
FRAME_COUNT,
delta_t / TimeValue::NanoSecPerSec,
delta_t % TimeValue::NanoSecPerSec,
(float)FRAME_COUNT / ((float)delta_t / (float)TimeValue::NanoSecPerSec));
time_value = now;
}
#endif
}
}
return m_frames.size ();
}
bool
UnwindLLDB::AddFirstFrame ()
{
if (m_frames.size() > 0)
return true;
// First, set up the 0th (initial) frame
CursorSP first_cursor_sp(new Cursor ());
RegisterContextLLDBSP reg_ctx_sp (new RegisterContextLLDB (m_thread,
RegisterContextLLDBSP(),
first_cursor_sp->sctx,
0, *this));
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (reg_ctx_sp.get() == NULL)
goto unwind_done;
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (!reg_ctx_sp->IsValid())
goto unwind_done;
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (!reg_ctx_sp->GetCFA (first_cursor_sp->cfa))
goto unwind_done;
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (!reg_ctx_sp->ReadPC (first_cursor_sp->start_pc))
goto unwind_done;
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
// Everything checks out, so release the auto pointer value and let the
// cursor own it in its shared pointer
first_cursor_sp->reg_ctx_lldb_sp = reg_ctx_sp;
m_frames.push_back (first_cursor_sp);
return true;
unwind_done:
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log)
{
log->Printf ("th%d Unwind of this thread is complete.", m_thread.GetIndexID());
}
m_unwind_complete = true;
return false;
}
UnwindLLDB::CursorSP
UnwindLLDB::GetOneMoreFrame (ABI* abi)
{
assert (m_frames.size() != 0 && "Get one more frame called with empty frame list");
// If we've already gotten to the end of the stack, don't bother to try again...
if (m_unwind_complete)
return nullptr;
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
CursorSP prev_frame = m_frames.back();
uint32_t cur_idx = m_frames.size();
CursorSP cursor_sp(new Cursor ());
RegisterContextLLDBSP reg_ctx_sp(new RegisterContextLLDB (m_thread,
prev_frame->reg_ctx_lldb_sp,
cursor_sp->sctx,
cur_idx,
*this));
// We want to detect an unwind that cycles erroneously and stop backtracing.
// Don't want this maximum unwind limit to be too low -- if you have a backtrace
// with an "infinitely recursing" bug, it will crash when the stack blows out
// and the first 35,000 frames are uninteresting - it's the top most 5 frames that
// you actually care about. So you can't just cap the unwind at 10,000 or something.
// Realistically anything over around 200,000 is going to blow out the stack space.
// If we're still unwinding at that point, we're probably never going to finish.
if (cur_idx > 300000)
{
if (log)
log->Printf ("%*sFrame %d unwound too many frames, assuming unwind has gone astray, stopping.",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
}
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (reg_ctx_sp.get() == NULL)
{
// If the RegisterContextLLDB has a fallback UnwindPlan, it will switch to that and return
// true. Subsequent calls to TryFallbackUnwindPlan() will return false.
if (prev_frame->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
return GetOneMoreFrame (abi);
if (log)
log->Printf ("%*sFrame %d did not get a RegisterContext, stopping.",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
}
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (!reg_ctx_sp->IsValid())
{
// We failed to get a valid RegisterContext.
// See if the regctx below this on the stack has a fallback unwind plan it can use.
// Subsequent calls to TryFallbackUnwindPlan() will return false.
if (prev_frame->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
return GetOneMoreFrame (abi);
if (log)
log->Printf("%*sFrame %d invalid RegisterContext for this frame, stopping stack walk",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
}
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (!reg_ctx_sp->GetCFA (cursor_sp->cfa))
{
// If the RegisterContextLLDB has a fallback UnwindPlan, it will switch to that and return
// true. Subsequent calls to TryFallbackUnwindPlan() will return false.
if (prev_frame->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
return GetOneMoreFrame (abi);
if (log)
log->Printf("%*sFrame %d did not get CFA for this frame, stopping stack walk",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
}
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (abi && !abi->CallFrameAddressIsValid(cursor_sp->cfa))
{
// On Mac OS X, the _sigtramp asynchronous signal trampoline frame may not have
// its (constructed) CFA aligned correctly -- don't do the abi alignment check for
// these.
if (reg_ctx_sp->IsTrapHandlerFrame() == false)
{
// See if we can find a fallback unwind plan for THIS frame. It may be
// that the UnwindPlan we're using for THIS frame was bad and gave us a
// bad CFA.
