Files
llvm/mlir/bindings/python/pybind.cpp

1119 lines
43 KiB
C++
Raw Normal View History

#include "third_party/llvm/llvm/include/llvm/ADT/SmallVector.h"
#include "third_party/llvm/llvm/include/llvm/ADT/StringRef.h"
#include "third_party/llvm/llvm/include/llvm/IR/Module.h"
#include "third_party/llvm/llvm/include/llvm/Support/TargetSelect.h"
#include "third_party/llvm/llvm/include/llvm/Support/raw_ostream.h"
#include <cstddef>
#include <unordered_map>
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir-c/Core.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/EDSC/Builders.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/EDSC/MLIREmitter.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/EDSC/Types.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/ExecutionEngine/ExecutionEngine.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/IR/Attributes.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/IR/Module.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/Pass/Pass.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/Target/LLVMIR.h"
#include "third_party/llvm/llvm/projects/google_mlir/include/mlir/Transforms/Passes.h"
#include "pybind11/pybind11.h"
#include "pybind11/pytypes.h"
#include "pybind11/stl.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Types.h"
static bool inited = [] {
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
return true;
}();
namespace mlir {
namespace edsc {
namespace python {
namespace py = pybind11;
struct PythonAttribute;
struct PythonAttributedType;
struct PythonBindable;
struct PythonExpr;
struct PythonStmt;
struct PythonBlock;
struct PythonFunction {
PythonFunction() : function{nullptr} {}
PythonFunction(mlir_func_t f) : function{f} {}
PythonFunction(mlir::Function *f) : function{f} {}
operator mlir_func_t() { return function; }
std::string str() {
mlir::Function *f = reinterpret_cast<mlir::Function *>(function);
std::string res;
llvm::raw_string_ostream os(res);
f->print(os);
return res;
}
// If the function does not yet have an entry block, i.e. if it is a function
// declaration, add the entry block, transforming the declaration into a
// definition. Return true if the block was added, false otherwise.
bool define() {
auto *f = reinterpret_cast<mlir::Function *>(function);
if (!f->getBlocks().empty())
return false;
f->addEntryBlock();
return true;
}
mlir_func_t function;
};
struct PythonType {
PythonType() : type{nullptr} {}
PythonType(mlir_type_t t) : type{t} {}
operator mlir_type_t() const { return type; }
PythonAttributedType attachAttributeDict(
const std::unordered_map<std::string, PythonAttribute> &attrs) const;
std::string str() {
mlir::Type f = mlir::Type::getFromOpaquePointer(type);
std::string res;
llvm::raw_string_ostream os(res);
f.print(os);
return res;
}
mlir_type_t type;
};
/// Trivial C++ wrappers make use of the EDSC C API.
struct PythonMLIRModule {
PythonMLIRModule() : mlirContext(), module(new mlir::Module(&mlirContext)) {}
PythonType makeScalarType(const std::string &mlirElemType,
unsigned bitwidth) {
return ::makeScalarType(mlir_context_t{&mlirContext}, mlirElemType.c_str(),
bitwidth);
}
PythonType makeMemRefType(PythonType elemType, std::vector<int64_t> sizes) {
return ::makeMemRefType(mlir_context_t{&mlirContext}, elemType,
int64_list_t{sizes.data(), sizes.size()});
}
EDSC: make Expr typed and extensible Expose the result types of edsc::Expr, which are now stored for all types of Exprs and not only for the variadic ones. Require return types when an Expr is constructed, if it will ever have some. An empty return type list is interpreted as an Expr that does not create a value (e.g. `return` or `store`). Conceptually, all edss::Exprs are now typed, with the type being a (potentially empty) tuple of return types. Unbound expressions and Bindables must now be constructed with a specific type they will take. This makes EDSC less evidently type-polymorphic, but we can still write generic code such as Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; } and use it to construct different typed expressions as sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx))); sumOfSquares(Bindable(FloatType::getF32(ctx)), Bindable(FloatType::getF32(ctx))); On the positive side, we get the following. 1. We can now perform type checking when constructing Exprs rather than during MLIR emission. Nevertheless, this is still duplicates the Op::verify() until we can factor out type checking from that. 2. MLIREmitter is significantly simplified. 3. ExprKind enum is only used for actual kinds of expressions. Data structures are converging with AbstractOperation, and the users can now create a VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even an unregistered one without having to extend the enum and make pervasive changes to EDSCs. On the negative side, we get the following. 1. Typed bindables are more verbose, even in Python. 2. We lose the ability to do print debugging for higher-level EDSC abstractions that are implemented as multiple MLIR Ops, for example logical disjunction. This is the step 2/n towards making EDSC extensible. *** Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr now has sufficient information to build itself. This is the step 3/n towards making EDSC extensible. Both of these strive to minimize the amount of irrelevant changes. In particular, this introduces more complex pretty-printing for affine and binary expression to make sure tests continue to pass. It also relies on string comparison to identify specific operations that an Expr produces. PiperOrigin-RevId: 234609882
2019-02-19 08:51:52 -08:00
PythonType makeIndexType() {
return ::makeIndexType(mlir_context_t{&mlirContext});
}
// Declare a function with the given name, input types and their attributes,
// output types, and function attributes, but do not define it.
PythonFunction declareFunction(const std::string &name,
const py::list &inputs,
const std::vector<PythonType> &outputTypes,
const py::kwargs &funcAttributes);
// Declare a function with the given name, input types and their attributes,
// output types, and function attributes.
PythonFunction makeFunction(const std::string &name, const py::list &inputs,
const std::vector<PythonType> &outputTypes,
const py::kwargs &funcAttributes) {
auto declaration =
declareFunction(name, inputs, outputTypes, funcAttributes);
declaration.define();
return declaration;
}
// Create a custom op given its name and arguments.
PythonExpr op(const std::string &name, PythonType type,
const py::list &arguments, const py::list &successors,
py::kwargs attributes);
// Create an integer attribute.
PythonAttribute integerAttr(PythonType type, int64_t value);
// Create a boolean attribute.
