[lldb][NFC] Fix all formatting errors in .cpp file headers
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
2020-01-24 08:23:27 +01:00
|
|
|
//===-- ValueObjectPrinter.cpp --------------------------------------------===//
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
//
|
2019-01-19 08:50:56 +00:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
//
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
#include "lldb/DataFormatters/ValueObjectPrinter.h"
|
|
|
|
|
|
2013-10-04 23:14:13 +00:00
|
|
|
#include "lldb/DataFormatters/DataVisualization.h"
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
#include "lldb/Interpreter/CommandInterpreter.h"
|
2015-10-19 22:04:25 +00:00
|
|
|
#include "lldb/Target/Language.h"
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
#include "lldb/Target/Target.h"
|
2017-02-02 21:39:50 +00:00
|
|
|
#include "lldb/Utility/Stream.h"
|
2024-10-24 20:20:48 -07:00
|
|
|
#include "lldb/ValueObject/ValueObject.h"
|
2025-08-15 08:37:26 -07:00
|
|
|
#include "llvm/Support/Error.h"
|
2024-06-03 10:34:44 +02:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
|
#include <cstdint>
|
2025-07-25 15:55:21 -07:00
|
|
|
#include <memory>
|
2025-08-15 08:37:26 -07:00
|
|
|
#include <optional>
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
|
|
|
|
|
using namespace lldb;
|
|
|
|
|
using namespace lldb_private;
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObjectPrinter::ValueObjectPrinter(ValueObject &valobj, Stream *s)
|
|
|
|
|
: m_orig_valobj(valobj) {
|
|
|
|
|
DumpValueObjectOptions options(valobj);
|
|
|
|
|
Init(valobj, s, options, m_options.m_max_ptr_depth, 0, nullptr);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObjectPrinter::ValueObjectPrinter(ValueObject &valobj, Stream *s,
|
|
|
|
|
const DumpValueObjectOptions &options)
|
|
|
|
|
: m_orig_valobj(valobj) {
|
2015-11-10 19:07:58 +00:00
|
|
|
Init(valobj, s, options, m_options.m_max_ptr_depth, 0, nullptr);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
ValueObjectPrinter::ValueObjectPrinter(
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj, Stream *s, const DumpValueObjectOptions &options,
|
2015-07-27 18:34:14 +00:00
|
|
|
const DumpValueObjectOptions::PointerDepth &ptr_depth, uint32_t curr_depth,
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
InstancePointersSetSP printed_instance_pointers)
|
|
|
|
|
: m_orig_valobj(valobj) {
|
2015-11-10 19:07:58 +00:00
|
|
|
Init(valobj, s, options, ptr_depth, curr_depth, printed_instance_pointers);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2013-10-05 00:20:27 +00:00
|
|
|
void ValueObjectPrinter::Init(
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj, Stream *s, const DumpValueObjectOptions &options,
|
2015-07-27 18:34:14 +00:00
|
|
|
const DumpValueObjectOptions::PointerDepth &ptr_depth, uint32_t curr_depth,
|
2015-11-10 19:07:58 +00:00
|
|
|
InstancePointersSetSP printed_instance_pointers) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_cached_valobj = nullptr;
|
2013-10-05 00:20:27 +00:00
|
|
|
m_stream = s;
|
2015-11-03 23:23:59 +00:00
|
|
|
m_options = options;
|
2013-10-05 00:20:27 +00:00
|
|
|
m_ptr_depth = ptr_depth;
|
|
|
|
|
m_curr_depth = curr_depth;
|
|
|
|
|
assert(m_stream && "cannot print to a NULL Stream");
|
|
|
|
|
m_should_print = eLazyBoolCalculate;
|
|
|
|
|
m_is_nil = eLazyBoolCalculate;
|
2015-11-10 22:39:15 +00:00
|
|
|
m_is_uninit = eLazyBoolCalculate;
|
2013-10-05 00:20:27 +00:00
|
|
|
m_is_ptr = eLazyBoolCalculate;
|
|
|
|
|
m_is_ref = eLazyBoolCalculate;
|
|
|
|
|
m_is_aggregate = eLazyBoolCalculate;
|
2015-11-10 19:07:58 +00:00
|
|
|
m_is_instance_ptr = eLazyBoolCalculate;
|
2013-10-05 00:20:27 +00:00
|
|
|
m_summary_formatter = {nullptr, false};
|
|
|
|
|
m_value.assign("");
|
|
|
|
|
m_summary.assign("");
|
|
|
|
|
m_error.assign("");
|
2015-11-10 19:07:58 +00:00
|
|
|
m_val_summary_ok = false;
|
2025-07-25 15:55:21 -07:00
|
|
|
m_printed_instance_pointers = printed_instance_pointers
|
|
|
|
|
? printed_instance_pointers
|
|
|
|
|
: std::make_shared<InstancePointersSet>();
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
SetupMostSpecializedValue();
|
2015-06-03 20:43:54 +00:00
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2025-08-15 08:37:26 -07:00
|
|
|
static const char *maybeNewline(const std::string &s) {
|
|
|
|
|
// If the string already ends with a \n don't add another one.
|
|
|
|
|
if (s.empty() || s.back() != '\n')
|
|
|
|
|
return "\n";
|
|
|
|
|
return "";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::ShouldPrintObjectDescription() {
|
|
|
|
|
return ShouldPrintValueObject() && m_options.m_use_object_desc && !IsNil() &&
|
|
|
|
|
!IsUninitialized() && !m_options.m_pointer_as_array;
|
|
|
|
|
}
|
|
|
|
|
|
2024-06-17 14:29:01 -07:00
|
|
|
llvm::Error ValueObjectPrinter::PrintValueObject() {
|
2023-02-28 16:38:50 -08:00
|
|
|
// If the incoming ValueObject is in an error state, the best we're going to
|
|
|
|
|
// get out of it is its type. But if we don't even have that, just print
|
|
|
|
|
// the error and exit early.
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
if (m_orig_valobj.GetError().Fail() &&
|
2024-06-17 14:29:01 -07:00
|
|
|
!m_orig_valobj.GetCompilerType().IsValid())
|
|
|
|
|
return m_orig_valobj.GetError().ToError();
|
2015-06-03 20:43:54 +00:00
|
|
|
|
2025-08-15 08:37:26 -07:00
|
|
|
std::optional<std::string> object_desc;
|
|
|
|
|
if (ShouldPrintObjectDescription()) {
|
|
|
|
|
// The object description is invoked now, but not printed until after
|
|
|
|
|
// value/summary. Calling GetObjectDescription at the outset of printing
|
|
|
|
|
// allows for early discovery of errors. In the case of an error, the value
|
|
|
|
|
// object is printed normally.
|
|
|
|
|
llvm::Expected<std::string> object_desc_or_err =
|
|
|
|
|
GetMostSpecializedValue().GetObjectDescription();
|
|
|
|
|
if (!object_desc_or_err) {
|
|
|
|
|
auto error_msg = toString(object_desc_or_err.takeError());
|
|
|
|
|
*m_stream << "error: " << error_msg << maybeNewline(error_msg);
|
|
|
|
|
|
|
|
|
|
// Print the value object directly.
