[MLIR][tensor] generate default builder for FromElementsOp

Removed builder is the same as default builder, with the added benefit that python bindings will be generated for the default builder.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D149508
This commit is contained in:
max
2023-04-30 17:46:29 -05:00
parent bf08973277
commit 0a02f76d11
3 changed files with 29 additions and 11 deletions

View File

@@ -82,7 +82,6 @@ def testInferTypesInsertSlice():
with Context() as ctx, Location.unknown():
module = Module.create()
f32Type = F32Type.get()
indexType = IndexType.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
@@ -92,8 +91,6 @@ def testInferTypesInsertSlice():
# CHECK: tensor.insert_slice %arg0 into %arg1[0, 0] [1, 1] [0, 0] :
# CHECK-SAME: tensor<1x1xf32> into tensor<1x1xf32>
def f(source, dest):
c0 = arith.ConstantOp(indexType, 0)
c1 = arith.ConstantOp(indexType, 1)
d0 = tensor.InsertSliceOp(source, dest, [], [], [],
DenseI64ArrayAttr.get([0, 0]),
DenseI64ArrayAttr.get([1, 1]),
@@ -101,3 +98,32 @@ def testInferTypesInsertSlice():
return [d0.result]
print(module)
# CHECK-LABEL: TEST: testFromElementsOp
@run
def testFromElementsOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func()
def default_builder():
c0 = arith.ConstantOp(f32, 0.0)
# CHECK: %[[C0:.*]] = "arith.constant"() {value = 0.000000e+00 : f32} : () -> f32
print(c0)
c1 = arith.ConstantOp(f32, 1.0)
# CHECK: %[[C1:.*]] = "arith.constant"() {value = 1.000000e+00 : f32} : () -> f32
print(c1)
t = tensor.FromElementsOp(RankedTensorType.get((2,), f32), [c0, c1])
# CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2xf32>
print(t)
t = tensor.FromElementsOp(RankedTensorType.get((2, 1), f32), [c0, c1])
# CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2x1xf32>
print(t)
t = tensor.FromElementsOp(RankedTensorType.get((1, 2), f32), [c0, c1])
# CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<1x2xf32>
print(t)