PythonAttribute boolAttr(bool value);
void compile() {
auto created = mlir::ExecutionEngine::create(module.get());
llvm::handleAllErrors(created.takeError(),
[](const llvm::ErrorInfoBase &b) {
b.log(llvm::errs());
assert(false);
});
engine = std::move(*created);
}
std::string getIR() {
std::string res;
llvm::raw_string_ostream os(res);
module->print(os);
return res;
}
uint64_t getEngineAddress() {
assert(engine && "module must be compiled into engine first");
return reinterpret_cast<uint64_t>(reinterpret_cast<void *>(engine.get()));
}
PythonFunction getNamedFunction(const std::string &name) {
return module->getNamedFunction(name);
}
private:
mlir::MLIRContext mlirContext;
// One single module in a python-exposed MLIRContext for now.
std::unique_ptr<mlir::Module> module;
std::unique_ptr<mlir::ExecutionEngine> engine;
};
struct ContextManager {
void enter() { context = new ScopedEDSCContext(); }
void exit(py::object, py::object, py::object) {
delete context;
context = nullptr;
}
mlir::edsc::ScopedEDSCContext *context;
};
struct PythonFunctionContext {
PythonFunctionContext(PythonFunction f) : function(f) {}
void enter() {
assert(function.function && "function is not set up");
assert(context);
context = new mlir::edsc::ScopedContext(
static_cast<mlir::Function *>(function.function));
}
void exit(py::object, py::object, py::object) {
delete context;
context = nullptr;
}
PythonFunction function;
mlir::edsc::ScopedContext *context;
};
struct PythonExpr {
PythonExpr() : expr{nullptr} {}
PythonExpr(const PythonBindable &bindable);
PythonExpr(const edsc_expr_t &expr) : expr{expr} {}
operator edsc_expr_t() { return expr; }
std::string str() {
assert(expr && "unexpected empty expr");
return Expr(*this).str();
}
edsc_expr_t expr;
};
struct PythonValueHandle {
PythonValueHandle(PythonType type)
: value(mlir::Type::getFromOpaquePointer(type.type)) {}
PythonValueHandle(const PythonValueHandle &other) = default;
PythonValueHandle(const mlir::edsc::ValueHandle &other) : value(other) {}
operator ValueHandle() const { return value; }
operator ValueHandle &() { return value; }
std::string str() const {
return std::to_string(reinterpret_cast<intptr_t>(value.getValue()));
}
mlir::edsc::ValueHandle value;
};
struct PythonLoopContext {
PythonLoopContext(PythonValueHandle lb, PythonValueHandle ub, int64_t step)
: lb(lb), ub(ub), step(step) {}
PythonLoopContext(const PythonLoopContext &) = delete;
PythonLoopContext(PythonLoopContext &&) = default;
PythonLoopContext &operator=(const PythonLoopContext &) = delete;
PythonLoopContext &operator=(PythonLoopContext &&) = default;
~PythonLoopContext() { assert(!builder && "did not exit from the context"); }
PythonValueHandle enter() {
ValueHandle iv(lb.value.getType());
builder = new LoopBuilder(&iv, lb.value, ub.value, step);
return iv;
}
void exit(py::object, py::object, py::object) {
(*builder)({}); // exit from the builder's scope.
delete builder;
builder = nullptr;
}
PythonValueHandle lb, ub;
int64_t step;
LoopBuilder *builder = nullptr;
};
struct PythonLoopNestContext {
PythonLoopNestContext(const std::vector<PythonValueHandle> &lbs,
const std::vector<PythonValueHandle> &ubs,
const std::vector<int64_t> steps)
: lbs(lbs), ubs(ubs), steps(steps) {
assert(lbs.size() == ubs.size() && lbs.size() == steps.size() &&
"expected the same number of lower, upper bounds, and steps");
}
PythonLoopNestContext(const PythonLoopNestContext &) = delete;
PythonLoopNestContext(PythonLoopNestContext &&) = default;
PythonLoopNestContext &operator=(const PythonLoopNestContext &) = delete;
PythonLoopNestContext &operator=(PythonLoopNestContext &&) = default;
~PythonLoopNestContext() {
assert(!builder && "did not exit from the context");
}
std::vector<PythonValueHandle> enter() {
if (steps.empty())
return {};
auto type = mlir_type_t(lbs.front().value.getType().getAsOpaquePointer());
std::vector<PythonValueHandle> handles(steps.size(),
PythonValueHandle(type));
std::vector<ValueHandle *> handlePtrs;
handlePtrs.reserve(steps.size());
for (auto &h : handles)
handlePtrs.push_back(&h.value);
builder = new LoopNestBuilder(
handlePtrs, std::vector<ValueHandle>(lbs.begin(), lbs.end()),
std::vector<ValueHandle>(ubs.begin(), ubs.end()), steps);
return handles;
}
void exit(py::object, py::object, py::object) {
(*builder)({}); // exit from the builder's scope.
delete builder;
builder = nullptr;
}
std::vector<PythonValueHandle> lbs;
std::vector<PythonValueHandle> ubs;
std::vector<int64_t> steps;
LoopNestBuilder *builder = nullptr;
};
struct PythonBindable : public PythonExpr {
EDSC: make Expr typed and extensible Expose the result types of edsc::Expr, which are now stored for all types of Exprs and not only for the variadic ones. Require return types when an Expr is constructed, if it will ever have some. An empty return type list is interpreted as an Expr that does not create a value (e.g. `return` or `store`). Conceptually, all edss::Exprs are now typed, with the type being a (potentially empty) tuple of return types. Unbound expressions and Bindables must now be constructed with a specific type they will take. This makes EDSC less evidently type-polymorphic, but we can still write generic code such as Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; } and use it to construct different typed expressions as sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx))); sumOfSquares(Bindable(FloatType::getF32(ctx)), Bindable(FloatType::getF32(ctx))); On the positive side, we get the following. 1. We can now perform type checking when constructing Exprs rather than during MLIR emission. Nevertheless, this is still duplicates the Op::verify() until we can factor out type checking from that. 2. MLIREmitter is significantly simplified. 