|
|
|
|
|
m_options.DisableObjectDescription();
|
|
|
|
|
} else {
|
|
|
|
|
object_desc = *object_desc_or_err;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-05 00:20:27 +00:00
|
|
|
if (ShouldPrintValueObject()) {
|
2015-11-10 19:07:58 +00:00
|
|
|
PrintLocationIfNeeded();
|
|
|
|
|
m_stream->Indent();
|
2015-11-10 22:39:15 +00:00
|
|
|
|
2015-10-17 01:05:50 +00:00
|
|
|
PrintDecl();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool value_printed = false;
|
|
|
|
|
bool summary_printed = false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-11-10 19:07:58 +00:00
|
|
|
m_val_summary_ok =
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
PrintValueAndSummaryIfNeeded(value_printed, summary_printed);
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2025-08-15 08:37:26 -07:00
|
|
|
if (m_val_summary_ok) {
|
|
|
|
|
PrintObjectDescriptionIfNeeded(object_desc);
|
2024-06-17 17:07:36 -07:00
|
|
|
return PrintChildrenIfNeeded(value_printed, summary_printed);
|
2025-08-15 08:37:26 -07:00
|
|
|
}
|
2024-06-17 17:07:36 -07:00
|
|
|
m_stream->EOL();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2024-06-17 14:29:01 -07:00
|
|
|
return llvm::Error::success();
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &ValueObjectPrinter::GetMostSpecializedValue() {
|
|
|
|
|
assert(m_cached_valobj && "ValueObjectPrinter must have a valid ValueObject");
|
|
|
|
|
return *m_cached_valobj;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void ValueObjectPrinter::SetupMostSpecializedValue() {
|
|
|
|
|
bool update_success = m_orig_valobj.UpdateValueIfNeeded(true);
|
|
|
|
|
// If we can't find anything better, we'll fall back on the original
|
|
|
|
|
// ValueObject.
|
|
|
|
|
m_cached_valobj = &m_orig_valobj;
|
|
|
|
|
if (update_success) {
|
|
|
|
|
if (m_orig_valobj.IsDynamic()) {
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_use_dynamic == eNoDynamicValues) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject *static_value = m_orig_valobj.GetStaticValue().get();
|
2013-10-22 22:42:14 +00:00
|
|
|
if (static_value)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_cached_valobj = static_value;
|
|
|
|
|
}
|
2013-10-22 22:42:14 +00:00
|
|
|
} else {
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_use_dynamic != eNoDynamicValues) {
|
|
|
|
|
ValueObject *dynamic_value =
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_orig_valobj.GetDynamicValue(m_options.m_use_dynamic).get();
|
Extend synthetic children to produce synthetic values (as in, those that GetValueAsUnsigned(), GetValueAsCString() would return)
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
2014-10-08 18:27:36 +00:00
|
|
|
if (dynamic_value)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_cached_valobj = dynamic_value;
|
|
|
|
|
}
|
2013-10-22 22:42:14 +00:00
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
if (m_cached_valobj->IsSynthetic()) {
|
2018-12-15 00:15:33 +00:00
|
|
|
if (!m_options.m_use_synthetic) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject *non_synthetic =
|
|
|
|
|
m_cached_valobj->GetNonSyntheticValue().get();
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (non_synthetic)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_cached_valobj = non_synthetic;
|
2015-11-10 22:39:15 +00:00
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
} else {
|
2018-12-15 00:15:33 +00:00
|
|
|
if (m_options.m_use_synthetic) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject *synthetic = m_cached_valobj->GetSyntheticValue().get();
|
2015-11-10 19:07:58 +00:00
|
|
|
if (synthetic)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_cached_valobj = synthetic;
|
2015-11-10 19:07:58 +00:00
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_compiler_type = m_cached_valobj->GetCompilerType();
|
2015-09-17 18:43:40 +00:00
|
|
|
m_type_flags = m_compiler_type.GetTypeInfo();
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
assert(m_cached_valobj &&
|
|
|
|
|
"SetupMostSpecialized value must compute a valid ValueObject");
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
2020-06-12 21:01:37 -07:00
|
|
|
const char *ValueObjectPrinter::GetRootNameForDisplay() {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
const char *root_valobj_name =
|
|
|
|
|
m_options.m_root_valobj_name.empty()
|
|
|
|
|
? GetMostSpecializedValue().GetName().AsCString()
|
|
|
|
|
: m_options.m_root_valobj_name.c_str();
|
2020-06-12 21:01:37 -07:00
|
|
|
return root_valobj_name ? root_valobj_name : "";
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
2015-10-17 01:05:50 +00:00
|
|
|
bool ValueObjectPrinter::ShouldPrintValueObject() {
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_should_print == eLazyBoolCalculate)
|
|
|
|
|
m_should_print =
|
2018-12-15 00:15:33 +00:00
|
|
|
(!m_options.m_flat_output || m_type_flags.Test(eTypeHasValue))
|
2015-11-03 23:23:59 +00:00
|
|
|
? eLazyBoolYes
|
2015-11-10 22:39:15 +00:00
|
|
|
: eLazyBoolNo;
|
2015-10-17 01:05:50 +00:00
|
|
|
return m_should_print == eLazyBoolYes;
|
|
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool ValueObjectPrinter::IsNil() {
|
2016-04-25 00:52:47 +00:00
|
|
|
if (m_is_nil == eLazyBoolCalculate)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_is_nil =
|
|
|
|
|
GetMostSpecializedValue().IsNilReference() ? eLazyBoolYes : eLazyBoolNo;
|
2015-11-03 23:23:59 +00:00
|
|
|
return m_is_nil == eLazyBoolYes;
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::IsUninitialized() {
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_is_uninit == eLazyBoolCalculate)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_is_uninit = GetMostSpecializedValue().IsUninitializedReference()
|
|
|
|
|
? eLazyBoolYes
|
|
|
|
|
: eLazyBoolNo;
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return m_is_uninit == eLazyBoolYes;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::IsPtr() {
|
2016-04-25 00:52:47 +00:00
|
|
|
if (m_is_ptr == eLazyBoolCalculate)
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
m_is_ptr = m_type_flags.Test(eTypeIsPointer) ? eLazyBoolYes : eLazyBoolNo;
|
|
|
|
|
return m_is_ptr == eLazyBoolYes;
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-27 18:34:14 +00:00
|
|
|
bool ValueObjectPrinter::IsRef() {
|
|
|
|
|
if (m_is_ref == eLazyBoolCalculate)
|
|
|
|
