mirror of
https://github.com/intel/llvm.git
synced 2026-01-13 19:08:21 +08:00
[MLIR][Python] use FetchContent_Declare for nanobind and remove pybind (#161230)
Inspired by this comment
https://github.com/llvm/llvm-project/pull/157930#issuecomment-3346634290
(and long-standing issues related to finding nanobind/pybind in the
right place), this PR moves to using `FetchContent_Declare` to get the
nanobind dependency. This is pretty standard (see e.g.,
[IREE](cf60359b74/CMakeLists.txt (L842-L848))).
This PR also removes pybind which has been deprecated for almost a year
(https://github.com/llvm/llvm-project/pull/117922) and which isn't
compatible (for whatever reason) with `FetchContent_Declare`.
---------
Co-authored-by: Jacques Pienaar <jpienaar@google.com>
This commit is contained in:
@@ -1,5 +1,4 @@
|
||||
# RUN: %PYTHON %s pybind11 | FileCheck %s
|
||||
# RUN: %PYTHON %s nanobind | FileCheck %s
|
||||
# RUN: %PYTHON %s | FileCheck %s
|
||||
import sys
|
||||
import typing
|
||||
from typing import Union, Optional
|
||||
@@ -10,26 +9,14 @@ import mlir.dialects.python_test as test
|
||||
import mlir.dialects.tensor as tensor
|
||||
import mlir.dialects.arith as arith
|
||||
|
||||
if sys.argv[1] == "pybind11":
|
||||
from mlir._mlir_libs._mlirPythonTestPybind11 import (
|
||||
TestAttr,
|
||||
TestType,
|
||||
TestTensorValue,
|
||||
TestIntegerRankedTensorType,
|
||||
)
|
||||
from mlir._mlir_libs._mlirPythonTestNanobind import (
|
||||
TestAttr,
|
||||
TestType,
|
||||
TestTensorValue,
|
||||
TestIntegerRankedTensorType,
|
||||
)
|
||||
|
||||
test.register_python_test_dialect(get_dialect_registry(), use_nanobind=False)
|
||||
elif sys.argv[1] == "nanobind":
|
||||
from mlir._mlir_libs._mlirPythonTestNanobind import (
|
||||
TestAttr,
|
||||
TestType,
|
||||
TestTensorValue,
|
||||
TestIntegerRankedTensorType,
|
||||
)
|
||||
|
||||
test.register_python_test_dialect(get_dialect_registry(), use_nanobind=True)
|
||||
else:
|
||||
raise ValueError("Expected pybind11 or nanobind as argument")
|
||||
test.register_python_test_dialect(get_dialect_registry())
|
||||
|
||||
|
||||
def run(f):
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
set(LLVM_OPTIONAL_SOURCES
|
||||
PythonTestCAPI.cpp
|
||||
PythonTestDialect.cpp
|
||||
PythonTestModulePybind11.cpp
|
||||
PythonTestModuleNanobind.cpp
|
||||
)
|
||||
|
||||
|
||||
@@ -1,118 +0,0 @@
|
||||
//===- PythonTestModule.cpp - Python extension for the PythonTest dialect -===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This is the pybind11 edition of the PythonTest dialect module.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "PythonTestCAPI.h"
|
||||
#include "mlir-c/BuiltinAttributes.h"
|
||||
#include "mlir-c/BuiltinTypes.h"
|
||||
#include "mlir-c/IR.h"
|
||||
#include "mlir/Bindings/Python/PybindAdaptors.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace mlir::python::adaptors;
|
||||
using namespace pybind11::literals;
|
||||
|
||||
static bool mlirTypeIsARankedIntegerTensor(MlirType t) {
|
||||
return mlirTypeIsARankedTensor(t) &&
|
||||
mlirTypeIsAInteger(mlirShapedTypeGetElementType(t));
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(_mlirPythonTestPybind11, m) {
|
||||
m.def(
|
||||
"register_python_test_dialect",
|
||||
[](MlirContext context, bool load) {
|
||||
MlirDialectHandle pythonTestDialect =
|
||||
mlirGetDialectHandle__python_test__();
|
||||