3. ExprKind enum is only used for actual kinds of expressions. Data structures are converging with AbstractOperation, and the users can now create a VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even an unregistered one without having to extend the enum and make pervasive changes to EDSCs. On the negative side, we get the following. 1. Typed bindables are more verbose, even in Python. 2. We lose the ability to do print debugging for higher-level EDSC abstractions that are implemented as multiple MLIR Ops, for example logical disjunction. This is the step 2/n towards making EDSC extensible. *** Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr now has sufficient information to build itself. This is the step 3/n towards making EDSC extensible. Both of these strive to minimize the amount of irrelevant changes. In particular, this introduces more complex pretty-printing for affine and binary expression to make sure tests continue to pass. It also relies on string comparison to identify specific operations that an Expr produces. PiperOrigin-RevId: 234609882
2019-02-19 08:51:52 -08:00
explicit PythonBindable(const PythonType &type)
: PythonExpr(edsc_expr_t{makeBindable(type.type)}) {}
PythonBindable(PythonExpr expr) : PythonExpr(expr) {
assert(Expr(expr).isa<Bindable>() && "Expected Bindable");
}
std::string str() {
assert(expr && "unexpected empty expr");
return Expr(expr).str();
}
};
struct PythonStmt {
PythonStmt() : stmt{nullptr} {}
PythonStmt(const edsc_stmt_t &stmt) : stmt{stmt} {}
PythonStmt(const PythonExpr &e) : stmt{makeStmt(e.expr)} {}
operator edsc_stmt_t() { return stmt; }
std::string str() {
assert(stmt && "unexpected empty stmt");
return Stmt(stmt).str();
}
edsc_stmt_t stmt;
};
struct PythonBlock {
PythonBlock() : blk{nullptr} {}
PythonBlock(const edsc_block_t &other) : blk{other} {}
PythonBlock(const PythonBlock &other) = default;
operator edsc_block_t() { return blk; }
std::string str() {
assert(blk && "unexpected empty block");
return StmtBlock(blk).str();
}
PythonBlock set(const py::list &stmts);
edsc_block_t blk;
};
struct PythonBlockHandle {
PythonBlockHandle() : value(nullptr) {}
PythonBlockHandle(const PythonBlockHandle &other) = default;
PythonBlockHandle(const mlir::edsc::BlockHandle &other) : value(other) {}
operator mlir::edsc::BlockHandle() const { return value; }
std::string str() const { return "^block"; }
mlir::edsc::BlockHandle value;
};
struct PythonAttribute {
PythonAttribute() : attr(nullptr) {}
PythonAttribute(const mlir_attr_t &a) : attr(a) {}
PythonAttribute(const PythonAttribute &other) = default;
operator mlir_attr_t() { return attr; }
std::string str() const {
if (!attr)
return "##null attr##";
std::string res;
llvm::raw_string_ostream os(res);
Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(attr))
.print(os);
return res;
}
mlir_attr_t attr;
};
struct PythonAttributedType {
PythonAttributedType() : type(nullptr) {}
PythonAttributedType(mlir_type_t t) : type(t) {}
PythonAttributedType(
PythonType t,
const std::unordered_map<std::string, PythonAttribute> &attributes =
std::unordered_map<std::string, PythonAttribute>())
: type(t), attrs(attributes) {}
operator mlir_type_t() const { return type.type; }
operator PythonType() const { return type; }
// Return a vector of named attribute descriptors. The vector owns the
// mlir_named_attr_t objects it contains, but not the names and attributes
// those objects point to (names and opaque pointers to attributes are owned
// by `this`).
std::vector<mlir_named_attr_t> getNamedAttrs() const {
std::vector<mlir_named_attr_t> result;
result.reserve(attrs.size());
for (const auto &namedAttr : attrs)
result.push_back({namedAttr.first.c_str(), namedAttr.second.attr});
return result;
}
std::string str() {
mlir::Type t = mlir::Type::getFromOpaquePointer(type);
std::string res;
llvm::raw_string_ostream os(res);
t.print(os);
if (attrs.size() == 0)
return os.str();
os << '{';
bool first = true;
for (const auto &namedAttr : attrs) {
if (first)
first = false;
else
os << ", ";
os << namedAttr.first << ": " << namedAttr.second.str();
}
os << '}';
return os.str();
}
private:
PythonType type;
std::unordered_map<std::string, PythonAttribute> attrs;
};
struct PythonIndexed : public edsc_indexed_t {
PythonIndexed(PythonExpr e) : edsc_indexed_t{makeIndexed(e)} {}
PythonIndexed(PythonBindable b) : edsc_indexed_t{makeIndexed(b)} {}
operator PythonExpr() { return PythonExpr(base); }
};
struct PythonMaxExpr {
PythonMaxExpr() : expr(nullptr) {}
PythonMaxExpr(const edsc_max_expr_t &e) : expr(e) {}
operator edsc_max_expr_t() { return expr; }
edsc_max_expr_t expr;
};
struct PythonMinExpr {
PythonMinExpr() : expr(nullptr) {}
PythonMinExpr(const edsc_min_expr_t &e) : expr(e) {}
operator edsc_min_expr_t() { return expr; }
edsc_min_expr_t expr;
};
struct MLIRFunctionEmitter {
MLIRFunctionEmitter(PythonFunction f)
: currentFunction(reinterpret_cast<mlir::Function *>(f.function)),
currentBuilder(currentFunction),
emitter(&currentBuilder, currentFunction->getLoc()) {}
PythonExpr bindConstantBF16(double value);
PythonExpr bindConstantF16(float value);
PythonExpr bindConstantF32(float value);
PythonExpr bindConstantF64(double value);
PythonExpr bindConstantInt(int64_t value, unsigned bitwidth);
PythonExpr bindConstantIndex(int64_t value);
PythonExpr bindConstantFunction(PythonFunction func);
PythonExpr bindFunctionArgument(unsigned pos);
py::list bindFunctionArguments();
py::list bindFunctionArgumentView(unsigned pos);
py::list bindMemRefShape(PythonExpr boundMemRef);
py::list bindIndexedMemRefShape(PythonIndexed boundMemRef) {
return bindMemRefShape(boundMemRef.base);
}
py::list bindMemRefView(PythonExpr boundMemRef);
py::list bindIndexedMemRefView(PythonIndexed boundMemRef) {
return bindMemRefView(boundMemRef.base);
}
void emit(PythonStmt stmt);
void emitBlock(PythonBlock block);