|
m_is_ref = m_type_flags.Test(eTypeIsReference) ? eLazyBoolYes : eLazyBoolNo;
|
|
|
|
|
return m_is_ref == eLazyBoolYes;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::IsAggregate() {
|
|
|
|
|
if (m_is_aggregate == eLazyBoolCalculate)
|
2014-10-21 20:52:14 +00:00
|
|
|
m_is_aggregate =
|
|
|
|
|
m_type_flags.Test(eTypeHasChildren) ? eLazyBoolYes : eLazyBoolNo;
|
2015-07-27 18:34:14 +00:00
|
|
|
return m_is_aggregate == eLazyBoolYes;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2015-07-27 18:34:14 +00:00
|
|
|
bool ValueObjectPrinter::IsInstancePointer() {
|
|
|
|
|
// you need to do this check on the value's clang type
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj = GetMostSpecializedValue();
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_is_instance_ptr == eLazyBoolCalculate)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_is_instance_ptr = (valobj.GetValue().GetCompilerType().GetTypeInfo() &
|
2015-11-10 19:07:58 +00:00
|
|
|
eTypeInstanceIsPointer) != 0
|
2015-11-10 22:39:15 +00:00
|
|
|
? eLazyBoolYes
|
|
|
|
|
: eLazyBoolNo;
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
if ((eLazyBoolYes == m_is_instance_ptr) && valobj.IsBaseClass())
|
2015-11-10 19:07:58 +00:00
|
|
|
m_is_instance_ptr = eLazyBoolNo;
|
|
|
|
|
return m_is_instance_ptr == eLazyBoolYes;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2015-07-27 18:34:14 +00:00
|
|
|
bool ValueObjectPrinter::PrintLocationIfNeeded() {
|
|
|
|
|
if (m_options.m_show_location) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
m_stream->Printf("%s: ", GetMostSpecializedValue().GetLocationAsCString());
|
2015-07-27 18:34:14 +00:00
|
|
|
return true;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2015-07-27 18:34:14 +00:00
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2014-09-06 02:20:19 +00:00
|
|
|
void ValueObjectPrinter::PrintDecl() {
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool show_type = true;
|
|
|
|
|
// if we are at the root-level and been asked to hide the root's type, then
|
|
|
|
|
// hide it
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_curr_depth == 0 && m_options.m_hide_root_type)
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
show_type = false;
|
2016-09-06 20:57:50 +00:00
|
|
|
else
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
// otherwise decide according to the usual rules (asked to show types -
|
|
|
|
|
// always at the root level)
|
2015-11-03 23:23:59 +00:00
|
|
|
show_type = m_options.m_show_types ||
|
|
|
|
|
(m_curr_depth == 0 && !m_options.m_flat_output);
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-10-17 01:05:50 +00:00
|
|
|
StreamString typeName;
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
// Figure out which ValueObject we're acting on
|
|
|
|
|
ValueObject &valobj = GetMostSpecializedValue();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-10-17 01:05:50 +00:00
|
|
|
// always show the type at the root level if it is invalid
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (show_type) {
|
2018-04-30 16:49:04 +00:00
|
|
|
// Some ValueObjects don't have types (like registers sets). Only print the
|
|
|
|
|
// type if there is one to print
|
2014-11-21 18:47:26 +00:00
|
|
|
ConstString type_name;
|
2015-10-17 01:05:50 +00:00
|
|
|
if (m_compiler_type.IsValid()) {
|
2020-06-12 21:01:37 -07:00
|
|
|
type_name = m_options.m_use_type_display_name
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
? valobj.GetDisplayTypeName()
|
|
|
|
|
: valobj.GetQualifiedTypeName();
|
2016-09-06 20:57:50 +00:00
|
|
|
} else {
|
2015-10-17 01:05:50 +00:00
|
|
|
// only show an invalid type name if the user explicitly triggered
|
|
|
|
|
// show_type
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_show_types)
|
2015-10-17 01:05:50 +00:00
|
|
|
type_name = ConstString("<invalid type>");
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2014-11-21 18:47:26 +00:00
|
|
|
if (type_name) {
|
2015-10-17 01:05:50 +00:00
|
|
|
std::string type_name_str(type_name.GetCString());
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_hide_pointer_value) {
|
2015-10-17 01:05:50 +00:00
|
|
|
for (auto iter = type_name_str.find(" *"); iter != std::string::npos;
|
|
|
|
|
iter = type_name_str.find(" *")) {
|
|
|
|
|
type_name_str.erase(iter, 2);
|
2015-07-27 18:34:14 +00:00
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2020-06-12 21:01:37 -07:00
|
|
|
typeName << type_name_str.c_str();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-10-17 01:05:50 +00:00
|
|
|
StreamString varName;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-03-23 21:43:32 -07:00
|
|
|
if (ShouldShowName()) {
|
2020-02-02 14:17:02 -08:00
|
|
|
if (m_options.m_flat_output)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
valobj.GetExpressionPath(varName);
|
2020-06-12 21:01:37 -07:00
|
|
|
else
|
|
|
|
|
varName << GetRootNameForDisplay();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2015-09-09 17:25:43 +00:00
|
|
|
bool decl_printed = false;
|
2015-11-03 23:23:59 +00:00
|
|
|
if (!m_options.m_decl_printing_helper) {
|
2015-10-19 22:04:25 +00:00
|
|
|
// if the user didn't give us a custom helper, pick one based upon the
|
|
|
|
|
// language, either the one that this printer is bound to, or the preferred
|
|
|
|
|
// one for the ValueObject
|
2015-11-03 23:23:59 +00:00
|
|
|
lldb::LanguageType lang_type =
|
|
|
|
|
(m_options.m_varformat_language == lldb::eLanguageTypeUnknown)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
? valobj.GetPreferredDisplayLanguage()
|
2015-11-03 23:23:59 +00:00
|
|
|
: m_options.m_varformat_language;
|
2015-09-09 17:25:43 +00:00
|
|
|
if (Language *lang_plugin = Language::FindPlugin(lang_type)) {
|
2015-11-03 23:23:59 +00:00
|
|
|
m_options.m_decl_printing_helper = lang_plugin->GetDeclPrintingHelper();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_decl_printing_helper) {
|
2016-11-16 21:15:24 +00:00
|
|
|
ConstString type_name_cstr(typeName.GetString());
|
|
|
|
|
ConstString var_name_cstr(varName.GetString());
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-05-08 10:13:33 -07:00
|
|
|
DumpValueObjectOptions decl_print_options = m_options;
|
|
|
|
|
// Pass printing helpers an option object that indicates whether the name
|
|
|
|
|
// should be shown or hidden.