// If that's not it, then see if we can change the UnwindPlan for the frame
// below us ("NEXT") -- see if using that other UnwindPlan gets us a better
// unwind state.
if (reg_ctx_sp->TryFallbackUnwindPlan() == false
|| reg_ctx_sp->GetCFA (cursor_sp->cfa) == false
|| abi->CallFrameAddressIsValid(cursor_sp->cfa) == false)
{
if (prev_frame->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
return GetOneMoreFrame (abi);
if (log)
log->Printf("%*sFrame %d did not get a valid CFA for this frame, stopping stack walk",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
}
else
{
if (log)
log->Printf("%*sFrame %d had a bad CFA value but we switched the UnwindPlan being used and got one that looks more realistic.",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
}
}
}
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (!reg_ctx_sp->ReadPC (cursor_sp->start_pc))
{
// If the RegisterContextLLDB has a fallback UnwindPlan, it will switch to that and return
// true. Subsequent calls to TryFallbackUnwindPlan() will return false.
if (prev_frame->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
return GetOneMoreFrame (abi);
if (log)
log->Printf("%*sFrame %d did not get PC for this frame, stopping stack walk",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
}
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (abi && !abi->CodeAddressIsValid (cursor_sp->start_pc))
{
// If the RegisterContextLLDB has a fallback UnwindPlan, it will switch to that and return
// true. Subsequent calls to TryFallbackUnwindPlan() will return false.
if (prev_frame->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
return GetOneMoreFrame (abi);
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
if (log)
log->Printf("%*sFrame %d did not get a valid PC, stopping stack walk",
cur_idx < 100 ? cur_idx : 100, "", cur_idx);
return nullptr;
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
}
// Infinite loop where the current cursor is the same as the previous one...
if (prev_frame->start_pc == cursor_sp->start_pc && prev_frame->cfa == cursor_sp->cfa)
{
if (log)
log->Printf ("th%d pc of this frame is the same as the previous frame and CFAs for both frames are identical -- stopping unwind", m_thread.GetIndexID());
return nullptr;
}
cursor_sp->reg_ctx_lldb_sp = reg_ctx_sp;
return cursor_sp;
}
bool
UnwindLLDB::AddOneMoreFrame (ABI *abi)
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
// Frame zero is a little different
if (m_frames.empty())
return false;
// If we've already gotten to the end of the stack, don't bother to try again...
if (m_unwind_complete)
return false;
CursorSP new_frame = m_candidate_frame;
if (new_frame == nullptr)
new_frame = GetOneMoreFrame(abi);
if (new_frame == nullptr)
{
if (log)
log->Printf ("th%d Unwind of this thread is complete.", m_thread.GetIndexID());
m_unwind_complete = true;
return false;
}
m_frames.push_back(new_frame);
// If we can get one more frame further then accept that we get back a correct frame.
m_candidate_frame = GetOneMoreFrame(abi);
if (m_candidate_frame)
return true;
// We can't go further from the frame returned by GetOneMore frame. Lets try to get a
// different frame with using the fallback unwind plan.
if (!m_frames[m_frames.size() - 2]->reg_ctx_lldb_sp->TryFallbackUnwindPlan())
{
// We don't have a valid fallback unwind plan. Accept the frame as it is. This is a
// valid situation when we are at the bottom of the stack.
return true;
}
// Remove the possibly incorrect frame from the frame list and try to add a different one with
// the newly selected fallback unwind plan.
m_frames.pop_back();
CursorSP new_frame_v2 = GetOneMoreFrame(abi);
if (new_frame_v2 == nullptr)
{
// We haven't got a new frame from the fallback unwind plan. Accept the frame from the
// original unwind plan. This is a valid situation when we are at the bottom of the stack.
m_frames.push_back(new_frame);
return true;
}
// Push the new frame to the list and try to continue from this frame. If we can get a new frame
// then accept it as the correct one.