void emitBlockBody(PythonBlock block);
private:
mlir::Function *currentFunction;
mlir::FuncBuilder currentBuilder;
mlir::edsc::MLIREmitter emitter;
edsc_mlir_emitter_t c_emitter;
};
template <typename ListTy, typename PythonTy, typename Ty>
ListTy makeCList(SmallVectorImpl<Ty> &owning, const py::list &list) {
for (auto &inp : list) {
owning.push_back(Ty{inp.cast<PythonTy>()});
}
return ListTy{owning.data(), owning.size()};
}
static edsc_stmt_list_t makeCStmts(llvm::SmallVectorImpl<edsc_stmt_t> &owning,
const py::list &stmts) {
return makeCList<edsc_stmt_list_t, PythonStmt>(owning, stmts);
}
static edsc_expr_list_t makeCExprs(llvm::SmallVectorImpl<edsc_expr_t> &owning,
const py::list &exprs) {
return makeCList<edsc_expr_list_t, PythonExpr>(owning, exprs);
}
static mlir_type_list_t makeCTypes(llvm::SmallVectorImpl<mlir_type_t> &owning,
const py::list &types) {
return makeCList<mlir_type_list_t, PythonType>(owning, types);
}
static edsc_block_list_t
makeCBlocks(llvm::SmallVectorImpl<edsc_block_t> &owning,
const py::list &blocks) {
return makeCList<edsc_block_list_t, PythonBlock>(owning, blocks);
}
PythonExpr::PythonExpr(const PythonBindable &bindable) : expr{bindable.expr} {}
PythonExpr MLIRFunctionEmitter::bindConstantBF16(double value) {
return ::bindConstantBF16(edsc_mlir_emitter_t{&emitter}, value);
}
PythonExpr MLIRFunctionEmitter::bindConstantF16(float value) {
return ::bindConstantF16(edsc_mlir_emitter_t{&emitter}, value);
}
PythonExpr MLIRFunctionEmitter::bindConstantF32(float value) {
return ::bindConstantF32(edsc_mlir_emitter_t{&emitter}, value);
}
PythonExpr MLIRFunctionEmitter::bindConstantF64(double value) {
return ::bindConstantF64(edsc_mlir_emitter_t{&emitter}, value);
}
PythonExpr MLIRFunctionEmitter::bindConstantInt(int64_t value,
unsigned bitwidth) {
return ::bindConstantInt(edsc_mlir_emitter_t{&emitter}, value, bitwidth);
}
PythonExpr MLIRFunctionEmitter::bindConstantIndex(int64_t value) {
return ::bindConstantIndex(edsc_mlir_emitter_t{&emitter}, value);
}
PythonExpr MLIRFunctionEmitter::bindConstantFunction(PythonFunction func) {
return ::bindConstantFunction(edsc_mlir_emitter_t{&emitter}, func);
}
PythonExpr MLIRFunctionEmitter::bindFunctionArgument(unsigned pos) {
return ::bindFunctionArgument(edsc_mlir_emitter_t{&emitter},
mlir_func_t{currentFunction}, pos);
}
PythonExpr getPythonType(edsc_expr_t e) { return PythonExpr(e); }
template <typename T> py::list makePyList(llvm::ArrayRef<T> owningResults) {
py::list res;
for (auto e : owningResults) {
res.append(getPythonType(e));
}
return res;
}
py::list MLIRFunctionEmitter::bindFunctionArguments() {
auto arity = getFunctionArity(mlir_func_t{currentFunction});
llvm::SmallVector<edsc_expr_t, 8> owningResults(arity);
edsc_expr_list_t results{owningResults.data(), owningResults.size()};
::bindFunctionArguments(edsc_mlir_emitter_t{&emitter},
mlir_func_t{currentFunction}, &results);
return makePyList(ArrayRef<edsc_expr_t>{owningResults});
}
py::list MLIRFunctionEmitter::bindMemRefShape(PythonExpr boundMemRef) {
auto rank = getBoundMemRefRank(edsc_mlir_emitter_t{&emitter}, boundMemRef);
llvm::SmallVector<edsc_expr_t, 8> owningShapes(rank);
edsc_expr_list_t resultShapes{owningShapes.data(), owningShapes.size()};
::bindMemRefShape(edsc_mlir_emitter_t{&emitter}, boundMemRef, &resultShapes);
return makePyList(ArrayRef<edsc_expr_t>{owningShapes});
}
py::list MLIRFunctionEmitter::bindMemRefView(PythonExpr boundMemRef) {
auto rank = getBoundMemRefRank(edsc_mlir_emitter_t{&emitter}, boundMemRef);
// Own the PythonExpr for the arg as well as all its dims.
llvm::SmallVector<edsc_expr_t, 8> owningLbs(rank);
llvm::SmallVector<edsc_expr_t, 8> owningUbs(rank);
llvm::SmallVector<edsc_expr_t, 8> owningSteps(rank);
edsc_expr_list_t resultLbs{owningLbs.data(), owningLbs.size()};
edsc_expr_list_t resultUbs{owningUbs.data(), owningUbs.size()};
edsc_expr_list_t resultSteps{owningSteps.data(), owningSteps.size()};
::bindMemRefView(edsc_mlir_emitter_t{&emitter}, boundMemRef, &resultLbs,
&resultUbs, &resultSteps);
py::list res;
res.append(makePyList(ArrayRef<edsc_expr_t>{owningLbs}));
res.append(makePyList(ArrayRef<edsc_expr_t>{owningUbs}));
res.append(makePyList(ArrayRef<edsc_expr_t>{owningSteps}));
return res;
}
void MLIRFunctionEmitter::emit(PythonStmt stmt) {
emitter.emitStmt(Stmt(stmt));
}
void MLIRFunctionEmitter::emitBlock(PythonBlock block) {
emitter.emitBlock(StmtBlock(block));
}
void MLIRFunctionEmitter::emitBlockBody(PythonBlock block) {
emitter.emitStmts(StmtBlock(block).getBody());
}
PythonFunction
PythonMLIRModule::declareFunction(const std::string &name,
const py::list &inputs,
const std::vector<PythonType> &outputTypes,
const py::kwargs &funcAttributes) {
std::vector<PythonAttributedType> attributedInputs;
attributedInputs.reserve(inputs.size());
for (const auto &in : inputs) {
std::string className = in.get_type().str();
if (className.find(".Type'") != std::string::npos)
attributedInputs.emplace_back(in.cast<PythonType>());
else
attributedInputs.push_back(in.cast<PythonAttributedType>());
}
// Create the function type.
std::vector<mlir_type_t> ins(attributedInputs.begin(),
attributedInputs.end());
std::vector<mlir_type_t> outs(outputTypes.begin(), outputTypes.end());
auto funcType = ::makeFunctionType(
mlir_context_t{&mlirContext}, mlir_type_list_t{ins.data(), ins.size()},
mlir_type_list_t{outs.data(), outs.size()});
// Build the list of function attributes.
std::vector<mlir::NamedAttribute> attrs;
attrs.reserve(funcAttributes.size());
for (const auto &named : funcAttributes)
attrs.emplace_back(
Identifier::get(std::string(named.first.str()), &mlirContext),
mlir::Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(
named.second.cast<PythonAttribute>().attr)));
// Build the list of lists of function argument attributes.