|
|
|
|
|
decl_print_options.SetHideName(!ShouldShowName());
|
|
|
|
|
|
2015-10-17 01:05:50 +00:00
|
|
|
StreamString dest_stream;
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_decl_printing_helper(type_name_cstr, var_name_cstr,
|
2023-05-08 10:13:33 -07:00
|
|
|
decl_print_options, dest_stream)) {
|
2015-10-17 01:05:50 +00:00
|
|
|
decl_printed = true;
|
2016-11-16 21:15:24 +00:00
|
|
|
m_stream->PutCString(dest_stream.GetString());
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-10-19 22:04:25 +00:00
|
|
|
// if the helper failed, or there is none, do a default thing
|
2015-10-17 01:05:50 +00:00
|
|
|
if (!decl_printed) {
|
2016-11-16 21:15:24 +00:00
|
|
|
if (!typeName.Empty())
|
2015-10-19 22:04:25 +00:00
|
|
|
m_stream->Printf("(%s) ", typeName.GetData());
|
2016-11-16 21:15:24 +00:00
|
|
|
if (!varName.Empty())
|
2015-10-17 01:05:50 +00:00
|
|
|
m_stream->Printf("%s =", varName.GetData());
|
2023-03-23 21:43:32 -07:00
|
|
|
else if (ShouldShowName())
|
2015-10-17 01:05:50 +00:00
|
|
|
m_stream->Printf(" =");
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2015-07-27 18:34:14 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool ValueObjectPrinter::CheckScopeIfNeeded() {
|
|
|
|
|
if (m_options.m_scope_already_checked)
|
|
|
|
|
return true;
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
return GetMostSpecializedValue().IsInScope();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
TypeSummaryImpl *ValueObjectPrinter::GetSummaryFormatter(bool null_if_omitted) {
|
2018-12-15 00:15:33 +00:00
|
|
|
if (!m_summary_formatter.second) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
TypeSummaryImpl *entry =
|
|
|
|
|
m_options.m_summary_sp
|
|
|
|
|
? m_options.m_summary_sp.get()
|
|
|
|
|
: GetMostSpecializedValue().GetSummaryFormat().get();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (m_options.m_omit_summary_depth > 0)
|
[lldb] NFC modernize codebase with modernize-use-nullptr
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
2019-05-23 11:14:47 +00:00
|
|
|
entry = nullptr;
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
m_summary_formatter.first = entry;
|
|
|
|
|
m_summary_formatter.second = true;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_options.m_omit_summary_depth > 0 && null_if_omitted)
|
|
|
|
|
return nullptr;
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return m_summary_formatter.first;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
static bool IsPointerValue(const CompilerType &type) {
|
2015-10-17 01:05:50 +00:00
|
|
|
Flags type_flags(type.GetTypeInfo());
|
2015-11-10 19:07:58 +00:00
|
|
|
if (type_flags.AnySet(eTypeInstanceIsPointer | eTypeIsPointer))
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return type_flags.AllClear(eTypeIsBuiltIn);
|
2015-10-17 01:05:50 +00:00
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
void ValueObjectPrinter::GetValueSummaryError(std::string &value,
|
|
|
|
|
std::string &summary,
|
|
|
|
|
std::string &error) {
|
|
|
|
|
lldb::Format format = m_options.m_format;
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj = GetMostSpecializedValue();
|
2016-04-25 00:52:47 +00:00
|
|
|
// if I am printing synthetized elements, apply the format to those elements
|
2016-09-06 20:57:50 +00:00
|
|
|
// only
|
2016-11-04 18:15:39 +00:00
|
|
|
if (m_options.m_pointer_as_array)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
valobj.GetValueAsCString(lldb::eFormatDefault, value);
|
|
|
|
|
else if (format != eFormatDefault && format != valobj.GetFormat())
|
|
|
|
|
valobj.GetValueAsCString(format, value);
|
2016-09-06 20:57:50 +00:00
|
|
|
else {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
const char *val_cstr = valobj.GetValueAsCString();
|
2014-02-15 01:24:44 +00:00
|
|
|
if (val_cstr)
|
|
|
|
|
value.assign(val_cstr);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
const char *err_cstr = valobj.GetError().AsCString();
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (err_cstr)
|
|
|
|
|
error.assign(err_cstr);
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2020-11-12 12:11:47 -08:00
|
|
|
if (!ShouldPrintValueObject())
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (IsNil()) {
|
|
|
|
|
lldb::LanguageType lang_type =
|
|
|
|
|
(m_options.m_varformat_language == lldb::eLanguageTypeUnknown)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
? valobj.GetPreferredDisplayLanguage()
|
2020-11-12 12:11:47 -08:00
|
|
|
: m_options.m_varformat_language;
|
|
|
|
|
if (Language *lang_plugin = Language::FindPlugin(lang_type)) {
|
|
|
|
|
summary.assign(lang_plugin->GetNilReferenceSummaryString().str());
|
|
|
|
|
} else {
|
|
|
|
|
// We treat C as the fallback language rather than as a separate Language
|
|
|
|
|
// plugin.
|
|
|
|
|
summary.assign("NULL");
|
|
|
|
|
}
|
|
|
|
|
} else if (IsUninitialized()) {
|
|
|
|
|
summary.assign("<uninitialized>");
|
|
|
|
|
} else if (m_options.m_omit_summary_depth == 0) {
|
|
|
|
|
TypeSummaryImpl *entry = GetSummaryFormatter();
|
|
|
|
|
if (entry) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
valobj.GetSummaryAsCString(entry, summary,
|
|
|
|
|
m_options.m_varformat_language);
|
2020-11-12 12:11:47 -08:00
|
|
|
} else {
|
|
|
|
|
const char *sum_cstr =
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
valobj.GetSummaryAsCString(m_options.m_varformat_language);
|
2020-11-12 12:11:47 -08:00
|
|
|
if (sum_cstr)
|
|
|
|
|
summary.assign(sum_cstr);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool ValueObjectPrinter::PrintValueAndSummaryIfNeeded(bool &value_printed,
|
2015-07-27 18:34:14 +00:00
|
|
|
bool &summary_printed) {
|
|
|
|
|
bool error_printed = false;
|
|
|
|
|
if (ShouldPrintValueObject()) {
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (!CheckScopeIfNeeded())
|
|
|
|
|
m_error.assign("out of scope");
|
|
|
|
|
if (m_error.empty()) {
|
2015-11-10 22:39:15 +00:00
|
|
|
GetValueSummaryError(m_value, m_summary, m_error);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2015-11-10 22:39:15 +00:00
|
|
|
if (m_error.size()) {
|
|
|
|
|
// we need to support scenarios in which it is actually fine for a value
|
2018-04-30 16:49:04 +00:00
|
|
|
// to have no type but - on the other hand - if we get an error *AND*
|
|
|
|
|
// have no type, we try to get out gracefully, since most often that
|
|
|
|
|
// combination means "could not resolve a type" and the default failure
|
|
|
|
|
// mode is quite ugly
|
2015-11-10 22:39:15 +00:00
|
|
|
if (!m_compiler_type.IsValid()) {
|
|
|
|
|
m_stream->Printf(" <could not resolve type>");
|
|
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2016-04-25 00:52:47 +00:00
|
|
|
error_printed = true;
|
|
|
|
|
m_stream->Printf(" <%s>\n", m_error.c_str());
|
|
|
|
|
} else {
|
2018-04-30 16:49:04 +00:00
|
|
|
// Make sure we have a value and make sure the summary didn't specify
|
|
|
|
|
// that the value should not be printed - and do not print the value if
|
|
|
|
|
// this thing is nil (but show the value if the user passes a format
|
|
|
|
|
// explicitly)
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
TypeSummaryImpl *entry = GetSummaryFormatter();
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj = GetMostSpecializedValue();
|
2020-11-12 12:11:47 -08:00
|
|
|
const bool has_nil_or_uninitialized_summary =
|
|
|
|
|
(IsNil() || IsUninitialized()) && !m_summary.empty();
|
|
|
|
|
if (!has_nil_or_uninitialized_summary && !m_value.empty() &&
|
[lldb] NFC modernize codebase with modernize-use-nullptr
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
2019-05-23 11:14:47 +00:00
|
|
|
(entry == nullptr ||
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
(entry->DoesPrintValue(&valobj) ||
|
[lldb] NFC modernize codebase with modernize-use-nullptr
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
2019-05-23 11:14:47 +00:00
|
|
|
m_options.m_format != eFormatDefault) ||
|
2015-11-10 22:39:15 +00:00
|
|
|
m_summary.empty()) &&
|
|
|
|
|
!m_options.m_hide_value) {
|
2015-11-03 23:23:59 +00:00
|
|
|
if (m_options.m_hide_pointer_value &&
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
IsPointerValue(valobj.GetCompilerType())) {
|
2016-09-06 20:57:50 +00:00
|
|
|
} else {
|
2023-03-23 21:43:32 -07:00
|
|
|
if (ShouldShowName())
|
2023-02-16 15:39:09 -08:00
|
|
|
m_stream->PutChar(' ');
|
|
|
|
|
m_stream->PutCString(m_value);
|
2016-04-25 00:52:47 +00:00
|
|
|
value_printed = true;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (m_summary.size()) {
|
2023-03-27 14:58:10 -07:00
|
|
|
if (ShouldShowName() || value_printed)
|
|
|
|
|
m_stream->PutChar(' ');
|
|
|
|
|
m_stream->PutCString(m_summary);
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
summary_printed = true;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2015-11-10 19:07:58 +00:00
|
|
|
return !error_printed;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2025-08-15 08:37:26 -07:00
|
|
|
void ValueObjectPrinter::PrintObjectDescriptionIfNeeded(
|
|
|
|
|
std::optional<std::string> object_desc) {
|
|
|
|
|
if (!object_desc)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (!m_options.m_hide_value || ShouldShowName())
|
|
|
|
|
*m_stream << ' ';
|
|
|
|
|
*m_stream << *object_desc << maybeNewline(*object_desc);
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool DumpValueObjectOptions::PointerDepth::CanAllowExpansion() const {
|
2024-12-02 16:23:26 -08:00
|
|
|
return m_count > 0;
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::ShouldPrintChildren(
|
|
|
|
|
DumpValueObjectOptions::PointerDepth &curr_ptr_depth) {
|
|
|
|
|
const bool is_ref = IsRef();
|
|
|
|
|
const bool is_ptr = IsPtr();
|
2015-11-10 22:39:15 +00:00
|
|
|
const bool is_uninit = IsUninitialized();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (is_uninit)
|
|
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-06-07 16:17:37 -07:00
|
|
|
// If we have reached the maximum depth we shouldn't print any more children.