mlirDialectHandleRegisterDialect(pythonTestDialect, context);
|
||||
if (load) {
|
||||
mlirDialectHandleLoadDialect(pythonTestDialect, context);
|
||||
}
|
||||
},
|
||||
py::arg("context"), py::arg("load") = true);
|
||||
|
||||
m.def(
|
||||
"register_dialect",
|
||||
[](MlirDialectRegistry registry) {
|
||||
MlirDialectHandle pythonTestDialect =
|
||||
mlirGetDialectHandle__python_test__();
|
||||
mlirDialectHandleInsertDialect(pythonTestDialect, registry);
|
||||
},
|
||||
py::arg("registry"));
|
||||
|
||||
mlir_attribute_subclass(m, "TestAttr",
|
||||
mlirAttributeIsAPythonTestTestAttribute,
|
||||
mlirPythonTestTestAttributeGetTypeID)
|
||||
.def_classmethod(
|
||||
"get",
|
||||
[](const py::object &cls, MlirContext ctx) {
|
||||
return cls(mlirPythonTestTestAttributeGet(ctx));
|
||||
},
|
||||
py::arg("cls"), py::arg("context") = py::none());
|
||||
|
||||
mlir_type_subclass(m, "TestType", mlirTypeIsAPythonTestTestType,
|
||||
mlirPythonTestTestTypeGetTypeID)
|
||||
.def_classmethod(
|
||||
"get",
|
||||
[](const py::object &cls, MlirContext ctx) {
|
||||
return cls(mlirPythonTestTestTypeGet(ctx));
|
||||
},
|
||||
py::arg("cls"), py::arg("context") = py::none());
|
||||
|
||||
auto typeCls =
|
||||
mlir_type_subclass(m, "TestIntegerRankedTensorType",
|
||||
mlirTypeIsARankedIntegerTensor,
|
||||
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
|
||||
.attr("RankedTensorType"))
|
||||
.def_classmethod(
|
||||
"get",
|
||||
[](const py::object &cls, std::vector<int64_t> shape,
|
||||
unsigned width, MlirContext ctx) {
|
||||
MlirAttribute encoding = mlirAttributeGetNull();
|
||||
return cls(mlirRankedTensorTypeGet(
|
||||
shape.size(), shape.data(), mlirIntegerTypeGet(ctx, width),
|
||||
encoding));
|
||||
},
|
||||
"cls"_a, "shape"_a, "width"_a, "context"_a = py::none());
|
||||
|
||||
assert(py::hasattr(typeCls.get_class(), "static_typeid") &&
|
||||
"TestIntegerRankedTensorType has no static_typeid");
|
||||
|
||||
MlirTypeID mlirRankedTensorTypeID = mlirRankedTensorTypeGetTypeID();
|
||||
|
||||
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
|
||||
.attr(MLIR_PYTHON_CAPI_TYPE_CASTER_REGISTER_ATTR)(mlirRankedTensorTypeID,
|
||||
"replace"_a = true)(
|
||||
pybind11::cpp_function([typeCls](const py::object &mlirType) {
|
||||
return typeCls.get_class()(mlirType);
|
||||
}));
|
||||
|
||||
auto valueCls = mlir_value_subclass(m, "TestTensorValue",
|
||||
mlirTypeIsAPythonTestTestTensorValue)
|
||||
.def("is_null", [](MlirValue &self) {
|
||||
return mlirValueIsNull(self);
|
||||
});
|
||||
|
||||
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
|
||||
.attr(MLIR_PYTHON_CAPI_VALUE_CASTER_REGISTER_ATTR)(
|
||||
mlirRankedTensorTypeID)(
|
||||
pybind11::cpp_function([valueCls](const py::object &valueObj) {
|
||||
py::object capsule = mlirApiObjectToCapsule(valueObj);
|
||||
MlirValue v = mlirPythonCapsuleToValue(capsule.ptr());
|
||||
MlirType t = mlirValueGetType(v);
|
||||
// This is hyper-specific in order to exercise/test registering a
|
||||
// value caster from cpp (but only for a single test case; see
|
||||
// testTensorValue python_test.py).
|
||||
if (mlirShapedTypeHasStaticShape(t) &&
|
||||
mlirShapedTypeGetDimSize(t, 0) == 1 &&
|
||||
mlirShapedTypeGetDimSize(t, 1) == 2 &&
|
||||
mlirShapedTypeGetDimSize(t, 2) == 3)
|
||||
return valueCls.get_class()(valueObj);
|
||||
return valueObj;
|
||||
}));
|
||||
}
|
||||
Reference in New Issue
Block a user