std::vector<mlir::NamedAttributeList> inputAttrs;
inputAttrs.reserve(attributedInputs.size());
for (const auto &in : attributedInputs) {
std::vector<mlir::NamedAttribute> inAttrs;
for (const auto &named : in.getNamedAttrs())
inAttrs.emplace_back(Identifier::get(named.name, &mlirContext),
mlir::Attribute::getFromOpaquePointer(
reinterpret_cast<const void *>(named.value)));
inputAttrs.emplace_back(&mlirContext, inAttrs);
}
// Create the function itself.
auto *func = new mlir::Function(
UnknownLoc::get(&mlirContext), name,
mlir::Type::getFromOpaquePointer(funcType).cast<FunctionType>(), attrs,
inputAttrs);
module->getFunctions().push_back(func);
return func;
}
PythonExpr PythonMLIRModule::op(const std::string &name, PythonType type,
const py::list &arguments,
const py::list &successors,
py::kwargs attributes) {
SmallVector<edsc_expr_t, 8> owningExprs;
SmallVector<edsc_block_t, 4> owningBlocks;
SmallVector<mlir_named_attr_t, 4> owningAttrs;
SmallVector<std::string, 4> owningAttrNames;
owningAttrs.reserve(attributes.size());
owningAttrNames.reserve(attributes.size());
for (const auto &kvp : attributes) {
owningAttrNames.push_back(kvp.first.str());
auto value = kvp.second.cast<PythonAttribute>();
owningAttrs.push_back({owningAttrNames.back().c_str(), value});
}
return PythonExpr(::Op(mlir_context_t(&mlirContext), name.c_str(), type,
makeCExprs(owningExprs, arguments),
makeCBlocks(owningBlocks, successors),
{owningAttrs.data(), owningAttrs.size()}));
}
PythonAttributedType PythonType::attachAttributeDict(
const std::unordered_map<std::string, PythonAttribute> &attrs) const {
return PythonAttributedType(*this, attrs);
}
PythonAttribute PythonMLIRModule::integerAttr(PythonType type, int64_t value) {
return PythonAttribute(::makeIntegerAttr(type, value));
}
PythonAttribute PythonMLIRModule::boolAttr(bool value) {
return PythonAttribute(::makeBoolAttr(&mlirContext, value));
}
PythonBlock PythonBlock::set(const py::list &stmts) {
SmallVector<edsc_stmt_t, 8> owning;
::BlockSetBody(blk, makeCStmts(owning, stmts));
return *this;
}
PythonExpr dispatchCall(py::args args, py::kwargs kwargs) {
assert(args.size() != 0);
llvm::SmallVector<edsc_expr_t, 8> exprs;
exprs.reserve(args.size());
for (auto arg : args) {
exprs.push_back(arg.cast<PythonExpr>());
}
edsc_expr_list_t operands{exprs.data() + 1, exprs.size() - 1};
if (kwargs && kwargs.contains("result")) {
for (const auto &kvp : kwargs) {
if (static_cast<std::string>(kvp.first.str()) == "result")
return ::Call1(exprs.front(), kvp.second.cast<PythonType>(), operands);
}
}
return ::Call0(exprs.front(), operands);
}
PYBIND11_MODULE(pybind, m) {
m.doc() =
"Python bindings for MLIR Embedded Domain-Specific Components (EDSCs)";
m.def("version", []() { return "EDSC Python extensions v0.0"; });
m.def("initContext",
[]() { return static_cast<void *>(new ScopedEDSCContext()); });
m.def("deleteContext",
[](void *ctx) { delete reinterpret_cast<ScopedEDSCContext *>(ctx); });
m.def("Block", [](const py::list &args, const py::list &stmts) {
SmallVector<edsc_stmt_t, 8> owning;
SmallVector<edsc_expr_t, 8> owningArgs;
return PythonBlock(
::Block(makeCExprs(owningArgs, args), makeCStmts(owning, stmts)));
});
m.def("Block", [](const py::list &stmts) {
SmallVector<edsc_stmt_t, 8> owning;
edsc_expr_list_t args{nullptr, 0};
return PythonBlock(::Block(args, makeCStmts(owning, stmts)));
});
m.def(
"Branch",
[](PythonBlock destination, const py::list &operands) {
SmallVector<edsc_expr_t, 8> owning;
return PythonStmt(::Branch(destination, makeCExprs(owning, operands)));
},
py::arg("destination"), py::arg("operands") = py::list());
m.def("CondBranch",
[](PythonExpr condition, PythonBlock trueDestination,
const py::list &trueOperands, PythonBlock falseDestination,
const py::list &falseOperands) {
SmallVector<edsc_expr_t, 8> owningTrue;
SmallVector<edsc_expr_t, 8> owningFalse;
return PythonStmt(::CondBranch(
condition, trueDestination, makeCExprs(owningTrue, trueOperands),
falseDestination, makeCExprs(owningFalse, falseOperands)));
});
m.def("CondBranch", [](PythonExpr condition, PythonBlock trueDestination,
PythonBlock falseDestination) {
edsc_expr_list_t emptyList;
emptyList.exprs = nullptr;
emptyList.n = 0;
return PythonStmt(::CondBranch(condition, trueDestination, emptyList,
falseDestination, emptyList));
});
m.def("For", [](const py::list &ivs, const py::list &lbs, const py::list &ubs,
const py::list &steps, const py::list &stmts) {
SmallVector<edsc_expr_t, 8> owningIVs;
SmallVector<edsc_expr_t, 8> owningLBs;
SmallVector<edsc_expr_t, 8> owningUBs;
SmallVector<edsc_expr_t, 8> owningSteps;
SmallVector<edsc_stmt_t, 8> owningStmts;
return PythonStmt(
::ForNest(makeCExprs(owningIVs, ivs), makeCExprs(owningLBs, lbs),
makeCExprs(owningUBs, ubs), makeCExprs(owningSteps, steps),
makeCStmts(owningStmts, stmts)));
});
py::class_<PythonLoopContext>(
m, "LoopContext", "A context for building the body of a 'for' loop")
.def(py::init<PythonValueHandle, PythonValueHandle, int64_t>())
.def("__enter__", &PythonLoopContext::enter)
.def("__exit__", &PythonLoopContext::exit);
py::class_<PythonLoopNestContext>(m, "LoopNestContext",
"A context for building the body of a the "
"innermost loop in a nest of 'for' loops")
.def(py::init<const std::vector<PythonValueHandle> &,