|
|
|
|
|
if (HasReachedMaximumDepth())
|
|
|
|
|
return false;
|
|
|
|
|
|
2018-04-30 16:49:04 +00:00
|
|
|
// if the user has specified an element count, always print children as it is
|
|
|
|
|
// explicit user demand being honored
|
2016-11-04 18:15:39 +00:00
|
|
|
if (m_options.m_pointer_as_array)
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return true;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2025-08-15 08:37:26 -07:00
|
|
|
if (m_options.m_use_object_desc)
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
[lldb] Consult summary provider before printing children of root references
When printing the root of a value, if it's a reference its children are unconditionally
printed - in contrast to pointers whose children are only printed if a sufficient
pointer depth is given.
However, the children are printed even when there's a summary provider that says not to.
If a summary provider exists, this change consults it to determine if children should be
printed.
For example, given a variable of type `std::string &`, this change has the following
effect:
Before:
```
(lldb) p string_ref
(std::string &) string_ref = "one two three four five six seven eight nine ten": {
__r_ = {
std::__1::__compressed_pair_elem<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >::__rep, 0, false> = {
__value_ = {
= {
__l = (__data_ = "one two three four five six seven eight nine ten", __size_ = 48, __cap_ = 64, __is_long_ = 1)
__s = (__data_ = "@\0p\U00000001\0`\0\00\0\0\0\0\0\0\0@", __padding_ = "\x80t<", __size_ = '\0', __is_long_ = '\x01')
__r = {
__words ={...}
}
}
}
}
}
}
```
After:
```
(lldb) p string_ref
(std::string &) string_ref = "one two three four five six seven eight nine ten"
```
rdar://73248786
Differential Revision: https://reviews.llvm.org/D151748
2023-05-30 10:31:44 -07:00
|
|
|
bool print_children = true;
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj = GetMostSpecializedValue();
|
[lldb] Consult summary provider before printing children of root references
When printing the root of a value, if it's a reference its children are unconditionally
printed - in contrast to pointers whose children are only printed if a sufficient
pointer depth is given.
However, the children are printed even when there's a summary provider that says not to.
If a summary provider exists, this change consults it to determine if children should be
printed.
For example, given a variable of type `std::string &`, this change has the following
effect:
Before:
```
(lldb) p string_ref
(std::string &) string_ref = "one two three four five six seven eight nine ten": {
__r_ = {
std::__1::__compressed_pair_elem<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >::__rep, 0, false> = {
__value_ = {
= {
__l = (__data_ = "one two three four five six seven eight nine ten", __size_ = 48, __cap_ = 64, __is_long_ = 1)
__s = (__data_ = "@\0p\U00000001\0`\0\00\0\0\0\0\0\0\0@", __padding_ = "\x80t<", __size_ = '\0', __is_long_ = '\x01')
__r = {
__words ={...}
}
}
}
}
}
}
```
After:
```
(lldb) p string_ref
(std::string &) string_ref = "one two three four five six seven eight nine ten"
```
rdar://73248786
Differential Revision: https://reviews.llvm.org/D151748
2023-05-30 10:31:44 -07:00
|
|
|
if (TypeSummaryImpl *type_summary = GetSummaryFormatter())
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
print_children = type_summary->DoesPrintChildren(&valobj);
|
[lldb] Consult summary provider before printing children of root references
When printing the root of a value, if it's a reference its children are unconditionally
printed - in contrast to pointers whose children are only printed if a sufficient
pointer depth is given.
However, the children are printed even when there's a summary provider that says not to.
If a summary provider exists, this change consults it to determine if children should be
printed.
For example, given a variable of type `std::string &`, this change has the following
effect:
Before:
```
(lldb) p string_ref
(std::string &) string_ref = "one two three four five six seven eight nine ten": {
__r_ = {
std::__1::__compressed_pair_elem<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >::__rep, 0, false> = {
__value_ = {
= {
__l = (__data_ = "one two three four five six seven eight nine ten", __size_ = 48, __cap_ = 64, __is_long_ = 1)
__s = (__data_ = "@\0p\U00000001\0`\0\00\0\0\0\0\0\0\0@", __padding_ = "\x80t<", __size_ = '\0', __is_long_ = '\x01')
__r = {
__words ={...}
}
}
}
}
}
}
```
After:
```
(lldb) p string_ref
(std::string &) string_ref = "one two three four five six seven eight nine ten"
```
rdar://73248786
Differential Revision: https://reviews.llvm.org/D151748
2023-05-30 10:31:44 -07:00
|
|
|
|
2023-06-07 16:17:37 -07:00
|
|
|
// We will show children for all concrete types. We won't show pointer
|
|
|
|
|
// contents unless a pointer depth has been specified. We won't reference
|
|
|
|
|
// contents unless the reference is the root object (depth of zero).
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-06-07 16:17:37 -07:00
|
|
|
// Use a new temporary pointer depth in case we override the current
|
|
|
|
|
// pointer depth below...
