Files
llvm/offload/DeviceRTL/include/Synchronization.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

141 lines
4.8 KiB
C
Raw Normal View History

[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
//===- Synchronization.h - OpenMP synchronization utilities ------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#ifndef OMPTARGET_DEVICERTL_SYNCHRONIZATION_H
#define OMPTARGET_DEVICERTL_SYNCHRONIZATION_H
#include "DeviceTypes.h"
[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
namespace ompx {
[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
namespace atomic {
enum OrderingTy {
relaxed = __ATOMIC_RELAXED,
aquire = __ATOMIC_ACQUIRE,
release = __ATOMIC_RELEASE,
acq_rel = __ATOMIC_ACQ_REL,
seq_cst = __ATOMIC_SEQ_CST,
};
enum MemScopeTy {
all, // All threads on all devices
device, // All threads on the device
cgroup // All threads in the contention group, e.g. the team
};
[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
/// Atomically increment \p *Addr and wrap at \p V with \p Ordering semantics.
uint32_t inc(uint32_t *Addr, uint32_t V, OrderingTy Ordering,
MemScopeTy MemScope = MemScopeTy::all);
/// Atomically perform <op> on \p V and \p *Addr with \p Ordering semantics. The
/// result is stored in \p *Addr;
/// {
#define ATOMIC_COMMON_OP(TY) \
TY add(TY *Addr, TY V, OrderingTy Ordering); \
TY mul(TY *Addr, TY V, OrderingTy Ordering); \
TY load(TY *Addr, OrderingTy Ordering); \
void store(TY *Addr, TY V, OrderingTy Ordering); \
bool cas(TY *Addr, TY ExpectedV, TY DesiredV, OrderingTy OrderingSucc, \
OrderingTy OrderingFail);
#define ATOMIC_FP_ONLY_OP(TY) \
TY min(TY *Addr, TY V, OrderingTy Ordering); \
TY max(TY *Addr, TY V, OrderingTy Ordering);
#define ATOMIC_INT_ONLY_OP(TY) \
TY min(TY *Addr, TY V, OrderingTy Ordering); \
TY max(TY *Addr, TY V, OrderingTy Ordering); \
TY bit_or(TY *Addr, TY V, OrderingTy Ordering); \
TY bit_and(TY *Addr, TY V, OrderingTy Ordering); \
TY bit_xor(TY *Addr, TY V, OrderingTy Ordering);
#define ATOMIC_FP_OP(TY) \
ATOMIC_FP_ONLY_OP(TY) \
ATOMIC_COMMON_OP(TY)
#define ATOMIC_INT_OP(TY) \
ATOMIC_INT_ONLY_OP(TY) \
ATOMIC_COMMON_OP(TY)
// This needs to be kept in sync with the header. Also the reason we don't use
// templates here.
ATOMIC_INT_OP(int8_t)
ATOMIC_INT_OP(int16_t)
ATOMIC_INT_OP(int32_t)
ATOMIC_INT_OP(int64_t)
ATOMIC_INT_OP(uint8_t)
ATOMIC_INT_OP(uint16_t)
ATOMIC_INT_OP(uint32_t)
ATOMIC_INT_OP(uint64_t)
ATOMIC_FP_OP(float)
ATOMIC_FP_OP(double)
#undef ATOMIC_INT_ONLY_OP
#undef ATOMIC_FP_ONLY_OP
#undef ATOMIC_COMMON_OP
#undef ATOMIC_INT_OP
#undef ATOMIC_FP_OP
[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
///}
[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
} // namespace atomic
namespace synchronize {
/// Initialize the synchronization machinery. Must be called by all threads.
void init(bool IsSPMD);
/// Synchronize all threads in a warp identified by \p Mask.
void warp(LaneMaskTy Mask);
/// Synchronize all threads in a block and perform a fence before and after the
/// barrier according to \p Ordering. Note that the fence might be part of the
/// barrier.
void threads(atomic::OrderingTy Ordering);
/// Synchronizing threads is allowed even if they all hit different instances of
/// `synchronize::threads()`. However, `synchronize::threadsAligned()` is more
/// restrictive in that it requires all threads to hit the same instance. The
/// noinline is removed by the openmp-opt pass and helps to preserve the
/// information till then.
///{
#pragma omp begin assumes ext_aligned_barrier
/// Synchronize all threads in a block, they are reaching the same instruction
/// (hence all threads in the block are "aligned"). Also perform a fence before
/// and after the barrier according to \p Ordering. Note that the
/// fence might be part of the barrier if the target offers this.
[[gnu::noinline]] void threadsAligned(atomic::OrderingTy Ordering);
#pragma omp end assumes
///}
} // namespace synchronize
namespace fence {
/// Memory fence with \p Ordering semantics for the team.
void team(atomic::OrderingTy Ordering);
/// Memory fence with \p Ordering semantics for the contention group.
void kernel(atomic::OrderingTy Ordering);
/// Memory fence with \p Ordering semantics for the system.
void system(atomic::OrderingTy Ordering);
} // namespace fence
} // namespace ompx
[OpenMP] Prototype opt-in new GPU device RTL The "old" OpenMP GPU device runtime (D14254) has served us well for many years but modernizing it has caused some pain recently. This patch introduces an alternative which is mostly written from scratch embracing OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual interfaces. This new runtime is opt-in through a clang flag (D106793). The new runtime is currently only build for nvptx and has "-new" in its name. The design is tailored towards middle-end optimizations rather than front-end code generation choices, a trend we already started in the old runtime a while back. In contrast to the old one, state is organized in a simple manner rather than a "smart" one. While this can induce costs it helps optimizations. Our expectation is that the majority of codes can be optimized and a "simple" design is therefore preferable. The new runtime does also avoid users to pay for things they do not use, especially wrt. memory. The unlikely case of nested parallelism is supported but costly to make the more likely case use less resources. The worksharing and reduction implementation have been taken from the old runtime and will be rewritten in the future if necessary. Documentation and debug features are still mostly missing and will be added over time. All external symbols start with `__kmpc` for legacy reasons but should be renamed once we switch over to a single runtime. All internal symbols are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name clashes with user symbols. Differential Revision: https://reviews.llvm.org/D106803
2021-07-25 13:26:44 -05:00
#endif