const std::vector<PythonValueHandle> &,
const std::vector<int64_t> &>())
.def("__enter__", &PythonLoopNestContext::enter)
.def("__exit__", &PythonLoopNestContext::exit);
m.def("IdxCst", [](int64_t val) -> PythonValueHandle {
return ValueHandle(index_t(val));
});
m.def("Max", [](const py::list &args) {
SmallVector<edsc_expr_t, 8> owning;
return PythonMaxExpr(::Max(makeCExprs(owning, args)));
});
m.def("Min", [](const py::list &args) {
SmallVector<edsc_expr_t, 8> owning;
return PythonMinExpr(::Min(makeCExprs(owning, args)));
});
m.def("For", [](PythonExpr iv, PythonExpr lb, PythonExpr ub, PythonExpr step,
const py::list &stmts) {
SmallVector<edsc_stmt_t, 8> owning;
return PythonStmt(::For(iv, lb, ub, step, makeCStmts(owning, stmts)));
});
m.def("For", [](PythonExpr iv, PythonMaxExpr lb, PythonMinExpr ub,
PythonExpr step, const py::list &stmts) {
SmallVector<edsc_stmt_t, 8> owning;
return PythonStmt(::MaxMinFor(iv, lb, ub, step, makeCStmts(owning, stmts)));
});
m.def("Select", [](PythonExpr cond, PythonExpr e1, PythonExpr e2) {
return PythonExpr(::Select(cond, e1, e2));
});
m.def("Return", []() {
return PythonStmt(::Return(edsc_expr_list_t{nullptr, 0}));
});
m.def("Return", [](const py::list &returns) {
SmallVector<edsc_expr_t, 8> owningExprs;
return PythonStmt(::Return(makeCExprs(owningExprs, returns)));
});
m.def("ConstantInteger", [](PythonType type, int64_t value) {
return PythonExpr(::ConstantInteger(type, value));
});
#define DEFINE_PYBIND_BINARY_OP(PYTHON_NAME, C_NAME) \
m.def(PYTHON_NAME, [](PythonExpr e1, PythonExpr e2) { \
return PythonExpr(::C_NAME(e1, e2)); \
});
DEFINE_PYBIND_BINARY_OP("Add", Add);
DEFINE_PYBIND_BINARY_OP("Mul", Mul);
DEFINE_PYBIND_BINARY_OP("Sub", Sub);
DEFINE_PYBIND_BINARY_OP("Div", Div);
DEFINE_PYBIND_BINARY_OP("Rem", Rem);
DEFINE_PYBIND_BINARY_OP("FloorDiv", FloorDiv);
DEFINE_PYBIND_BINARY_OP("CeilDiv", CeilDiv);
DEFINE_PYBIND_BINARY_OP("LT", LT);
DEFINE_PYBIND_BINARY_OP("LE", LE);
DEFINE_PYBIND_BINARY_OP("GT", GT);
DEFINE_PYBIND_BINARY_OP("GE", GE);
DEFINE_PYBIND_BINARY_OP("EQ", EQ);
DEFINE_PYBIND_BINARY_OP("NE", NE);
DEFINE_PYBIND_BINARY_OP("And", And);
DEFINE_PYBIND_BINARY_OP("Or", Or);
#undef DEFINE_PYBIND_BINARY_OP
#define DEFINE_PYBIND_UNARY_OP(PYTHON_NAME, C_NAME) \
m.def(PYTHON_NAME, [](PythonExpr e1) { return PythonExpr(::C_NAME(e1)); });
DEFINE_PYBIND_UNARY_OP("Negate", Negate);
#undef DEFINE_PYBIND_UNARY_OP
py::class_<PythonFunction>(m, "Function",
"Wrapping class for mlir::Function.")
.def(py::init<PythonFunction>())
.def("__str__", &PythonFunction::str)
.def("define", &PythonFunction::define,
"Adds a body to the function if it does not already have one. "
"Returns true if the body was added");
py::class_<PythonBlock>(m, "StmtBlock",
"Wrapping class for mlir::edsc::StmtBlock")
.def(py::init<PythonBlock>())
.def("set", &PythonBlock::set)
.def("__str__", &PythonBlock::str);
py::class_<PythonAttribute>(m, "Attribute",
"Wrapping class for mlir::Attribute")
.def(py::init<PythonAttribute>())
.def("__str__", &PythonAttribute::str);
py::class_<PythonType>(m, "Type", "Wrapping class for mlir::Type.")
.def(py::init<PythonType>())
.def("__call__", &PythonType::attachAttributeDict,
"Attach the attributes to these type, making it suitable for "
"constructing functions with argument attributes")
.def("__str__", &PythonType::str);
py::class_<PythonAttributedType>(
m, "AttributedType",
"A class containing a wrapped mlir::Type and a wrapped "
"mlir::NamedAttributeList that are used together, e.g. in function "
"argument declaration")
.def(py::init<PythonAttributedType>())
.def("__str__", &PythonAttributedType::str);
py::class_<PythonMLIRModule>(
m, "MLIRModule",
"An MLIRModule is the abstraction that owns the allocations to support "
"compilation of a single mlir::Module into an ExecutionEngine backed by "
"the LLVM ORC JIT. A typical flow consists in creating an MLIRModule, "
"adding functions, compiling the module to obtain an ExecutionEngine on "
"which named functions may be called. For now the only means to retrieve "
"the ExecutionEngine is by calling `get_engine_address`. This mode of "
"execution is limited to passing the pointer to C++ where the function "
"is called. Extending the API to allow calling JIT compiled functions "
"directly require integration with a tensor library (e.g. numpy). This "
"is left as the prerogative of libraries and frameworks for now.")
.def(py::init<>())
.def("op", &PythonMLIRModule::op, py::arg("name"), py::arg("type"),
py::arg("arguments"), py::arg("successors") = py::list(),
"Creates a new expression identified by its canonical name.")
.def("boolAttr", &PythonMLIRModule::boolAttr,
"Creates an mlir::BoolAttr with the given value")
.def(
"integerAttr", &PythonMLIRModule::integerAttr,
"Creates an mlir::IntegerAttr of the given type with the given value "
"in the context associated with this MLIR module.")
.def("declare_function", &PythonMLIRModule::declareFunction,
"Declares a new mlir::Function in the current mlir::Module. The "
"function arguments can have attributes. The function has no "
"definition and can be linked to an external library.")
.def("make_function", &PythonMLIRModule::makeFunction,
"Defines a new mlir::Function in the current mlir::Module.")