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-06-07 16:17:37 -07:00
|
|
|
if (is_ptr || is_ref) {
|
|
|
|
|
// We have a pointer or reference whose value is an address. Make sure
|
|
|
|
|
// that address is not NULL
|
2025-06-02 09:39:56 +02:00
|
|
|
if (valobj.GetPointerValue().address == 0)
|
2023-06-07 16:17:37 -07:00
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-06-07 16:17:37 -07:00
|
|
|
const bool is_root_level = m_curr_depth == 0;
|
2025-03-15 08:57:51 -07:00
|
|
|
const bool is_expanded_ptr =
|
|
|
|
|
is_ptr && m_type_flags.Test(m_options.m_expand_ptr_type_flags);
|
|
|
|
|
|
|
|
|
|
if ((is_ref || is_expanded_ptr) && is_root_level && print_children) {
|
|
|
|
|
// If this is the root object (depth is zero) that we are showing and it
|
|
|
|
|
// is either a reference or a preferred type of pointer, then print it.
|
|
|
|
|
// Don't do this at deeper depths otherwise we can end up with infinite
|
|
|
|
|
// recursion...
|
2023-06-07 16:17:37 -07:00
|
|
|
return true;
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2023-06-07 16:17:37 -07:00
|
|
|
return curr_ptr_depth.CanAllowExpansion();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2023-06-07 16:17:37 -07:00
|
|
|
|
|
|
|
|
return print_children || m_summary.empty();
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::ShouldExpandEmptyAggregates() {
|
2015-11-03 23:23:59 +00:00
|
|
|
TypeSummaryImpl *entry = GetSummaryFormatter();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (!entry)
|
|
|
|
|
return true;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return entry->DoesPrintEmptyAggregates();
|
|
|
|
|
}
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &ValueObjectPrinter::GetValueObjectForChildrenGeneration() {
|
|
|
|
|
return GetMostSpecializedValue();
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
2023-03-27 14:58:10 -07:00
|
|
|
void ValueObjectPrinter::PrintChildrenPreamble(bool value_printed,
|
|
|
|
|
bool summary_printed) {
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_options.m_flat_output) {
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (ShouldPrintValueObject())
|
2015-11-10 19:07:58 +00:00
|
|
|
m_stream->EOL();
|
2016-09-06 20:57:50 +00:00
|
|
|
} else {
|
2023-03-23 21:43:32 -07:00
|
|
|
if (ShouldPrintValueObject()) {
|
|
|
|
|
if (IsRef()) {
|
|
|
|
|
m_stream->PutCString(": ");
|
2023-03-27 14:58:10 -07:00
|
|
|
} else if (value_printed || summary_printed || ShouldShowName()) {
|
2023-03-23 21:43:32 -07:00
|
|
|
m_stream->PutChar(' ');
|
|
|
|
|
}
|
|
|
|
|
m_stream->PutCString("{\n");
|
|
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
m_stream->IndentMore();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
void ValueObjectPrinter::PrintChild(
|
|
|
|
|
ValueObjectSP child_sp,
|
2015-07-27 18:34:14 +00:00
|
|
|
const DumpValueObjectOptions::PointerDepth &curr_ptr_depth) {
|
2023-06-01 16:56:56 -07:00
|
|
|
const uint32_t consumed_summary_depth = m_options.m_pointer_as_array ? 0 : 1;
|
2016-04-25 00:52:47 +00:00
|
|
|
const bool does_consume_ptr_depth =
|
2016-11-04 18:15:39 +00:00
|
|
|
((IsPtr() && !m_options.m_pointer_as_array) || IsRef());
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-11-10 19:07:58 +00:00
|
|
|
DumpValueObjectOptions child_options(m_options);
|
2015-11-03 23:23:59 +00:00
|
|
|
child_options.SetFormat(m_options.m_format)
|
2016-04-25 00:52:47 +00:00
|
|
|
.SetSummary()
|
2015-11-03 23:23:59 +00:00
|
|
|
.SetRootValueObjectName();
|
2015-11-10 19:07:58 +00:00
|
|
|
child_options.SetScopeChecked(true)
|
2015-11-03 23:23:59 +00:00
|
|
|
.SetHideName(m_options.m_hide_name)
|
|
|
|
|
.SetHideValue(m_options.m_hide_value)
|
2016-04-25 00:52:47 +00:00
|
|
|
.SetOmitSummaryDepth(child_options.m_omit_summary_depth > 1
|
|
|
|
|
? child_options.m_omit_summary_depth -
|
2023-06-01 16:56:56 -07:00
|
|
|
consumed_summary_depth
|
2016-09-06 20:57:50 +00:00
|
|
|
: 0)
|
2016-04-25 00:52:47 +00:00
|
|
|
.SetElementCount(0);
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (child_sp.get()) {
|
2023-06-01 16:56:56 -07:00
|
|
|
auto ptr_depth = curr_ptr_depth;
|
|
|
|
|
if (does_consume_ptr_depth)
|
|
|
|
|
ptr_depth = curr_ptr_depth.Decremented();
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObjectPrinter child_printer(*(child_sp.get()), m_stream, child_options,
|
2023-06-01 16:56:56 -07:00
|
|
|
ptr_depth, m_curr_depth + 1,
|
|
|
|
|
m_printed_instance_pointers);
|
2024-06-17 14:29:01 -07:00
|
|
|
llvm::Error error = child_printer.PrintValueObject();
|
|
|
|
|
if (error) {
|
|
|
|
|
if (m_stream)
|
|
|
|
|
*m_stream << "error: " << toString(std::move(error));
|
|
|
|
|
else
|
|
|
|
|
llvm::consumeError(std::move(error));
|
|
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-11 13:04:56 -07:00
|
|
|
llvm::Expected<uint32_t>
|
|
|
|
|
ValueObjectPrinter::GetMaxNumChildrenToPrint(bool &print_dotdotdot) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &synth_valobj = GetValueObjectForChildrenGeneration();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2016-11-04 18:15:39 +00:00
|
|
|
if (m_options.m_pointer_as_array)
|
|
|
|
|
return m_options.m_pointer_as_array.m_element_count;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2024-06-03 10:34:44 +02:00
|
|
|
const uint32_t max_num_children =
|
|
|
|
|
m_options.m_ignore_cap ? UINT32_MAX
|
|
|
|
|
: GetMostSpecializedValue()
|
|
|
|
|
.GetTargetSP()
|
|
|
|
|
->GetMaximumNumberOfChildrenToDisplay();
|
|
|
|
|
// Ask for one more child than the maximum to see if we should print "...".