m_frames.push_back(new_frame_v2);
m_candidate_frame = GetOneMoreFrame(abi);
if (m_candidate_frame)
return true;
// The new frame isn't helped in unwinding. Fall back to the original one as the default unwind
// plan is usually more reliable then the fallback one.
m_frames.pop_back();
m_frames.push_back(new_frame);
return true;
}
bool
UnwindLLDB::DoGetFrameInfoAtIndex (uint32_t idx, addr_t& cfa, addr_t& pc)
{
if (m_frames.size() == 0)
{
if (!AddFirstFrame())
return false;
}
ProcessSP process_sp (m_thread.GetProcess());
ABI *abi = process_sp ? process_sp->GetABI().get() : NULL;
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
while (idx >= m_frames.size() && AddOneMoreFrame (abi))
;
if (idx < m_frames.size ())
{
cfa = m_frames[idx]->cfa;
pc = m_frames[idx]->start_pc;
return true;
}
return false;
}
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
lldb::RegisterContextSP
UnwindLLDB::DoCreateRegisterContextForFrame (StackFrame *frame)
{
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
lldb::RegisterContextSP reg_ctx_sp;
uint32_t idx = frame->GetConcreteFrameIndex ();
if (idx == 0)
{
return m_thread.GetRegisterContext();
}
if (m_frames.size() == 0)
{
if (!AddFirstFrame())
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
return reg_ctx_sp;
}
ProcessSP process_sp (m_thread.GetProcess());
ABI *abi = process_sp ? process_sp->GetABI().get() : NULL;
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-24 23:06:02 +00:00
while (idx >= m_frames.size())
{
if (!AddOneMoreFrame (abi))
break;
}
const uint32_t num_frames = m_frames.size();
if (idx < num_frames)
{
Cursor *frame_cursor = m_frames[idx].get();
reg_ctx_sp = frame_cursor->reg_ctx_lldb_sp;
}
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-06 22:15:06 +00:00
return reg_ctx_sp;
}
UnwindLLDB::RegisterContextLLDBSP
UnwindLLDB::GetRegisterContextForFrameNum (uint32_t frame_num)
{
RegisterContextLLDBSP reg_ctx_sp;
if (frame_num < m_frames.size())
reg_ctx_sp = m_frames[frame_num]->reg_ctx_lldb_sp;
return reg_ctx_sp;
}
bool
UnwindLLDB::SearchForSavedLocationForRegister (uint32_t lldb_regnum, lldb_private::UnwindLLDB::RegisterLocation &regloc, uint32_t starting_frame_num, bool pc_reg)
{
int64_t frame_num = starting_frame_num;
if (static_cast<size_t>(frame_num) >= m_frames.size())
return false;
// Never interrogate more than one level while looking for the saved pc value. If the value
// isn't saved by frame_num, none of the frames lower on the stack will have a useful value.
if (pc_reg)
{
UnwindLLDB::RegisterSearchResult result;
result = m_frames[frame_num]->reg_ctx_lldb_sp->SavedLocationForRegister (lldb_regnum, regloc);
if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound)
return true;
else
return false;
}
while (frame_num >= 0)
{
UnwindLLDB::RegisterSearchResult result;
result = m_frames[frame_num]->reg_ctx_lldb_sp->SavedLocationForRegister (lldb_regnum, regloc);
// We descended down to the live register context aka stack frame 0 and are reading the value
// out of a live register.
if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound
&& regloc.type == UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext)
{
return true;
}
// If we have unwind instructions saying that register N is saved in register M in the middle of
// the stack (and N can equal M here, meaning the register was not used in this function), then
// change the register number we're looking for to M and keep looking for a concrete location
// down the stack, or an actual value from a live RegisterContext at frame 0.
if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound
&& regloc.type == UnwindLLDB::RegisterLocation::eRegisterInRegister
&& frame_num > 0)
{
result = UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
lldb_regnum = regloc.location.register_number;
}
if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound)
return true;
if (result == UnwindLLDB::RegisterSearchResult::eRegisterIsVolatile)
return false;
frame_num--;
}
return false;
}