.def(
"make_scalar_type",
[](PythonMLIRModule &instance, const std::string &type,
unsigned bitwidth) {
return instance.makeScalarType(type, bitwidth);
},
py::arg("type"), py::arg("bitwidth") = 0,
"Returns a scalar mlir::Type using the following convention:\n"
" - makeScalarType(c, \"bf16\") return an "
"`mlir::FloatType::getBF16`\n"
" - makeScalarType(c, \"f16\") return an `mlir::FloatType::getF16`\n"
" - makeScalarType(c, \"f32\") return an `mlir::FloatType::getF32`\n"
" - makeScalarType(c, \"f64\") return an `mlir::FloatType::getF64`\n"
" - makeScalarType(c, \"index\") return an `mlir::IndexType::get`\n"
" - makeScalarType(c, \"i\", bitwidth) return an "
"`mlir::IntegerType::get(bitwidth)`\n\n"
" No other combinations are currently supported.")
.def("make_memref_type", &PythonMLIRModule::makeMemRefType,
"Returns an mlir::MemRefType of an elemental scalar. -1 is used to "
"denote symbolic dimensions in the resulting memref shape.")
EDSC: make Expr typed and extensible Expose the result types of edsc::Expr, which are now stored for all types of Exprs and not only for the variadic ones. Require return types when an Expr is constructed, if it will ever have some. An empty return type list is interpreted as an Expr that does not create a value (e.g. `return` or `store`). Conceptually, all edss::Exprs are now typed, with the type being a (potentially empty) tuple of return types. Unbound expressions and Bindables must now be constructed with a specific type they will take. This makes EDSC less evidently type-polymorphic, but we can still write generic code such as Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; } and use it to construct different typed expressions as sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx))); sumOfSquares(Bindable(FloatType::getF32(ctx)), Bindable(FloatType::getF32(ctx))); On the positive side, we get the following. 1. We can now perform type checking when constructing Exprs rather than during MLIR emission. Nevertheless, this is still duplicates the Op::verify() until we can factor out type checking from that. 2. MLIREmitter is significantly simplified. 3. ExprKind enum is only used for actual kinds of expressions. Data structures are converging with AbstractOperation, and the users can now create a VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even an unregistered one without having to extend the enum and make pervasive changes to EDSCs. On the negative side, we get the following. 1. Typed bindables are more verbose, even in Python. 2. We lose the ability to do print debugging for higher-level EDSC abstractions that are implemented as multiple MLIR Ops, for example logical disjunction. This is the step 2/n towards making EDSC extensible. *** Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr now has sufficient information to build itself. This is the step 3/n towards making EDSC extensible. Both of these strive to minimize the amount of irrelevant changes. In particular, this introduces more complex pretty-printing for affine and binary expression to make sure tests continue to pass. It also relies on string comparison to identify specific operations that an Expr produces. PiperOrigin-RevId: 234609882
2019-02-19 08:51:52 -08:00
.def("make_index_type", &PythonMLIRModule::makeIndexType,
"Returns an mlir::IndexType")
.def("compile", &PythonMLIRModule::compile,
"Compiles the mlir::Module to LLVMIR a creates new opaque "
"ExecutionEngine backed by the ORC JIT.")
.def("get_ir", &PythonMLIRModule::getIR,
"Returns a dump of the MLIR representation of the module. This is "
"used for serde to support out-of-process execution as well as "
"debugging purposes.")
.def("get_engine_address", &PythonMLIRModule::getEngineAddress,
"Returns the address of the compiled ExecutionEngine. This is used "
"for in-process execution.")
.def("__str__", &PythonMLIRModule::getIR,
"Get the string representation of the module");
py::class_<ContextManager>(
m, "ContextManager",
"An EDSC context manager is the memory arena containing all the EDSC "
"allocations.\nUsage:\n\n"
"with E.ContextManager() as _:\n i = E.Expr(E.Bindable())\n ...")
.def(py::init<>())
.def("__enter__", &ContextManager::enter)
.def("__exit__", &ContextManager::exit);
py::class_<PythonFunctionContext>(
m, "FunctionContext", "A wrapper around mlir::edsc::ScopedContext")
.def(py::init<PythonFunction>())
.def("__enter__", &PythonFunctionContext::enter)
.def("__exit__", &PythonFunctionContext::exit);
{
using namespace mlir::edsc::op;
py::class_<PythonValueHandle>(m, "ValueHandle",
"A wrapper around mlir::edsc::ValueHandle")
.def(py::init<PythonType>())
.def(py::init<PythonValueHandle>())
.def("__add__",
[](PythonValueHandle lhs, PythonValueHandle rhs)
-> PythonValueHandle { return lhs.value + rhs.value; })
.def("__sub__",
[](PythonValueHandle lhs, PythonValueHandle rhs)
-> PythonValueHandle { return lhs.value - rhs.value; })
.def("__mul__",
[](PythonValueHandle lhs, PythonValueHandle rhs)
-> PythonValueHandle { return lhs.value * rhs.value; })
.def("__div__",
[](PythonValueHandle lhs, PythonValueHandle rhs)
-> PythonValueHandle { return lhs.value / rhs.value; })
.def("__truediv__",
[](PythonValueHandle lhs, PythonValueHandle rhs)
-> PythonValueHandle { return lhs.value / rhs.value; })
.def("__mod__",
[](PythonValueHandle lhs, PythonValueHandle rhs)
-> PythonValueHandle { return lhs.value % rhs.value; });
}
py::class_<MLIRFunctionEmitter>(
m, "MLIRFunctionEmitter",
"An MLIRFunctionEmitter is used to fill an empty function body. This is "
"a staged process:\n"
" 1. create or retrieve an mlir::Function `f` with an empty body;\n"
" 2. make an `MLIRFunctionEmitter(f)` to build the current function;\n"
" 3. create leaf Expr that are either Bindable or already Expr that are"
" bound to constants and function arguments by using methods of "
" `MLIRFunctionEmitter`;\n"
" 4. build the function body using Expr, Indexed and Stmt;\n"
" 5. emit the MLIR to implement the function body.")
.def(py::init<PythonFunction>())
.def("bind_constant_bf16", &MLIRFunctionEmitter::bindConstantBF16)
.def("bind_constant_f16", &MLIRFunctionEmitter::bindConstantF16)
.def("bind_constant_f32", &MLIRFunctionEmitter::bindConstantF32)
.def("bind_constant_f64", &MLIRFunctionEmitter::bindConstantF64)
.def("bind_constant_int", &MLIRFunctionEmitter::bindConstantInt)
.def("bind_constant_index", &MLIRFunctionEmitter::bindConstantIndex)
.def("bind_constant_function", &MLIRFunctionEmitter::bindConstantFunction)
.def("bind_function_argument", &MLIRFunctionEmitter::bindFunctionArgument,
"Returns an Expr that has been bound to a positional argument in "
"the current Function.")