|
|
|
|
|
auto num_children_or_err = synth_valobj.GetNumChildren(
|
|
|
|
|
llvm::SaturatingAdd(max_num_children, uint32_t(1)));
|
2024-03-11 13:04:56 -07:00
|
|
|
if (!num_children_or_err)
|
|
|
|
|
return num_children_or_err;
|
2024-06-03 10:34:44 +02:00
|
|
|
if (*num_children_or_err > max_num_children) {
|
|
|
|
|
print_dotdotdot = true;
|
|
|
|
|
return max_num_children;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2024-06-03 10:34:44 +02:00
|
|
|
return num_children_or_err;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
void ValueObjectPrinter::PrintChildrenPostamble(bool print_dotdotdot) {
|
2015-11-03 23:23:59 +00:00
|
|
|
if (!m_options.m_flat_output) {
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (print_dotdotdot) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
GetMostSpecializedValue()
|
|
|
|
|
.GetTargetSP()
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
->GetDebugger()
|
|
|
|
|
.GetCommandInterpreter()
|
|
|
|
|
.ChildrenTruncated();
|
|
|
|
|
m_stream->Indent("...\n");
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
m_stream->IndentLess();
|
|
|
|
|
m_stream->Indent("}\n");
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-27 18:34:14 +00:00
|
|
|
bool ValueObjectPrinter::ShouldPrintEmptyBrackets(bool value_printed,
|
2015-11-10 19:07:58 +00:00
|
|
|
bool summary_printed) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &synth_valobj = GetValueObjectForChildrenGeneration();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-11-03 23:23:59 +00:00
|
|
|
if (!IsAggregate())
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2018-12-15 00:15:33 +00:00
|
|
|
if (!m_options.m_reveal_empty_aggregates) {
|
2015-11-10 19:07:58 +00:00
|
|
|
if (value_printed || summary_printed)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
if (synth_valobj.MightHaveChildren())
|
2015-11-10 19:07:58 +00:00
|
|
|
return true;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_val_summary_ok)
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
return false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-07-24 21:30:58 +00:00
|
|
|
return true;
|
2015-11-10 19:07:58 +00:00
|
|
|
}
|
|
|
|
|
|
2016-11-04 18:15:39 +00:00
|
|
|
static constexpr size_t PhysicalIndexForLogicalIndex(size_t base, size_t stride,
|
|
|
|
|
size_t logical) {
|
|
|
|
|
return base + logical * stride;
|
|
|
|
|
}
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObjectSP ValueObjectPrinter::GenerateChild(ValueObject &synth_valobj,
|
2016-04-25 00:52:47 +00:00
|
|
|
size_t idx) {
|
2016-11-04 18:15:39 +00:00
|
|
|
if (m_options.m_pointer_as_array) {
|
2016-04-25 00:52:47 +00:00
|
|
|
// if generating pointer-as-array children, use GetSyntheticArrayMember
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
return synth_valobj.GetSyntheticArrayMember(
|
2016-11-04 18:15:39 +00:00
|
|
|
PhysicalIndexForLogicalIndex(
|
|
|
|
|
m_options.m_pointer_as_array.m_base_element,
|
|
|
|
|
m_options.m_pointer_as_array.m_stride, idx),
|
|
|
|
|
true);
|
2016-04-25 00:52:47 +00:00
|
|
|
} else {
|
|
|
|
|
// otherwise, do the usual thing
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
return synth_valobj.GetChildAtIndex(idx);
|
2016-04-25 00:52:47 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-27 18:34:14 +00:00
|
|
|
void ValueObjectPrinter::PrintChildren(
|
|
|
|
|
bool value_printed, bool summary_printed,
|
|
|
|
|
const DumpValueObjectOptions::PointerDepth &curr_ptr_depth) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &synth_valobj = GetValueObjectForChildrenGeneration();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-11-10 19:07:58 +00:00
|
|
|
bool print_dotdotdot = false;
|
2024-03-11 13:04:56 -07:00
|
|
|
auto num_children_or_err = GetMaxNumChildrenToPrint(print_dotdotdot);
|
|
|
|
|
if (!num_children_or_err) {
|
|
|
|
|
*m_stream << " <" << llvm::toString(num_children_or_err.takeError()) << '>';
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
uint32_t num_children = *num_children_or_err;
|
2015-11-10 19:07:58 +00:00
|
|
|
if (num_children) {
|
|
|
|
|
bool any_children_printed = false;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
for (size_t idx = 0; idx < num_children; ++idx) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
if (ValueObjectSP child_sp = GenerateChild(synth_valobj, idx)) {
|
[lldb] Show register fields using bitfield struct types
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
2023-01-13 15:50:37 +00:00
|
|
|
if (m_options.m_child_printing_decider &&
|
|
|
|
|
!m_options.m_child_printing_decider(child_sp->GetName()))
|
|
|
|
|
continue;
|
2015-07-24 21:30:58 +00:00
|
|
|
if (!any_children_printed) {
|
2023-03-27 14:58:10 -07:00
|
|
|
PrintChildrenPreamble(value_printed, summary_printed);
|
Extend synthetic children to produce synthetic values (as in, those that GetValueAsUnsigned(), GetValueAsCString() would return)
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
2014-10-08 18:27:36 +00:00
|
|
|
any_children_printed = true;
|
|
|
|
|
}
|
2015-11-10 19:07:58 +00:00
|
|
|
PrintChild(child_sp, curr_ptr_depth);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
|
|
|
|
|
2013-10-04 23:14:13 +00:00
|
|
|
if (any_children_printed)
|
|
|
|
|
PrintChildrenPostamble(print_dotdotdot);
|
|
|
|
|
else {
|
2015-11-03 23:23:59 +00:00
|
|
|
if (ShouldPrintEmptyBrackets(value_printed, summary_printed)) {
|
2013-10-04 23:14:13 +00:00
|
|
|
if (ShouldPrintValueObject())
|
|
|
|
|
m_stream->PutCString(" {}\n");
|
|
|
|
|
else
|
|
|
|
|
m_stream->EOL();
|
2016-09-06 20:57:50 +00:00
|
|
|
} else
|
2015-11-10 19:07:58 +00:00
|
|
|
m_stream->EOL();
|
2013-10-04 23:14:13 +00:00
|
|
|
}
|
2015-11-10 19:07:58 +00:00
|
|
|
} else if (ShouldPrintEmptyBrackets(value_printed, summary_printed)) {
|
2013-10-04 23:14:13 +00:00
|
|
|
// Aggregate, no children...
|
2015-11-10 19:07:58 +00:00
|
|
|
if (ShouldPrintValueObject()) {
|
2013-10-04 23:14:13 +00:00
|
|
|
// if it has a synthetic value, then don't print {}, the synthetic
|
Extend synthetic children to produce synthetic values (as in, those that GetValueAsUnsigned(), GetValueAsCString() would return)
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
2014-10-08 18:27:36 +00:00
|
|
|
// children are probably only being used to vend a value
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
if (GetMostSpecializedValue().DoesProvideSyntheticValue() ||
|
2015-07-24 21:30:58 +00:00
|
|
|
!ShouldExpandEmptyAggregates())
|
2013-10-04 23:14:13 +00:00
|
|
|
m_stream->PutCString("\n");
|
2016-09-06 20:57:50 +00:00
|
|
|
else
|
2015-11-10 19:07:58 +00:00
|
|
|
m_stream->PutCString(" {}\n");
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
} else {
|
2015-11-10 19:07:58 +00:00
|
|
|
if (ShouldPrintValueObject())
|
|
|
|
|
m_stream->EOL();
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2013-10-04 23:14:13 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool ValueObjectPrinter::PrintChildrenOneLiner(bool hide_names) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &synth_valobj = GetValueObjectForChildrenGeneration();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
bool print_dotdotdot = false;
|
2024-03-11 13:04:56 -07:00
|
|
|
auto num_children_or_err = GetMaxNumChildrenToPrint(print_dotdotdot);
|
|
|
|
|
if (!num_children_or_err) {
|
|
|
|
|
*m_stream << '<' << llvm::toString(num_children_or_err.takeError()) << '>';
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
uint32_t num_children = *num_children_or_err;
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2015-11-10 19:07:58 +00:00
|
|
|
if (num_children) {
|
|
|
|
|
m_stream->PutChar('(');
|
2016-09-06 20:57:50 +00:00
|
|
|
|
[lldb] Show register fields using bitfield struct types
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
2023-01-13 15:50:37 +00:00
|
|
|
bool did_print_children = false;
|
2015-11-10 19:07:58 +00:00
|
|
|
for (uint32_t idx = 0; idx < num_children; ++idx) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
lldb::ValueObjectSP child_sp(synth_valobj.GetChildAtIndex(idx));
|
2014-10-09 18:47:36 +00:00
|
|
|
if (child_sp)
|
2015-11-10 19:07:58 +00:00
|
|
|
child_sp = child_sp->GetQualifiedRepresentationIfAvailable(
|
|
|
|
|
m_options.m_use_dynamic, m_options.m_use_synthetic);
|
2014-10-09 18:47:36 +00:00
|
|
|
if (child_sp) {
|
[lldb] Show register fields using bitfield struct types
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
2023-01-13 15:50:37 +00:00
|
|
|
if (m_options.m_child_printing_decider &&
|
|
|
|
|
!m_options.m_child_printing_decider(child_sp->GetName()))
|
|
|
|
|
continue;
|
|
|
|
|
if (idx && did_print_children)
|
2015-11-10 19:07:58 +00:00
|
|
|
m_stream->PutCString(", ");
|
[lldb] Show register fields using bitfield struct types
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
2023-01-13 15:50:37 +00:00
|
|
|
did_print_children = true;
|
2015-11-10 19:07:58 +00:00
|
|
|
if (!hide_names) {
|
|
|
|
|
const char *name = child_sp.get()->GetName().AsCString();
|
|
|
|
|
if (name && *name) {
|
|
|
|
|
m_stream->PutCString(name);
|
2013-10-04 23:14:13 +00:00
|
|
|
m_stream->PutCString(" = ");
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2013-10-04 23:14:13 +00:00
|
|
|
}
|
2015-07-27 18:34:14 +00:00
|
|
|
child_sp->DumpPrintableRepresentation(
|
|
|
|
|
*m_stream, ValueObject::eValueObjectRepresentationStyleSummary,
|
2015-11-03 23:23:59 +00:00
|
|
|
m_options.m_format,
|
2016-11-07 23:32:20 +00:00
|
|
|
ValueObject::PrintableRepresentationSpecialCases::eDisable);
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (print_dotdotdot)
|
2013-10-04 23:14:13 +00:00
|
|
|
m_stream->PutCString(", ...)");
|
2013-10-03 18:11:24 +00:00
|
|
|
else
|
2013-10-04 23:14:13 +00:00
|
|
|
m_stream->PutChar(')');
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
2015-11-10 19:07:58 +00:00
|
|
|
return true;
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
2024-06-17 17:07:36 -07:00
|
|
|
llvm::Error ValueObjectPrinter::PrintChildrenIfNeeded(bool value_printed,
|
|
|
|
|
bool summary_printed) {
|
|
|
|
|
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
ValueObject &valobj = GetMostSpecializedValue();
|
2016-09-06 20:57:50 +00:00
|
|
|
|
2019-08-21 04:55:50 +00:00
|
|
|
DumpValueObjectOptions::PointerDepth curr_ptr_depth = m_ptr_depth;
|
2023-06-07 16:17:37 -07:00
|
|
|
const bool print_children = ShouldPrintChildren(curr_ptr_depth);
|
2019-08-21 04:55:50 +00:00
|
|
|
const bool print_oneline =
|
2015-07-27 18:34:14 +00:00
|
|
|
(curr_ptr_depth.CanAllowExpansion() || m_options.m_show_types ||
|
2015-11-03 23:23:59 +00:00
|
|
|
!m_options.m_allow_oneliner_mode || m_options.m_flat_output ||
|
2016-11-04 18:15:39 +00:00
|
|
|
(m_options.m_pointer_as_array) || m_options.m_show_location)
|
2016-09-06 20:57:50 +00:00
|
|
|
? false
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
: DataVisualization::ShouldPrintAsOneLiner(valobj);
|
2019-08-21 04:55:50 +00:00
|
|
|
if (print_children && IsInstancePointer()) {
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
uint64_t instance_ptr_value = valobj.GetValueAsUnsigned(0);
|
2015-11-10 19:07:58 +00:00
|
|
|
if (m_printed_instance_pointers->count(instance_ptr_value)) {
|
2019-08-21 04:55:50 +00:00
|
|
|
// We already printed this instance-is-pointer thing, so don't expand it.
|
2015-11-10 19:07:58 +00:00
|
|
|
m_stream->PutCString(" {...}\n");
|
2024-06-17 17:07:36 -07:00
|
|
|
return llvm::Error::success();
|
2019-08-21 04:55:50 +00:00
|
|
|
} else {
|
|
|
|
|
// Remember this guy for future reference.
|
|
|
|
|
m_printed_instance_pointers->emplace(instance_ptr_value);
|
|
|
|
|
}
|
2016-09-06 20:57:50 +00:00
|
|
|
}
|
|
|
|
|
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
if (print_children) {
|
2013-10-04 23:14:13 +00:00
|
|
|
if (print_oneline) {
|
|
|
|
|
m_stream->PutChar(' ');
|
|
|
|
|
PrintChildrenOneLiner(false);
|
2013-10-03 18:11:24 +00:00
|
|
|
m_stream->EOL();
|
2016-09-06 20:57:50 +00:00
|
|
|
} else
|
2015-11-10 19:07:58 +00:00
|
|
|
PrintChildren(value_printed, summary_printed, curr_ptr_depth);
|
2022-04-26 16:34:10 -07:00
|
|
|
} else if (HasReachedMaximumDepth() && IsAggregate() &&
|
2015-11-10 19:07:58 +00:00
|
|
|
ShouldPrintValueObject()) {
|
2025-07-18 16:27:46 +01:00
|
|
|
m_stream->PutCString(" {...}\n");
|
2022-04-26 16:34:10 -07:00
|
|
|
// The maximum child depth has been reached. If `m_max_depth` is the default
|
|
|
|
|
// (i.e. the user has _not_ customized it), then lldb presents a warning to
|
|
|
|
|
// the user. The warning tells the user that the limit has been reached, but
|
|
|
|
|
// more importantly tells them how to expand the limit if desired.
|
|
|
|
|
if (m_options.m_max_depth_is_default)
|
Make ValueObjectPrinter's handling of its ValueObject pointers more principled (NFC) (#81314)
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
2024-02-12 15:24:11 -08:00
|
|
|
valobj.GetTargetSP()
|
2022-04-26 16:34:10 -07:00
|
|
|
->GetDebugger()
|
|
|
|
|
.GetCommandInterpreter()
|
|
|
|
|
.SetReachedMaximumDepth();
|
2016-09-06 20:57:50 +00:00
|
|
|
} else
|
2015-11-10 19:07:58 +00:00
|
|
|
m_stream->EOL();
|
2024-06-17 17:07:36 -07:00
|
|
|
return llvm::Error::success();
|
<rdar://problem/14393032>
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
2013-09-30 19:11:51 +00:00
|
|
|
}
|
2022-04-26 16:34:10 -07:00
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::HasReachedMaximumDepth() {
|
|
|
|
|
return m_curr_depth >= m_options.m_max_depth;
|
|
|
|
|
}
|
2023-03-23 21:43:32 -07:00
|
|
|
|
|
|
|
|
bool ValueObjectPrinter::ShouldShowName() const {
|
|
|
|
|
if (m_curr_depth == 0)
|
|
|
|
|
return !m_options.m_hide_root_name && !m_options.m_hide_name;
|
|
|
|
|
return !m_options.m_hide_name;
|
|
|
|
|
}
|