.def("bind_function_arguments",
&MLIRFunctionEmitter::bindFunctionArguments,
"Returns a list of Expr where each Expr has been bound to the "
"corresponding positional argument in the current Function.")
.def("bind_memref_shape", &MLIRFunctionEmitter::bindMemRefShape,
"Returns a list of Expr where each Expr has been bound to the "
"corresponding dimension of the memref.")
.def("bind_memref_view", &MLIRFunctionEmitter::bindMemRefView,
"Returns three lists (lower bound, upper bound and step) of Expr "
"where each triplet of Expr has been bound to the minimal offset, "
"extent and stride of the corresponding dimension of the memref.")
.def("bind_indexed_shape", &MLIRFunctionEmitter::bindIndexedMemRefShape,
"Same as bind_memref_shape but returns a list of `Indexed` that "
"support load and store operations")
.def("bind_indexed_view", &MLIRFunctionEmitter::bindIndexedMemRefView,
"Same as bind_memref_view but returns lists of `Indexed` that "
"support load and store operations")
.def("emit", &MLIRFunctionEmitter::emit,
"Emits the MLIR for the EDSC expressions and statements in the "
"current function body.")
.def("emit", &MLIRFunctionEmitter::emitBlock,
"Emits the MLIR for the EDSC statements into a new block")
.def("emit_inplace", &MLIRFunctionEmitter::emitBlockBody,
"Emits the MLIR for the EDSC statements contained in a EDSC block "
"into the current function body without creating a new block");
py::class_<PythonExpr>(m, "Expr", "Wrapping class for mlir::edsc::Expr")
.def(py::init<PythonBindable>())
.def("__add__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::Add(e1, e2)); })
.def("__sub__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::Sub(e1, e2)); })
.def("__mul__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::Mul(e1, e2)); })
.def("__div__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::Div(e1, e2)); })
.def("__truediv__",
[](PythonExpr e1, PythonExpr e2) {
return PythonExpr(::Div(e1, e2));
})
.def("__mod__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::Rem(e1, e2)); })
.def("__lt__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::LT(e1, e2)); })
.def("__le__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::LE(e1, e2)); })
.def("__gt__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::GT(e1, e2)); })
.def("__ge__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::GE(e1, e2)); })
.def("__eq__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::EQ(e1, e2)); })
.def("__ne__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::NE(e1, e2)); })
.def("__and__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::And(e1, e2)); })
.def("__or__", [](PythonExpr e1,
PythonExpr e2) { return PythonExpr(::Or(e1, e2)); })
.def("__invert__", [](PythonExpr e) { return PythonExpr(::Negate(e)); })
.def("__call__", &dispatchCall)
.def("__str__", &PythonExpr::str,
R"DOC(Returns the string value for the Expr)DOC");
py::class_<PythonBindable>(
m, "Bindable",
"Wrapping class for mlir::edsc::Bindable.\nA Bindable is a special Expr "
"that can be bound manually to specific MLIR SSA Values.")
EDSC: make Expr typed and extensible Expose the result types of edsc::Expr, which are now stored for all types of Exprs and not only for the variadic ones. Require return types when an Expr is constructed, if it will ever have some. An empty return type list is interpreted as an Expr that does not create a value (e.g. `return` or `store`). Conceptually, all edss::Exprs are now typed, with the type being a (potentially empty) tuple of return types. Unbound expressions and Bindables must now be constructed with a specific type they will take. This makes EDSC less evidently type-polymorphic, but we can still write generic code such as Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; } and use it to construct different typed expressions as sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx))); sumOfSquares(Bindable(FloatType::getF32(ctx)), Bindable(FloatType::getF32(ctx))); On the positive side, we get the following. 1. We can now perform type checking when constructing Exprs rather than during MLIR emission. Nevertheless, this is still duplicates the Op::verify() until we can factor out type checking from that. 2. MLIREmitter is significantly simplified. 3. ExprKind enum is only used for actual kinds of expressions. Data structures are converging with AbstractOperation, and the users can now create a VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even an unregistered one without having to extend the enum and make pervasive changes to EDSCs. On the negative side, we get the following. 1. Typed bindables are more verbose, even in Python. 2. We lose the ability to do print debugging for higher-level EDSC abstractions that are implemented as multiple MLIR Ops, for example logical disjunction. This is the step 2/n towards making EDSC extensible. *** Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr now has sufficient information to build itself. This is the step 3/n towards making EDSC extensible. Both of these strive to minimize the amount of irrelevant changes. In particular, this introduces more complex pretty-printing for affine and binary expression to make sure tests continue to pass. It also relies on string comparison to identify specific operations that an Expr produces. PiperOrigin-RevId: 234609882
2019-02-19 08:51:52 -08:00
.def(py::init<PythonType>())
.def("__str__", &PythonBindable::str);
py::class_<PythonStmt>(m, "Stmt", "Wrapping class for mlir::edsc::Stmt.")
.def(py::init<PythonExpr>())
.def("__str__", &PythonStmt::str,
R"DOC(Returns the string value for the Expr)DOC");
py::class_<PythonIndexed>(
m, "Indexed",
"Wrapping class for mlir::edsc::Indexed.\nAn Indexed is a wrapper class "
"that support load and store operations.")
.def(py::init<PythonExpr>(), R"DOC(Build from existing Expr)DOC")
.def(py::init<PythonBindable>(), R"DOC(Build from existing Bindable)DOC")
.def(
"load",
[](PythonIndexed &instance, const py::list &indices) {
SmallVector<edsc_expr_t, 8> owning;
return PythonExpr(Load(instance, makeCExprs(owning, indices)));
},
R"DOC(Returns an Expr that loads from an Indexed)DOC")
.def(
"store",
[](PythonIndexed &instance, const py::list &indices,
PythonExpr value) {
SmallVector<edsc_expr_t, 8> owning;
return PythonStmt(
Store(value, instance, makeCExprs(owning, indices)));
},
R"DOC(Returns the Stmt that stores into an Indexed)DOC");
py::class_<PythonMaxExpr>(m, "MaxExpr",
"Wrapping class for mlir::edsc::MaxExpr");
py::class_<PythonMinExpr>(m, "MinExpr",
"Wrapping class for mlir::edsc::MinExpr");
}
} // namespace python
} // namespace edsc
} // namespace mlir